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Abstract
We develop a new surface matching framework to handle

surface comparisons based on the mathematical analysis of
curves on surfaces, and propose a unique signature for any
closed curve on a surface. The signature describes not only
the shape of the curve , but also the intrinsic relationship be-
tween the curve and its embedding surface; and furthermore,
the signature metric is stable across surfaces sharing similar
Riemannian geometry metrics. Based on this theoretical ad-
vance, we analyze and align features defined as closed curves
on surfaces using their signatures. These curves segment a
surface into different regions which are mapped onto canon-
ical domains for the matching purpose. The experimental re-
sults are very promising, demonstrating that the curve signa-
tures and the comparison framework are robust and discrim-
inative for the effective shape comparison. Besides its utility
in our current framework, we believe the curve signature will
also serve as a powerful shape segmentation/mapping tool
and can be used to aid in many existing techniques towards
effective shape analysis.

1 Introduction
Shape comparison remains a central technical problem for

effective 3D object search engine design. The technical chal-
lenge is how to devise an accurate and unique shape signa-
ture that can effectively distinguish one shape from the rest
for analysis and retrieval. To date, a wide range of shape
analysis techniques has been developed towards this goal
especially during the last ten years. Examining the exist-
ing literatures, global properties (such as skeleton, size, and
pose) are usually collected and analyzed, which gives rise
to a quantitatively global difference for shape classification
in an efficient and simple way. In contrast, matching tech-
niques such as registration have been extensively developed
for 2D/3D images comparison, especially in medical imag-
ing and processing. The unique advantage for matching is
that not only can we quantify the global difference but also
we can accurately pinpoint all the local variations and calcu-
late their distributions towards further analysis. Our objective
is a shape matching and comparison method capturing both
global differences and local variations.

Most of the current shape comparison techniques [14, 13,
5, 10, 12, 15, 18, 9, 2, 3, 4, 16, 1] are driven by compar-
ing some collected global characteristics of the geometric
objects. They try to compare the objects in a global sense,

relying exclusively on their geometric information without
taking into account of the semantic feature curves. In this
paper, we start our shape comparison task from a different
perspective by considering all the closed curves on a surface.

1.1 Theoretic Foundation of Curve Space
on Surface

We define the set of all closed curves on a surface M
as curve space and denote it as Ω(M). The curve space
on surfaces contains all the relevant geometric information
of the surface and is easy to process. This philosophy
on analyzing shapes via their associated curve space has a
technically sound foundation in algebraic topology, infinite-
dimensional Morse theory and Teichmüller space theory in
complex geometry. Milnor[11] pointed out that Ω(M) is an
infinite-dimensional manifold, the length of curves on a sur-
face is a Morse function, and its critical points are geodesics.
Morse theory is used to analyze the topology of Ω(M), which
determines the topology of M . From the point of view of dif-
ferential geometry, we know that the shape of the surface is
locally determined by all the curves defined in the neighbor-
hood. Motivated by the above results, our current research
naturally follows the same methodology, and is specifically
based on Teichmüller space theory.

Consider two surfaces M1 and M2 (Fig 1(a)), φ : M1 →
M2 is a diffeomorphism between them, any curve (By curve,
we mean closed curve in the remainder of this paper.) Γ1 ∈
Ω(M1) will be mapped to a curve in Ω(M2) under this map-
ping: Γ2 = φ ◦ Γ1. Therefore, φ induces a one-to-one map-
ping φ∗ from Ω(M1) to Ω(M2) by φ∗ : Ω(M1) → Ω(M2).
The intrinsic relations between surfaces can be analyzed by
studying φ∗ instead of φ.

Furthermore, we map the curve space Ω(M) to a canon-
ical Lie group Diff(S1), where Diff(S1) denotes the
group of all diffeomorphisms from the unit circle S1 to it-
self. We denote this map as gi : Ω(Mi) → Diff(S1). Con-
sequently, φ∗ : Ω(M1) → Ω(M2) induces a mapping from
Diff(S1) to itself by φ̄ := g2 ◦ φ∗ ◦ g−1

1 .
The diagram in Fig 1(a) conveys our methodology in a

graphical means: three mappings φ, φ∗, φ̄ are closely re-
lated; any one of them determines the remaining two. In
other words, for the purpose of studying surfaces M1, M2

and the maps φ between them, we can study their curve space
Ω(M1), Ω(M2), signatures of the curves Diff(S1), and the
mappings φ∗, φ̄. We propose the following theoretic results
to further re-enforce the above geometric intuition.
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Figure 1. Theory foundation of curve signatures

Theorem 1 If M is an oriented genus zero metric surface,
then the curve space Ω(M) and Diff(S1) are equipped
with L2 metric, the map Ψ from its curve space Ω(M) to
Diff(S1) is a homeomorphism.

Therefore, in order to measure the distance between two
curves on a surface, it is sufficient to measure the distance
between two signatures defined in Diff(S1).

Theorem 2 M1 and M2 are two oriented metric surfaces,
φ is a conformal map if and only if φ̄ is the identity map of
Diff(S1).

The mapping from φ to φ̄, F : φ → φ̄ reveals a lot of
geometric information about M1 and M2. By choosing ap-
propriate metrics, F is continuous. The kernel of F is all the
conformal mappings between M1 and M2.

2 Signatures in Curve Space
This section outlines our theoretical results on how to

compute curve signatures for curves defined on a surface.

2.1 Theory and Algorithm Overview

Given a simple closed curve Γ on a genus zero surface M ,
the central idea for computing its signature is illustrated in
Fig 1(b), (c), (d).

Case 1: If M is closed, as shown in Fig 1(b), then Γ par-
titions M into two components Γ+, Γ−, both are topological
disks and can be conformally mapped onto planar unit disks
∆+, ∆− by Ψ+, Ψ−. Γ is the boundary of Γ+ and Γ−, de-
noted by ∂Γ+ = Γ and ∂Γ− = −Γ, and is mapped to the
disk boundary, which are unit circles ∆ = ∂∆+ = −∂∆−.
The mapping induced by Ψ+ and Ψ− on the boundaries ∂∆+

and ∂∆− is a diffeomorphism (differentiable and has a dif-
ferentiable inverse). This diffeomorphism Ψ : ∂∆+ → ∂∆−

is the signature of Γ.
Case 2: If M is open, as shown in Fig 1(c), then Γ parti-

tions M into a topological disk Γ− and a topological annulus
Γ+. Γ− can be conformally mapped onto a unit disk ∆−,
while Γ+ can be conformally mapped onto an annulus ∆+

with unit inner radius. We denote such annulus with unit in-
ner radius as canonical annulus, the inner boundary of ∆+

as ∂1∆+, and use the diffeomorphism Ψ : ∂∆− → ∂1∆+ as
the signature of Γ.

In [17], Sharon and Mumford used Teichmüller theory to
prove that any simple closed planar curve can be represented
by such a diffeomorphism from a unit circle to itself uniquely
up to scaling and translation. In this paper, we generalize this
idea to arbitrary genus zero surfaces using Riemann surface
theory.

In technical essence, we compute the conformal mapping
for each component segmented by the curve, and take the
boundary mappings Ψ as shown in Fig 1(d) as the signature.
Some landmarks and constraints are used to eliminate the so-
called Möbius ambiguity.

2.2 Conformal Map from an Open Genus-
zero Surface to a Disk

We seek a conformal map Φ from a disk-like surface M
to a unit disk. The map does exist according to Riemann
mapping theory. Extensive relevant work has been done on
finding a good parameterization for disk-like surfaces. How-
ever, complete conformality is usually not guaranteed. Based
on the fact that the harmonic map from a closed genus zero
surface to a sphere is also conformal, we use the double cov-
ering technique [8] to convert an open surface to a closed
one, and reduce computing Φ to computing a harmonic map
from double covering of M onto a sphere.

For an open surface M , we compute the double covering
of M and then compute its harmonic mapping onto a sphere.
Due to the exact symmetric property of double covering, the
boundary ∂M is harmonically mapped onto the equator of
the sphere and M is conformally mapped onto a hemisphere.
Then we compose it with a stereographic projection to get a
conformal map from M to the unit disk.

2.3 Conformal Map from a Closed Genus-
zero Surface to a Sphere

To compute a conformal map Φ from a closed genus-zero
surface M to a sphere, we initiate a map between them and
minimize the harmonic energy by diffusing the heat-flow on



the sphere surface. This process is introduced and proved to
converge to a harmonic/conformal map[7].

2.4 Conformal Map from a Topological An-
nulus to a Canonical Annulus

For curves on an open genus-zero surface, we need to
compute a conformal map Φ from a topological annulus M
(with ∂M = Γ1 − Γ2 where Γ1 and Γ2 are two boundaries)
to a canonical planar annulus. First, we double-cover the sur-
face to get a closed genus-one surface; next we compute a
conformal map from a closed genus-one surface onto a rec-
tangle planar domain by integrating a holomorphic 1-form
[8] which describes two vector fields perpendicular to each
other everywhere on surface; finally, we compose it with the
conformal map from the rectangle to the canonical annulus
using e

2π

b
z to get the φ.

2.5 Eliminating the Möbius Ambiguity

Conformal mappings between surfaces are not unique;
e.g., all conformal mappings from a unit disk D2 to itself
form a Möbius group, with the form: τ : z → w, w =
eiθ z−z0

1−z̄0z
, z, z0 ∈ C, θ ∈ [0, 2π), where z0 is a constant

point, θ is a constant angle. All such τ form a 3 real di-
mensional group. Two mappings from a topological disk to a
unit disk differ by a Möbius transformation. This ambiguity
affects the signature and has to be eliminated via certain extra
constraints.

For closed genus-zero surfaces, we first fix a marker point
p on the surface and define a tangent direction ~tp going out
from p. A closed curve Γ separates M into two disk-topology
patches, the patch containing p is denoted as Γ+. We require
that Ψ+ maps p onto the origin, and ~tp onto the positive x-
axis direction. These constraints uniquely determine Ψ+.

For open genus-zero surfaces, we fix the marker p on the
boundary. Ψ+ maps Γ+ to ∆+, where ∆+ is a canonical
annulus with unit inner radius. The outer radius of ∆+ is
denoted as R, which is uniquely determined by the surface
Γ+. Furthermore, we require that Ψ+(p) = (R, 0). Such Ψ+

uniquely exists.
Through the above construction pipeline, every closed

curve Γ ∈ Ω(M) corresponds to a diffeomorphism Ψ ∈
Diff(S1). Γ corresponds to two signatures Ψ1, Ψ2 if and
only if there exists a Mobsüs transformation τ : D2 → D2,
such that Ψ2 ◦ Ψ−1

1 = τ |∂D2 . The above equation defines
an equivalence relation ∼ in Diff(S1). We claim that the
mapping Ψ : Ω(M) → Diff(S1)/ ∼ is an one-to-one map.
With appropriate metrics on Ω(M) and Diff(S1), it is a
homeomorphism. In another word, each closed curve on M
corresponds to an equivalence class of diffeomorphisms from
the unit circle to itself.

In some scenarios, we might want to completely elimi-
nate the ambiguity of signatures. For this purpose, we can
further eliminate Möbius ambiguity using more markers. To
uniquely reconstruct a curve, Ψ and three markers are suffi-
cient for the closed genus-zero surfaces while for the open
genus-zero surfaces, Ψ and two markers are sufficient.

2.6 Distances between Curves

For a genus-zero surface M , we create signatures for
curves defined on M . The deviation between two curves can
be measured by the distance between their signatures using
Weil-Peterson metric on Diff(S1) as introduced in [17].

If surfaces M1 and M2 are sharing similar Riemannian
metrics in R

3, then there exists a diffeomorphism φ : M1 →
M2 close to an isometry, the induced map φ̄ between the sig-
natures is close to the identity map from Diff(S1) to it-
self. In other words, if the curve Γ1 ⊂ M1 corresponds to
Γ2 ⊂ M2 with Γ2 = φ(Γ1), then Γ1 and Γ2 have similar sig-
natures. Hence, the signatures of curves have the property of
strong stability under perturbation of Riemannian metric of
their embedded surfaces and can be used to analyze curves
on different surfaces as a robust tool.

Fig 3 demonstrates the stability of the signatures. All the
curves and their corresponding signatures are drawn in the
same color. Note that the signature is a diffeomorphism from
a circle to itself, thus it can be considered as a periodic real
function from [0, 2π) to [0, 2π)(only one period is shown in
our figures). In (a), a planar rectangle is isometrically de-
formed to a cylinder, our computation shows that the corre-
sponding curves have exactly the same signatures. In (b),
the planar rectangle is perturbed about 6% in z direction, and
about 1% in x, y directions, signatures of the corresponding
curves are very close to each other. In (c), the planar sur-
face (1) is simulated as cloth and is deformed as shown in
(2), namely, it allows large bending but little stretching, the
signatures of the corresponding curves are also almost iden-
tical(i.e., undistinguishable); also, the curve on surface (1) is
perturbed slightly to the red curve in (3), the signature has
little deviation.

Therefore, curves on different surfaces which are close to
each other in terms of geometry(differ by a near-isometric
mapping) can be robustly and accurately compared and ana-
lyzed using their signatures.

3 Surface Matching
Based on the analysis of curve space, we design our sur-

face matching framework for curve alignment, surface regis-
tration, and shape comparison.

3.1 Feature Alignment for Surface Seg-
mentation and Matching

Assume M1 and M2 are the two surfaces to be matched,
if they share similar geometries, meaning there exists a map-
ping φ : M1 → M2 close to an isometry, then the following
algorithm can be used for matching.

1. Extract feature curve set {Γ1
1, Γ

1
2, · · · , Γ

1
n} on M1. Such

curves can be either marked by the user as certain meaning-
ful features, or automatically computed based on geometric
information of M1 such as the extremals of the principal cur-
vatures along the corresponding principal directions.

2. Compute the curve signatures of Γ1
i on M1 and get the

signature set {Ψ1, Ψ2, · · · , Ψn}.
3. Compute the curve set {Γ2

1, Γ
2
2, · · · , Γ

2
n} on M2, such

that the curve signature of Γ2
i equals Ψi.



4. The curve set {Γk
i } segments Mk to several connected

components {ck
1 , c

k
2 · · · , c

k
m}, k = 1, 2, such that the bound-

aries of c1
i correspond to the boundaries of c2

i . Match c1
i with

c2
i pairwise on the planar domain.

If in the third step above, the user prefers to label the
meaningful feature curve set on M2, we can change this step
accordingly so that we compute, compare their signatures,
and find the nearest one-to-one matching between these two
sets of feature curves.

3.2 Surface Comparison in 2D Planar
Canonical Domains

When all feature curves are matched, we segment the sur-
faces into several patches, each of which can be matched on
the planar domain with many existing techniques. A pos-
sible technique is to use the conformal representation[6],
which consists of two functions λ(u, v), H(u, v) defined on
canonical domains. λ is called conformal factor, representing
the area stretching of the mapping from the original surface
to the planar domain and H is the mean curvature imply-
ing the bending information of the surface. In our experi-
ments, we normalize the original surface and then compute
its conformal factor of each vertex by dividing its one-ring-
neighbor area on the surface by its counterpart on the pla-
nar domain. The conformal representation is complete in
the sense that it allows us to fully reconstruct the original
surface from the representation[6]; also, it stably represents
the geometry distance between surfaces in R3; the perturba-
tion in geometry leads to a stable and continuous perturba-
tion in their conformal representations; furthermore, as a by-
product, the computation process of curve signatures has al-
ready got conformal maps from most 3D patches to the planar
domains, so the surface matching based on these mappings
can be done without further computation cost. The match-
ing energy E between two corresponding surface patches M0

and M1 is defined on their common canonical planar do-
mains D by E =

∫
(u,v)∈D

||λ0(u, v) − λ1(u, v)||2dudv +
∫
(u,v)∈D

||H0(u, v) − H1(u, v)||2dudv.

4 Experimental results
To illustrate our framework, we first present a human

face matching example. Two human faces(f0(female) and
f1(male) as shown in Fig 4 (a) and (b)) are compared by
aligning feature curves enclosing eyes, noses and mouths.
Assuming that the geometries of human faces are similar,
namely, there exist mappings Φ : f0 → f1 that are close to
isometry, we manually label on each face four feature curves
and compute their signatures. The curves and their signatures
are highlighted with the same color. For example, curves en-
closing the right eyes and their signatures are colored in red.
As shown in Fig 4 (c), signatures with the same color are
quite similar to each other.

The experiment shows that similar feature curves on two
faces have similar signatures, while different feature curves
on the faces have apparently different signatures. Therefore,
the curve signature is a reliable tool to align the same features

across different faces. The faces can then be segmented and
mapped onto common canonical planar domains for subse-
quent registration and comparison, as shown in Fig 4 (d) and
(e).

Another example is shown comparing a horse and its col-
lapsed pose. Users first mark feature curves on one pose.
With their signatures, we could reconstruct the curves on the
second surface. Techniques introduced in [17] can be used
to reconstruct the curve on the complex domain, which cor-
responds to a unique curve on the spherical domain. Com-
bined with three predefined markers introduced in section 2.5
and the mapping from the original surface to the sphere, the
unique curve on the original surface can be reconstructed.
With this process, feature curves can be transferred onto
the second object as shown in Fig 2. The original feature
curves on the resting pose, their signatures, and the trans-
ferred curves are shown in the three rows in Fig 2 respec-
tively.

The conformal factor and the mean curvature distributions
of all parts are computed and color-coded in the first four
rows of Fig 5 (the first two rows are for the standing pose,
while the next two rows are for the collapsed pose).

The surface comparison framework can be interactively
controlled by changing weights of the two terms in our
matching energy. For example, if isometry-invariant com-
parison is preferred, only the stretching factor needs to be
considered. So by ignoring the mean curvature, a metric
invariant under bending is designed, which naturally leads
to a bend-invariant or pose-invariant result. The conformal
representation difference between the two horse models (a)
and (b) is color-coded on the first model as shown in Fig 5
(c) and the difference ignoring the bending term is shown in
Fig 5 (d); also, the difference with only the bending term
is color-coded in (e). As shown in the above examples, our
matching algorithm finds between two complicated objects
a difference distribution which can be flexibly adjusted for
different goals such as bending-invariant surface matching.
Since it can catch the difference on the metric ignoring the
embedding of the surface in R3, it becomes a useful tool for
non-rigid matching applications. One example is the colons
matching and analysis in medical imaging. People with dif-
ferent poses under CT scans might have large bending differ-
ences on their colons with little changes in metric, in which
case such a bending-invariant matching is ideal for analysis.

5 Conclusion and Future Work
We have designed a metric space for simple closed curves

on genus-zero surfaces via conformal mappings. Curves on
surfaces are represented by equivalence classes of diffeomor-
phisms of the unit circle to itself. The proposed curve signa-
ture corresponds uniquely to the curve defined on a surface.
It also includes information of both the curve’s shape and its
embedding on the surface, which are invariant under isom-
etry and stable under near-isometric transformation of sur-
faces, thus enables a powerful practical tool for the effective
analysis of curves and surfaces among geometrically similar
objects.
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Figure 2. Row 1: feature curves on the standing-horse model. Row 2: the corresponding signatures. Row 3: the corresponding
reconstructed curves on the collapsed-horse model.

Besides the above theoretical contributions, we develop
a framework for shape registration and comparison guided
by feature curves alignments. After curves with the most
similar signatures are correctly identified and aligned, genus-
zero surfaces are then segmented into several parts and regis-
tered separately. This automatic process accurately forces the
alignment of feature curves and alleviates the difficulties of
3D surface matching by reducing it to the simple comparison
of functions defined on canonical planar domains. Also, the
algorithm can be flexibly adjusted to provide a pose-invariant
shape descriptor.

One potential limitation is that the curve signature devel-
oped in this paper is perhaps best suitable to analyze curves
defined on one surface or two surfaces of similar geome-
try. When the signature is compared for curves defined on
different surfaces, it is only stable when there exists a near-
isometric mapping between the surfaces. In general, aligning
curves defined on surfaces with dramatically different geom-
etry is technically challenging.

Constructing shape space of curves on surfaces with ar-
bitrary topology is promising and challenging. We plan to
explore further along these directions in the near future.
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Figure 3. The stability of curve signatures under isometry, perturbation and bending of embedded surfaces.
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Figure 4. Curves on faces((a),(b)), their signatures(c), and the segmentations for the matching purpose((d),(e)).
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Figure 5. The first and the second rows show color-coded conformal factor λ and mean curvature H of the standing horse model; the
third and fourth rows show λ and H of the collapsed horse model; the last row shows the final matching results between the standing
model (a) and the collapsed model (b), with (c)-(e) color-coding differences on conformal representation, λ, and H respectively.
(Mesh size: 17k triangles)


