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Abstract. As the spread of information has received a compelling boost
due to pervasive use of social media, so has the spread of misinformation.
The sheer volume of data has rendered the traditional methods of expert-
driven manual fact-checking largely infeasible. As a result, computational
linguistics and data-driven algorithms have been explored in recent years.
Despite this progress, identifying and prioritizing what needs to be checked
has received little attention. Given that expert-driven manual intervention
is likely to remain an important component of fact-checking, especially
in specific domains (e.g., politics, environmental science), this identifi-
cation and prioritization is critical. A successful algorithmic ranking of
“check-worthy” claims can help an expert-in-the-loop fact-checking sys-
tem, thereby reducing the expert’s workload while still tackling the most
salient bits of misinformation. In this work, we explore how linguistic
syntax, semantics, and the contextual meaning of words play a role in
determining the check-worthiness of claims. Our preliminary experiments
used explicit stylometric features and simple word embeddings on the
English language dataset in the Check-worthiness task of the CLEF-2018
Fact-Checking Lab, where our primary solution outperformed the other
systems in terms of the mean average precision, R-precision, reciprocal
rank, and precision at k for multiple values k. Here, we present an ex-
tension of this approach with more sophisticated word embeddings and
report further improvements in this task.

Keywords: Check-worthiness · Multi-layer Perceptron · SVM · Word
Embedding · Context · Syntax · Semantics

1 Introduction

We live in an age where a significant part of our lives may be infused with the
information we see on the web and social media platforms, and most Internet users
readily acquire the power of civilian commentary [2,13]. Thus, any information



Fig. 1. A two-sentence excerpt from an article about Netflix addiction and the main
pieces of information extracted by Open IE [34]. A pipeline of such tools is ill-suited for
fact-checking since there is no distinction between check-worthy and other events. Here,
only the first sentence is worth verifying, and there is no need to fact-check the au-
thor’s bet. Source: https://www.theguardian.com/commentisfree/2018/jun/20/netflix-
addiction-is-real-we-are-entertaining-ourselves-to-death (accessed May 27, 2019).

The World Health Organiza-
tion recently classified obses-
sive video-gaming as an ad-
diction. I bet it will not be
long until “gaming disorder”
is joined in the WHO’s In-
ternational Classification of
Diseases by another modern,
screen-based malady: “Net-
flix disorder”.

available on the web has the potential to be disseminated with unprecedented
speed and scope. As a result, the ordinary web or social media user is often
subjected to information overload [33]. Given how onerous the task of fact-
checking can become under vast amounts of information, users often resort to
confirmation bias when it comes to selection and retention of information [22].
Such a confluence of information overload and bias can create a society where
unverified claims can easily masquerade as facts. We may not be able to overcome
individual biases purely with technology. We can, however, mitigate the ill-effects
of misinformation by identifying and prioritizing what needs to be verified. For
small snippets, this is obvious to the human reader but beyond the scope of
existing tools, as illustrated by the excerpt in Fig. 1. Prior work on automatic fact-
checking cannot, however, make this distinction, and need to extract statements
to be fact-checked before the actual verification process can begin [4,5,17,36,38].

An evident benefit of prioritizing check-worthy statements is that the ranked
list can then be provided to journalists and users to help them focus on verifying
the most important statements without information overload. Moreover, accurate
identification of check-worthy statements will clearly benefit any subsequent fact-
checking processes. With this as our motivation, we focus on the task of identifying
and ranking statements based on their check-worthiness, as defined by the CLEF
2018 Fact Checking Lab [1]. Here, we present our work using the data and
evaluation framework provided by the CLEF 2018 Lab on Automatic Identification
and Verification of Claims in Political Debates [27], and present a solution that
significantly outperforms other systems in terms of several performance measures.

The remainder of this paper is organized into a discussion of related work
in Section 2, a description of our methodology in Section 3, followed by the
experiments and their evaluation in Section 4. Then in Section 5 we provide
a detailed analysis of our results before finally concluding with some possible
directions for future work in Section. 6.

https://www.theguardian.com/commentisfree/2018/jun/20/netflix-addiction-is-real-we-are-entertaining-ourselves-to-death
https://www.theguardian.com/commentisfree/2018/jun/20/netflix-addiction-is-real-we-are-entertaining-ourselves-to-death


2 Related Work

The importance of accurate information has been widely appreciated in many
distinct but increasingly interconnected fields, from journalism to social psychol-
ogy to computational linguistics. Computational approaches to fact-checking are
intended to overcome the hurdle of verifying large amounts of information, and
have become a fundamental component of computational journalism due to its
critical role in upholding the accuracy and verifiability of information [5,7,10].

Very recently, some work has also been done on the extraction of numerical
and statistical claims to identify whether or not a statement is worth verifying [3].
This, however, is orthogonal to our exploration of check-worthiness based on
linguistic constructs, where early research focused on general misinformation such
as rumors and hoaxes [23,31], and soon, several automatic fact-checking systems
were developed for the verification of political news [17,36]. The preliminary step
of identifying what is worth checking, however, received little attention until 2015
(ClaimBuster [16]), and it was not until its later incarnation that the identification
of check-worthiness was incorporated into a fact-checking system [17].

Initially, ClaimBuster modeled the identification of check-worthy statements
as a three-class supervised classification task where each sentence had one of
three possible labels: check-worthy factual, unimportant factual, and non-factual.
They used a dataset of political debates by U.S. presidential candidates, and
crowdsourced the sentence labels. A small set of lexical (words and sentence
length), shallow syntactic (part-of-speech tags), and semantic (sentiment and
entity types) features were extracted and filtered through a random forest classifier
for selection. Later, each sentence was assigned a score based on a classification
and scoring model, with similar features as before [17]. Another notable work on
check-worthiness treated it as a ranking task [11] using a richer set of features.
This work also released the CW-USPD-2016 dataset [11], which comprises four
political debates. Soon, a larger dataset was built with fifteen additional political
debates [29], and a multi-classifier named TATHYA was designed to identify
the check-worthy statements in this dataset. This generated a topic probability
distribution together with the use of lexical and shallow syntactic features,
and provided a comparison against ClaimBuster on the test set. Both systems,
however, reported relatively low F1-scores of 0.179 and 0.214, respectively.

Evidently, there is scope for improvement in identifying and ranking check-
worthy statements. With the above-mentioned body of work as the foundation,
and based on observations regarding the extent of overlap between lexical and
shallow syntactic features [11,24], we use a significantly richer set of features
including clause and phrase structures and word embeddings to account for
syntax, semantics, and linguistic context.

3 Methodology

In this section we begin with a description of the data and then proceed to
describe the feature selection and the use of algorithmic heuristics. At this point,



we would like to underscore that our long-term goal is to aid fact-checking in a
domain-independent manner. Thus, we have chosen to work purely with linguistic
constructs, without explicit external domain knowledge.

3.1 Data

We use the English language political debate dataset provided as part of the CLEF
2018 Check-Worthiness task [1]. The training data consists of three political
debates, where each sentence is associated with its speaker and expert-annotated
as check-worthy or not. It is a highly imbalanced dataset where out of the total
3,989 sentences, only 94 (2.36%) are labeled check-worthy.

The test data consists of two debates and five speeches with 2,815 and 2,064
sentences, respectively1. In this dataset, a speaker is associated with every sen-
tence, but they are not normalized. For example, it includes “Hillary Clinton
(D-NY)”, “Former Secretary of State, Presidential Candidate”, and
simply “Clinton”. Since these are all referring to the same speaker, we map
these variations to a single entity. The training set comprises only debates where
multiple entities frequently engage in a conversation. The test set, however,
contains speeches by each presidential candidate. The rhetorical structure of
a debate, of course, is very different from a speech. We thus extract all the
sentences attributed to a particular entity and create entity-specific sub-datasets,
which serve to train models to identify check-worthy sentences from speeches. For
debates, on the other hand, we use the original training data to train the models.

3.2 Feature Design & Selection

For lexical features, we remove function words and stem the content words using
the Snowball stemmer [30]. The remaining set of features we explore can be
broadly grouped into (a) syntactic or stylometric, (b) semantic, and (c) contextual.

Syntactic Features. This category may further be divided into shallow and deep
syntactic features. Following Gencheva et al. [11], we extract the following shallow
syntactic features from a sentence: part-of-speech tags, total number of tokens
in a sentence, number of negations, and number of tokens in the past, present,
and future tenses. The more complex patterns of language and how they may
serve as cues to deceptive statements cannot, however, be understood based on
these features [8]. To this end, we generate the constituency parse tree for every
sentence, and extract the clause-level and phrase-level tags.

Semantic Features. We use the Stanford named entity recognition system [9]
to extract the number of named entities in each sentence. We also distinguish
between mentions of people and other entity types by appending an extra feature
for entities recognized as the type person. To capture even more meaning from

1The dataset does not provide this categorization, but we treat them differently
since a debate, unlike a speech, has interactive discourse between multiple speakers.



each sentence, we also extract “affect” (direct sentiment as well as connotation).
For sentiment scoring, we use the TextBlob [25] library to train a näıve Bayes
classifier on the well known movie review corpus [28]. To extract the use of more
subtle semantics, we use markers for connotation, subjectivity, bias, and opinion.
While the last three have been used in earlier work [11], our approach is the first
to incorporate connotation features for check-worthiness. We use Connotation
WordNet [20] to obtain a score for each word, and for a sentence, we compute
the mean of the connotation scores of its words. For subjectivity and bias, we
use lexicons to obtain information about the extent to which each word is used
to (a) voice a subjective notion [37], (b) make biased statements [32], and (c)
share positive or negative opinions [19]. For each sentence, we thus have four new
features beyond overt sentiment – connotation, subjectivity, bias, and opinion –
with each feature’s value simply being the total score in the corresponding lexicon
of all the words in that sentence.

Contextual Features. When incorporating context, we resort to explicit feature
extraction as well as word embeddings.

The explicit features comprise metadata and discourse. We use three binary
metadata features, indicating whether or not (i) the speaker is the anchor/host,
(ii) the speaker’s opponent is mentioned in the sentence, and (iii) the sentence is
immediately followed by an intense reaction from the audience, which is encoded
in the training data as a ‘system’ reaction. All the features described so far make
no distinction between speeches and debates. However, since debates have an
interactive discourse structure, we identify every “segment” in the data, defined to
be a maximal set of consecutive sentences by the same speaker [11]. As discourse
features, we use the relative position of a sentence within its segment, and also
the number of sentences in the previous, current, and the following segments.

Beyond explicit features, we use word and sentence embeddings to model
context. Traditional vector space modeling associates each dimension with a word,
which does not account for the distributional hypothesis in linguistics: words
occurring in similar contexts tend to have similar meanings [15]. In contrast,
recent work has shown that using the embedding of a word in a latent semantic
space often leads to better results in various tasks [6,26] since such embeddings
try to account for the word’s context in various ways. Inspired by this approach
to capturing context, we use word embeddings such that a whole sentence is
represented by a vector in a low-dimensional space where similar meanings are
closer together. Since this is a topic of extensive research in its own right, we
make use of readily available embeddings.

The first approach is to use the 300-dimensional pre-trained Google News
word embeddings developed by Mikolov et al. [26], and take the arithmetic mean
of all the word vectors to obtain a representation for the entire sentence. The
second is to use the state-of-the-art BERT [6] embeddings to obtain sentence-level
encoding through their service API [39].

Feature Selection. All the above features result in a very high-dimensional feature
space, which is known to decrease the predictive power of models [35]. Especially



in this work, the extreme class imbalance (see Section. 3.1) could mean that
features indicative of the minority label get ignored by the classifier. Therefore,
we apply a two-stage dimensionality reduction process for the combination of
all the features described earlier, except for BERT embeddings. This two-stage
feature selection together with the sampling process is novel for this task.

First, we perform univariate feature selection using the χ2-test and retain the
2,000 best features. Second, we exploit the property that linear predictive models
with L1 loss lead to sparse solutions and encourage the vanishing coefficients for
weakly correlated features. We do this first for the entire training data, and then
with repeated undersampling for the majority class. This way, after each iteration
we obtain a small but balanced training set. For every sample generated in this
manner, we train a L1-regularized support vector machine (SVM) classifier and
discard the features with vanishing coefficients. At the end of this, we are left
with a space of 2,655 and 2,404 features for debates and speeches, respectively.

For BERT sentence embeddings, which are provided as pre-trained continuous
space language models for text representation, we avoid the χ2-test because BERT
was designed to capture contextual linguistic information and the individual
dimensions do not represent separate variables in the traditional sense. Its training
process captures deep bidirectional representations from enormous amounts of
text in an unsupervised fashion. allowing the embedding to implicitly capture
both the left and right context of words in a sentence. We do however, use SVM
with L1 regularization as above, resulting in 306 and 260 features for debates
and speeches, respectively.

3.3 Classification Models

We use two supervised learning algorithms, SVM and multilayer perceptrons
(MLP). Here, we describe these models along with their training processes.

As discussed in Section 3.2, we use SVM with L1 regularization for feature
selection. However, since the L1 loss function suffers from a tendency to miss
optimal solutions, we use L2 loss to build the final model after feature selection.
Our MLP uses two hidden layers with 100 units and 8 units, respectively. We use
the hyperbolic tangent (tanh) as the activation function, as it achieved better
results when compared to rectified linear units (ReLU). Stochastic optimization
is done with Adam [21]. Finally, to avoid overfitting, we use L2-regularization
in both SVM and MLP. The regularization parameter of SVM is set to 0.02 for
debates and 0.01 for speeches. For both learners, the extreme class imbalance was
an obstacle, and we use the adaptive synthetic sampling algorithm ADASYN [18]
to overcome it. Additionally, we also build an ensemble model combining the
SVM and MLP with equal weights. In this model, we provide the final score for
each sentence as a normalization by standard deviation of the results of SVM
and MLP followed by computing the average.

We use 3-fold cross-validation to select the final model for debates, using two
files for training and the remaining one for testing, performance evaluation, and
parameter tuning. For speeches, we split the training samples into two halves
(one file in each) for 2-fold cross-validation.



Algorithm 1 Heuristics for assigning the check-worthiness score w(·) to sentences.

The minimum token count constants were experimentally chosen by measuring the

cross-validation performance on the training data. The default minimum score of 10−8

was used simply to provide a very low non-zero score for sentences that are highly

unlikely to be check-worthy.

Require: category ∈ {speech,debate},
strict mode ∈ {true, false}, sentence S.

min token count ← 0
if category is speech then

if strict mode then
min token count ← 10

else
min token count ← 8

end if
else

if strict mode then
min token count ← 7

else
min token count ← 5

end if
end if

if Sspeaker is system then
w(S)← 10−8

end if
if Snumber of tokens < min token count
then

w(S)← 10−8

end if
if S contains “thank you” then

w(S)← 10−8

end if
if Snumber of subjects < 1 then

if category is speech then
w(S)← 10−8

else if S contains “?” then
w(S)← 10−8

end if
end if

3.4 Heuristics

As a final step of our approach, we introduce a few simple heuristics to override
the scores assigned by the MLP models. These rules differ slightly based on (i)
the category, i.e., speech or debate, and (ii) whether or not ‘strict’ (a flag to
control the threshold sentence size) heuristics are being used – when active, it
tends to discard more sentences. The complete set of heuristics are specified in
Algorithm 1. One particular rule requires the identification of nominal subjects
in a sentence. To extract this, we generate dependency parse trees of the sentence
and count the number of times any of the following dependency labels appear:
nsubj, csubj, nsubjpass, csubjpass, or xsubj. The first two indicate nominal
and clausal subjects, respectively. The next two indicate nominal and clausal
subjects in a passive clause, and the last label denotes a controlling subject,
which relates an open clausal complement to its external clause.

4 Experiments and Results

The primary evaluation measure in the CLEF 2018 task was the mean of average
precisions over all queries, or mean average precision (MAP), where average
precision is defined in terms of the number of check-worthy sentences nchk, the
total number of sentences n, the precision Prec(k) at cut-off k in the list of



Table 1. Primary submission results of the top three teams, based on mean average
precision (MAP). The mean reciprocal rank (MRR) and mean precision at rank k
(MP@k) evaluation measures are also shown.

TEAM MAP MRR MRP MP@1 MP@3 MP@5 MP@10 MP@20 MP@50

Zuo et al. [40]? 0.1332 0.4965 0.1352 0.4286 0.2857 0.2000 0.1429 0.1571 0.1200

Hansen et al. [14] 0.1152 0.3159 0.1100 0.1429 0.1429 0.1143 0.1286 0.1286 0.1257

Ghanem et al. [12] 0.1130 0.4615 0.1315 0.2857 0.2381 0.3143 0.2286 0.1214 0.0866

sentences ranked by check-worthiness, and the indicator function δ(k) equaling 1
if the sentence at rank k is check-worthy, and 0 otherwise:

AP =
1

nchk

n∑
k=1

Prec(k) · δ(k).

As part of the CLEF 2018 Check-Worthiness task, we submitted the MLP model
without the strict heuristics as our primary run. The results of the top three teams
and their primary runs are shown in Table 1, where our model [40] achieved the
best performance with respect to multiple evaluation criteria. In particular, our
approach performed the best in terms of the primary evaluation measure MAP,
with a score of 0.1332. Our primary submission also had the best performance
with regard to placing the most check-worthy statements at the very top of the
ranked list, as shown by the mean precision at lower ranks, MP@1 and MP@3.
We submitted two contrastive runs as well, one with the strict heuristics and
another with the ensemble model where the MLP component was without the
strict heuristics. Additionally, we also tested the MLP model with no heuristics at
all. For all these models, we used the hand-crafted linguistic features described in
Section 3.2 and the Google News word embeddings. Our experiments with BERT
embeddings were driven to test whether or not they already capture contextual
information better than the hand-crafted features. To explore this, we used both
MLP and SVM with and without (a) the handcrafted linguistic features, and (b)
the feature selection steps.

The performance of these models on the test set are shown in Table 2. For the
sake of brevity, we have omitted a few other combinations of feature selection and
heuristics. One of our constractive runs, MLPstr, performed even better on the
test set than the primary submission. The overall best performance is achieved
by SVM with BERT embeddings where feature selection (from the sentence
embedding vectors) is done using L1 regularization, but no hand-crafted features
are used. For this model, we also report our results on the speeches and debates
separately in Table 3.

5 Error Analysis and Conjectures

Identifying and prioritizing check-worthy sentences is clearly a difficult task,
with even the best model suffering from a rather large number of incorrect



Table 2. Model performance on the test set. With Google News word embeddings:
MLP?, MLPstr, and MLPnone (strict, non-strict, and no heuristics); ENS (ensemble
model). MLP? was our primary submission, and MLPstr and ENS were the two con-
trastive submissions in the CLEF 2018 Lab task. With BERT embeddings: the subscript
±L denotes whether or not the handcrafted linguistic features are used, and the
superscript (†) denotes that feature selection was not performed.

MAP MRR MRP MP@1 MP@3 MP@5 MP@10 MP@20 MP@50

With Google News embeddings:

MLP? 0.1332 0.4965 0.1352 0.4286 0.2857 0.2000 0.1429 0.1571 0.1200

MLPstr 0.1366 0.5246 0.1475 0.4286 0.2857 0.2286 0.1571 0.1714 0.1229

MLPnone 0.1086 0.4767 0.1037 0.2857 0.2857 0.2000 0.1286 0.1071 0.1000

ENS 0.1317 0.4139 0.1523 0.2857 0.1905 0.1714 0.1571 0.1571 0.1429

With BERT embeddings:

MLP−L 0.1499 0.4931 0.1601 0.2857 0.3333 0.2571 0.1571 0.1857 0.1314

SVM
(†)
+L 0.1648 0.3967 0.2170 0.1429 0.2381 0.2286 0.2714 0.20171 0.1600

SVM
(†)
−L 0.1770 0.5276 0.2002 0.2857 0.2381 0.2286 0.2286 0.2643 0.1486

SVM+L 0.1760 0.4396 0.2157 0.1429 0.2857 0.2571 0.2429 2071 0.1742

SVM−L 0.1974 0.7508 0.2201 0.7143 0.3333 0.2857 0.2286 0.2571 0.1657

classifications. In this section, we analyze the models explored, and present our
conjectures regarding why they may be failing to handle many sentences.

First, we observe that tense plays a logically consistent role in check-worthiness
– future actions cannot be verified, of course. POS tagging, however, often confuses
the future tense with political promises made using the present continuous
(e.g., “We’re cutting taxes.”). We also observe that anecdotes are often wrongly
prioritized as check-worthy. These sentences are usually complex, with a lot of
content, which makes it easy for the model to conflate them with other complex
sentences about check-worthy real events. The dataset contains a few duplicate
sentences as well as very similar sentences with different labels, which could be
amplifying errors or discarding potentially useful features.

Rhetorics, too, plays a critical role. They often break the structures associated
with standard sentence formation. Several incorrect predictions were due to
constructs such as scesis onomaton, where words or phrases with nearly equivalent
meaning are repeated. This could make the model falsely believe that there is
more informational content in the sentence. This is even harder to handle with
multiple speakers in debates. The conversational aspect also causes another
problem: quite a few sentences are short, and in isolation, would not be check-
worthy. However, as a response to things mentioned earlier in the debate, they
are. A related issue is the use of sentence fragments. This is sparingly used in
the literature to intentionally create dramatic effect, but was seen frequently
in the debates due to the prevalence of ill-formed or partly-formed sentences
stopping and giving way to another sentence. In some cases, the fragments verbal
repetitions, e.g., “Ambassador Stevens – Ambassador Stevens sent 600 requests
for help.” In light of this analysis, we believe that our features are better suited
for formal written language than speech or debate transcripts.



Table 3. Performance of the best performing model SVM−L (SVM with BERT embed-
dings and no hand-crafted features) on debates and speeches from the test set.

MAP MRR MRP MP@1 MP@3 MP@5 MP@10 MP@20 MP@50

Debates 0.1185 0.5278 0.1234 0.5000 0.3333 0.3000 0.3000 0.2750 0.1500

Speeches 0.2290 0.8400 0.2588 0.8000 0.3333 0.2800 0.1400 0.1600 0.1040

Overall, the SVM model using only BERT embeddings achieved the best
performance. This may seem somewhat surprising, but given that the deep
bidirectional network implicitly captures a lot of contextual information (unlike
older methods like the Google News embeddings). It is worth noting, however,
that feature selection played an important role across all models. With BERT
embeddings, we observe that while it performs significantly better on many
sentences, if often continues to fail in the presence of complex syntactic structures
and frequent use of named entities. This is quite possibly because the context
captured by these embeddings regard a sentence as a flat structure, which works
reasonably well until the parse trees become deeper. Another potential reason for
failure could be that the pre-trained embeddings are derived from vast amounts
of data where the named entities (e.g., Iraq, Donald, ISIS) are, indeed, correlated
with check-worthy statements whereas in the data used in this work, these entities
also frequently appear in sentences that are not worth checking.

Just like the hand-crafted linguistics features and Google News word em-
beddings, the BERT embeddings perform poorly on debate transcripts (shown
explicitly in Table 3 for the best model).

6 Conclusion and Future Work

We described several models to detect check-worthy sentences in political debates
and speeches. Some models combine a few rules with supervised learning using
linguistic features, whereas others use contextual embeddings. This work opens
up several possibilities for future research in the field of fact-checking. First, we
would like to perform ablation tests to confirm some of the anecdotal observation
and conjectures made in the previous section. Next, we would also like to study
in greater detail the linguistic forms of informational content. This has been done
qualitatively in sociolinguistics, and some work has even looked into deep syntactic
features, but it has not yet been applied to identifying check-worthy sentences.
Furthermore, the use of contextual embeddings show that even with deep learning,
there is significant scope for improvement in terms of modeling context in word and
sentence representations. Along this line, we plan to investigate methods where
context is explored in conjunction with deep syntactic structures to overcome the
current deficiencies in identifying check-worthy sentences. In order for this line of
research to impact journalists and citizens, there is also a need for complementary
thrusts in related areas such as social network analysis, information source
identification, and trustworthy crowdsourcing.
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