
Brain Image Analysis Using Spherical Splines

Ying He, Xin Li, Xianfeng Gu, and Hong Qin

Center for Visual Computing (CVC) and Department of Computer Science
Stony Brook University, Stony Brook, NY, 11794-4400, USA

{yhe, xinli, gu, qin}@cs.sunysb.edu

Abstract. We propose a novel technique based on spherical splines for brain
surface representation and analysis. This research is strongly inspired by the fact
that, for brain surfaces, it is both necessary and natural to employ spheres as
their natural domains. We develop an automatic and efficient algorithm, which
transforms a brain surface to a single spherical spline whose maximal error de-
viation from the original data is less than the user-specified tolerance. Compared
to the discrete mesh-based representation, our spherical spline offers a concise
(low storage requirement) digital form with high continuity (Cn−1 continuity for
a degreen spherical spline). Furthermore, this representation enables the accu-
rate evaluation of differential properties, such as curvature, principal direction,
and geodesic, without the need for any numerical approximations. Thus, certain
shape analysis procedures, such as segmentation, gyri and sulci tracing, and 3D
shape matching, can be carried out both robustly and accurately. We conduct
several experiments in order to demonstrate the efficacy of our approach for the
quantitative measurement and analysis of brain surfaces.

1 Introduction

The human cortical surface is a highly complex, folded structure with rich geometric,
anatomical, and functional information. The outward folds(called gyri) and the cortical
grooves (called sulci) encode important anatomical features which provide a parcella-
tion of the cortex surface into anatomically distinct areas. Surface-based modeling is
valuable in brain imaging to help analyze anatomical shape,to statistically combine
or compare 3D anatomical models across subjects, and to map functional imaging pa-
rameters onto anatomical surfaces. Thus, various novel data analysis tools towards the
quantitative study and better understanding of cortical surfaces have been developed
in recent years. For example, Avants and Gee [1] develop a technique to estimate the
shape operator and computes principal directions and curvatures. Cachia et al. present
a mean curvature based primal sketch, which derived from a scale space computed
for the mean curvature of the cortical surface [2]. Gu et al. study the conformal brain
mapping [3] and present an algorithm for 3D shape matching using 2D conformal rep-
resentations [4]. Tao et al. present a method for automatically finding curves of sulcal
fundi on human cortical surfaces using statistical models [5, 6]. Thompson et al. present
a technique for brain image warping in [7] and then apply it todetect disease-specific
patterns in [8].
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Recent developments in brain imaging have accelerated the collection of high-
resolution data sets for cortical surfaces. Typically, theacquired digital models of corti-
cal surfaces are in the form of triangular meshes. It is desirable and necessary to reverse-
engineer a spline-based surface from meshes for many medical applications, leading to
many advantages. For example, a continuous spline representation for a cortical sur-
face facilitates the quantitative and accurate study of theanatomy of cortical surfaces,
and consequently, provides a means for mapping functional activation sites over com-
plicated geometry. In particular, we can precisely computeall the differential quantities
such as geodesics, curvatures, and areas anywhere on cortical surfaces. In general, these
local and global differential attributes will enable many medical imaging applications
such as image segmentation/classification, tracking brainchange in an individual over
time, and surface quality analysis and control.

At present, tensor-productB-spline and NURBS are widely used for surface rep-
resentation because of their many attractive geometric properties. Nevertheless, due to
their rectangular structures, they are less suitable for the effective modeling and shape
analysis of cortical surfaces. In contrast, because of the topological equivalence between
spheres and brain surfaces, spherical splines appear to be more ideal for modeling brain
surfaces, both in theory and in practice, than tensor product B-splines and NURBS. In
this paper, we present a general framework to model brain surfaces with spherical tri-
angularB-splines proposed by Pfeifle and Seidel [9]. These spline surfaces are defined
on an arbitrary spherical triangulation and exhibit no degeneracies that frequently arise
when attempting to employ planar parametric splines for modeling sphere-like, closed
surfaces. Our specific contributions are as follows:

1. The shape is represented by a single degreen spline without any patching and
stitching work. The maximal error deviation from the original data is less than any
user-specified tolerance. The reconstructed surface isCn−1 continuous everywhere.
The surface approximation procedure is automatic.

2. Based on its analytical representation, we can compute the differential properties,
including normals, curvatures, geodesics, etc, without the need for any numeri-
cal approximations via frequently-used bilinear interpolation and/or local algebraic
surface fitting. Therefore, the shape analysis procedures,such as segmentation, can
be done robustly and accurately.

3. By analyzing the extrema of the derivative of principal curvatures with respect to
the curvature directions, we can automatically detect the gyri and sulci curves to
achieve quantitatively accurate results.

4. With the analytical formulation of conformal factor and mean curvature, we com-
pare the 3D shapes using conformal representation robustlyand accurately.

2 Surface approximation using spherical triangular B-splines

In this section, we briefly review the definition of sphericaltriangularB-splines and then
introduce the algorithm for automatic conversion of the brain surface into a spherical
triangularB-spline.
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2.1 Spherical triangular B-spline

Denote byS2 = {x|x ∈ R
3,‖x‖ = 1} a unit sphere inR3. Let pointsti ∈ S

2, i ∈ N, be
given and define a spherical triangulation

T = {∆(I) = [ti0, ti1, ti2] : I = (i0, i1, i2) ∈ I ⊂ N
3},

where every triangle is oriented counter-clockwise (or clockwise). Next, with every
vertex ti of T we associate a cloud of knotsti,0, . . . , ti,n such thatti,0 = ti . For every
spherical triangleI = [ti0, ti1, ti2] ∈ T,

1. all the trianglesXI
β = [ti0,β0

, ti1,β1
ti2,β2

] with β = (β0,β1,β2) and |β| = β0 + β1 +

β2 ≤ n are non-degenerate.
2. the setΩI

n = interior(∩|β|≤nXI
β) must be non-empty.

Then the spherical triangularB-spline basis functionNI
β, |β| = n, is defined by means

of spherical simplex splinesM(u|V I
β) as N(u|V I

β) = |det(XI
β)|M(u|V I

β) whereV I
β =

{ti0,0, . . . , ti0,β0
, ti1,0, . . . , ti1,β1

, ti2,0, . . . , ti2,β2
}.

A degreen spherical triangularB-spline surfaceF overT is then defined as

F(u) = ∑
I∈T

∑
|β|=n

cI ,βN(u|V I
β), (1)

wherecI ,β ∈ R
3 are the control points.

The spherical triangularB-spline has many useful properties, including:

– Piecewise polynomial:F(u) is a degreen piecewise polynomial defined on the
sphere.

– Locality: The movement of a single control pointcI ,β only influences the surface
on the triangleI and on the triangles directly surroundingI .

– Smoothness:If the knots of each setV I
β are in “spherical” general position (i.e.,

no three knots inV I
β lie on the same great circle), thenF(u) is Cn−1 continuous

everywhere.

(a) A spline patch(b)N200 (c) N110 (d) N101 (e)N020 (f) N011 (g) N002

Fig. 1. Six basis functions of a quadratic spherical spline patch.

Figure 1(a) shows a quadratic spherical spline patch definedon{t0, t1, t2}. We asso-
ciate two sub-knotsti, j , j = 1,2 with each vertexti . The six basis functions are shown
in Figure 1(b)-(g). Since no three knots are co-circular, every basis function isC1 ev-
erywhere.
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2.2 Surface reconstruction algorithm

The goal of surface reconstruction is to obtain a continuousrepresentation of a surface
described by a cloud of points or a mesh. The problem can typically be stated as follows:
given a setP = {pi}

m
i=1 of pointspi ∈ R

3, find a smooth spherical splineF : S
2 → R

3

that approximatesP.
A general framework for surface reconstruction is to minimize a linear combination

of interpolation and fairness functionals, i.e.,

minE = Edist +λEf air . (2)

The first part is

Edist =
m

∑
i=1

‖F(ui)−pi‖
2

whereui ∈ S
2 is parameter forpi , i = 1, . . . ,m. The second partEf air in (2) is a smooth-

ing term. A frequently used example is the thin plate energy,Ef air =
∫∫

S2(F2
uu+2F2

uv+
F2

vv)dudv. Both parts are quadratic functions of the unknown control points. For exam-
ple, the approximation functionalEdist has the following form:

Edist =
1
2

xTQx+ cTx+ f ,

wherex = (. . . ,cI ,β, . . .)
T ,

Q =









...
. . . 2∑m

i=1NI ,β(ui)NI ′ ,β′ (ui) . . .
...









,

c = (. . . ,−2
m

∑
i=1

piN
I
β(ui), . . .)

T ,

and f = ∑m
i=1‖pi‖

2.
The fairness functionalEf air is also a quadratic function in the unknown control

points, and can be written in a similar fashion. However, thecomputation of the fairness
functional is usually time-consuming since it requires theintegration over a product of
two splines. Similar to [10], we do not use the traditional fairness functional, which
requires integration of products of spherical splines. Instead, we employ a set of linear
constraints on the control points.

Let [t0,β0
, t1,β1

] be an edge of the spherical triangulation. DenoteI = (t0, t1, t2) and
J = (t0, t1, t3) its two adjacent triangles. LetFI = ∑|β|=n cI ,βN(u|V I

β) be the polynomial

on triangleI and similarly forFJ. Let f I and f J be the polar forms ofFI and FJ,
respectively. Then, we require

cI ,β = f J(XI
β),∀β, |β| = n,β2 ≤ r (3)

where 0≤ r ≤ n−1 is an integer (r = 2 andn≥ 5 in our implementation) which controls
the fairness of the spline surface. Equation (3) is a linear equation of the control points.
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We refer the readers to [11, 12, 10] for the detailed information about the polar form
and fairing triangularB-spline surfaces.

Therefore, the above optimization problem can be stated as follows:

min
1
2

xTQx+ cTx+ f (4)

subject to Ax = b,

which is a typical constrained convex quadratic programming problem, and can be
solved by the interior-point based method efficiently.

Algorithm 1: automatic conversion brain surface to spherical spline
Input: brain surface M with m points,{pi}

m
i=1, degree n, maximal fitting toleranceε,

number of triangles N in the initial spherical domain.
Output: a degree n spherical triangular B-splineF which approximates M.

1. Calculate the spherical conformal parameterization of M using Gu et al. method
[3]. Denote by h: M → S

2 this conformal map, i.e., h(pi) = ui ∈ S
2.

2. Decimate M to a simplified mesh̃M with N triangles. MapM̃ to the sphere. Con-
struct an initial spherical triangular B-spline of degree nbased on the spherical
triangulation ofM̃.

3. Solve Equation (4) by considering control points as free variables.
4. Check the maximal fitting error for each spherical triangle∆I . If it violates the

criterion, i.e., maxui∈∆I ‖F(ui)− pi‖ > ε, subdivide the triangle∆I using 1-to-4
scheme and then split the neighboring triangles to avoid T-junctions.

5. If the maximal fitting error on each triangle satisfies the user-specified fitting toler-
anceε, exit; Otherwise, go to step 3.

3 Brain Surface Analysis

By converting dense meshes/point clouds to spherical splines, we achieve a compact
and highly continuous representation. More importantly, we have the analytical form of
the underlying shape. Thus, we can compute the normals, curvatures, geodesics, areas,
etc., anywhere on the surface. These differential properties are crucial in the brain image
analysis. In this section we demonstrate the efficacy of analyzing the brain surface using
spherical splines.

3.1 Segmentation by the mean curvature

The computation of curvature is essential in shape analysis, segmentation and registra-
tion. There are many techniques to estimate the curvature onpolygonal meshes, e.g.,
[13–18]. These methods use either discrete differential operators or local polynomial
fitting to approximate the curvature tensor. Therefore, theestimation results closely
rely on the connectivity and quality of the input meshes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. Illustration of surface reconstruction using spherical splines. The input is a triangular mesh
M with 131K triangles (a). We first compute its conformal spherical parameterization shown in
(b). Then we simplify the mesh to 280 triangles (shown in (c)) and map it to the sphere as the
initial spherical domain (shown in (d)). From (e) to (g), we fit the meshM using a degree 5
spherical spline with 280, 1048 and 2086 spherical triangles. The root-mean-square error (r.m.s.)
are 0.328%, 0.0951%, 0.0196% of the diagonal of the input mesh, respectively. (h) shows the
back view of the reconstructed spline. (i) and (k) show the closeup of theoriginal mesh. (j) and
(l) show the closeup of the reconstructed spline. Note that the high continuity(C4-continuous) of
our spline surface.

In our framework, we convert the brain surface into a single spherical spline of high
continuity. Thus, the Gaussian curvatureK and mean curvatureH can be computed
analytically and efficiently without resorting to any numerical approximations.

Curvature features such as zero contours and maxima are useful for surface match-
ing and object recognition. After computing the curvature values, we can easily locate
the curvature zero contours, which are helpful for segmenting the brain surface into
regions (the gyri and the sulci).

3.2 Tracing the sulci and gyri lines

The major sulci and gyri on the cortical surface have distinct geometric properties and
are conserved between individuals, making them useful landmarks for morphometric
comparisons. From computer vision’s point of view, these sulci and gyri are closely
related to the ridge-valley lines, which are curves on a surface along which the surface
bends sharply. The ridge-valley lines are powerful shape descriptors that provides us
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with important information about the shapes of objects. Therefore, robust extraction of
ridge-valley structures is important for brain image analysis.

In [19], Belyaev et al. present a mathematical description of such surface creases by
the extrema of the principal curvatures along their curvature lines. For a spherical spline
surfaceF(u,v), denote bykmax(u,v) andkmin(u,v) the maximal and minimal principal
curvatures,kmax≥ kmin. Let tmax(u,v) andtmin(u,v) be the corresponding principal di-
rections. Consider the derivatives of the principal curvatures along their corresponding
directionsemax(u,v) = ∂kmax/∂tmax and emin(u,v) = ∂kmin/∂tmin. The extrema of the
principal curvatures along their curvature directions aregiven by the zero-crossings of
emax andemin, and the ridges and valleys are characterized by

emax= 0,∂emax/∂tmax< 0,kmax> |kmin|,(ridges), (5)

emin = 0,∂emin/∂tmin > 0,kmin < −|kmax|,(valleys). (6)

Note that if we change the surface orientation, then the ridges turn into the ravines and
vice versa.

Similar to [20], we measure the strength of a ridge line by theintegral ofkmax along
the line, i.e.,

∫

kmaxds. The ridges whose strength are less than the user-specified thresh-
old are ignored.

Algorithm 2: automatic tracing the sulci and gyri lines
Input: a spherical splineF, N resolution of the output mesh,λthres

Output: a set of ridge (gyri) curves and a set of valley (sulci) curves.

1. Evaluate the splineF and get the mesh Ms containing N triangles.
2. For each vertexv ∈Ms, compute emaxand emin. Markv as feature point if it satisfies

Equation (5) and (6).
3. For each edge(vi ,v j) ∈ Ms, let h(vi) ∈ S

2 and h(v j) ∈ S
2 be the spherical parame-

ters of vertexvi andv j respectively. If e(h(vi))e(h(v j)) < 0, perform the 1-D search
on the edge to get the vertexṽ ∈ (vi ,v j) such that e(h(ṽ)) = 0. Mark ṽ as feature
point.

4. Trace the feature points to get feature curves.
5. Compute the strength T=

∫

kmaxds of each feature curve. Output the curve if T≥
λthres.

The output of Algorithm 2 usually contains large number of sulci and gyri. Some-
times, the doctors are interested only in part of them. For example, seven major sulci
are used in [6]. Our system allows the user to interactively select the desired sulci from
the output of Algorithm 2. We also provide the functionalityto automatically connect
two user-specified sulci.

3.3 3D Shape comparison using conformal representation

In [4], Gu and Vemuri present a systematic method for 3D shapecomparison using con-
formal representations. By stereographic projection, theunit sphere (except the north
pole) can be mapped to the(u,v) plane, the mapping can be represented as

(x,y,z) → (u,v) : (u,v) =
1

1−z
(x,y).
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−47

(a) (b)

(c) (d)

Fig. 3. Computing the curvature on the cortical surface: (a) Mean curvature;(b) Close-up of the
principal directions; (c) The zero contour of the mean curvature; (d)Segmentation of gyri and
sulci by the sign of mean curvature.

The metric (first fundamental form) of the sphere is represented as

ds2
0 =

4(du2 +dv2)

(1+u2 +v2)2 .

Any closed genus zero surfaceΣ can be mapped to the unit sphere by a diffeomorphism
φ : Σ → S2. Therefore,(u,v) is also a local parameter coordinate system ofΣ, such that
the metric ofΣ can be represented as

ds2
Σ = λ(u,v)ds2

0,λ(u,v) ∈ R
+.

It can be demonstrated thatφ preserves the angles; namely, any two intersecting curves
on Σ will be mapped to two curves onS2 such that the intersecting angle is preserved.
These kinds of mappings are calledconformalmaps, andλ(u,v) is called theconformal
factor. There are infinite conformal maps fromΣ to S2. Assumeφi : Σ → S2, i = 0,1 are
two conformal maps, then their differenceφ1◦φ0 : S2 → S2 is aMöbiustransformation.
In (u,v) coordinates, it has the form

az+b
cz+d

,z= u+ iv,a,b,c,d ∈ C,ad−bc= 1.
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Gu and Vemuri demonstrated thatΣ can be determined by the conformal factor
λ(u,v) and its mean curvatureH(u,v) uniquely up to rigid motion inR3. Therefore,
(λ,H) under the conformal parameterization(u,v) is theconformal representationof
the surfaceΣ.

In order to compare shapeΣ1 andΣ2, it is sufficient to measure the distance between
their conformal representations. Suppose(λ1,H1) and(λ2,H2) are the conformal rep-
resentations ofΣ1 andΣ2 respectively; the distance between them is formulated as

E(Σ1,Σ2) = inf
τ

∫

S2
(λ1−λ2◦ τ)2 +(H1−H2◦ τ)2ds,τ ∈ Mobius Group (7)

In [4], the conformal factor is approximated using a piecewise linear function, and mean
curvature is approximated by the discrete Laplace-Beltraioperator. The approximation
is brute force and inaccurate.

In our current implementation, we represent the brain surfaces usingC4 smooth
splines with the user specified tolerance. Since we use spherical conformal parametriza-
tion to construct the spherical spline, the computation of the conformal factor and mean
curvature are direct and without any approximation.

(a) (b) (c) (d)

Fig. 4. Automatic tracing the sulci and gyri: (a) Sulci (cyan curves) on the brainsurface; (b) Sulci
(green curves) on the spherical domain; (c) Gyri (cyan curves) on the brain surface; (d) Sulci
(green curves) on the spherical domain. The number of detected sulci and gyri are 412 and 528,
respectively.

(a) (b) (c) (d)

Fig. 5. Illustration of seven major sulci of the left brain hemisphere of two different brain surfaces.
Only few user interactions are needed to specify the desired sulci.
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(a) Brain surface A (b) Brain surface B (c) Displacement field

Fig. 6. 3D shape comparison using conformal representation. (a) and (b) show two brain surfaces.
The displacement field is color-encoded as shown in (c).

4 Experimental results

We have implemented a prototype system on a 3GHz Pentium IV PCwith 1GB RAM.
We perform experiments on two brain surfaces (shown in Figure 6(a) and (b)) which
are obtained from 3D 256×256×124 T1 weighted SPGR (spoiled gradient) MRI im-
ages, by using an active surface algorithm that deforms a triangulated mesh onto the
brain surface [21]. In order to compare the fitting qualitiesfor different test cases, we
uniformly scale the data into a unit cube.

Table 1. Statistics of the surface approximation algorithm. Mesh size:Mv, # of vertices,M f , #
of faces; Spline configuration:n, degree of spherical splines,Nt , # of domain triangles,Nc, # of
control points,r.m.s., root mean square error,L∞, maximal error.

Subject Mv M f n Nt Nc r.m.s. L∞

A 65,538131,0725 2,08626,0770.0196%0.155%
B 65,538131,0725 2,01225,1520.0201%0.176%

We first convert these brain images into spherical triangular B-spline representation
by Algorithm 1. In order to compute the ridge and valley curves accurately, we need
to compute the fourth order derivative of the spline surface. Therefore, in our exper-
iments, we use degree 5 spherical splines which areC4-continuous everywhere. The
fitting procedure takes about 30 to 40 minutes for each test case. Figure 2 illustrates the
pipeline of our surface reconstruction algorithm on test case A. Table 1 shows the input
mesh size, spline configuration and fitting quality. Compared to the discrete mesh rep-
resentation, our spherical spline based representations have low storage requirements
and can achieve high accuracy (e.g., root-mean-square error ≤ 0.02%) as well as high
continuity (C4).

Figure 3 shows the computation of mean curvature, principaldirections, and the
zero-crossing of the mean curvature of the reconstructed brain surface A.

Figure 4 shows the detected sulci and gyri on the reconstructed brain surface A
and its spherical domain. The number of detected sulci and ridges for are 412 and
528 respectively. The time for tracing feature curves is less than 1 minute for both test
cases. Figure 5 shows seven major sulci of the left brain hemisphere of two different
brain surfaces. These sulci are selected by the users with only very few interactions.
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Figure 6 shows the results of 3D shape comparison using conformal representation.
The conformal factorλ(u,v) and mean curvatureH(u,v) are computed analytically
using spherical splines.

5 Conclusion

In this paper, we propose a spherical spline based frameworkfor brain surface analy-
sis. We present automatic algorithm to convert a brain mesh into a spherical triangular
B-spline whose maximal error deviation from the original data is less than the user-
specified tolerance. With the analytical representation ofthe brain model, we can easily
compute various differential properties, such as conformal factor, mean curvature, prin-
cipal directions, geodesics, etc, accurately and robustly. By studying the extrema of the
principal curvatures with respect to the curvature directions, we present an automatic al-
gorithm to trace the gyri and sulci. Furthermore, we can solve the 3D shape comparison
using conformal representation directly without resorting to any numerical approxima-
tion. Experimental results show the efficacy of using spherical splines in brain image
analysis.
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