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Abstract
We develop a dynamic, free-form surface model which is useful for representing a broad class of objects

with symmetries and topological variability. The new model is based upon swung NURBS surfaces, and
it inherits their desirable cross-sectional design properties. It melds these geometric features with the
demonstrated conveniences of surface design within a physics-based framework. We demonstrate several
applications of dynamic NURBS swung surfaces, including interactive sculpting through the imposition
of forces and the adjustment of physical parameters such as mass, damping, and elasticity. Additional
applications include surface design with geometric and physical constraints, by rounding solids, and
through the fitting of unstructured data. We derive the equations of motion for the dynamic NURBS
swung surface model using Lagrangian mechanics of an elastic surface and the finite element method.
Finally we show that these surfaces are a special case of D-NURBS surfaces, a recently proposed physics-
based generalization of standard geometric NURBS.

Keywords: CAGD, NURBS, NURBS Swinging, Deformable Models, Dynamics, Constraints, Finite
Elements, Solid Rounding, Surface Blending, Scattered Data Fitting, Interactive Sculpting.

1 Introduction

Among the surface representation schemes in CAGD, non-uniform rational B-splines (NURBS) have be-
come an industry standard [13]. One of their most significant advantages is that they are a unified repre-
sentation of both complex free-form shapes and standard analytic shapes. NURBS objects are designed
by adjusting control points and weights that are associated with NURBS surface patches.

Many objects of interest, especially manufactured objects, exhibit symmetries. Often it is convenient
to model symmetric objects by specifying profile curves. Barr [1] employed a spherical cross-product to
construct superquadrics from profiles. Woodward [25] introduced the swinging operator by extending the
spherical cross-product with a scaling factor, and applied it to generate surfaces for cross-sectional design
with B-spline curves. Piegl [13] carried the swinging idea over to NURBS curves. He proposed NURBS
swung surfaces, a special type of NURBS surfaces formed by swinging one planar NURBS profile curve
along a second NURBS trajectory curve. The two generator curves may be smooth, or they may have
discontinuities. For example, Fig. 1 illustrates the design of a cubical NURBS swung surface from two
NURBS profile curves.

The NURBS swung surface retains considerable breadth of geometric coverage. It can represent com-
mon geometric primitives such as spheres, tori, cubes, quadrics, surfaces of revolution, etc. Fig. 2 illustrates
four NURBS swung surfaces with distinct topological structures. The NURBS swung surface is efficient
compared to a general NURBS surface, inasmuch as it can represent a broad class of shapes with essen-
tially as few degrees of freedom as it takes to specify the two generator curves. Several geometric shape
design systems, including the recent one in [17], include some form of swinging (or sweeping) among their
repertoire of techniques.

In this paper, we develop a physics-based generalization of the geometric NURBS swung surface. We
refer to our new models as dynamic NURBS swung surfaces.

1Fellow, Canadian Institute for Advanced Research
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1.1 Motivation

Although planar curve design is much easier than general surface design, in many real-world circumstances
it is hard to achieve satisfactory results quickly. Normally the designer obtains (quasi-global) control over
the free-form NURBS swung surface by adjusting the control points and weights of the two NURBS curves.
This indirect design process, which is characteristic of geometric design with NURBS and other free-form
surface representations in general, can be clumsy and time consuming. This is because relevant design
requirements are usually shape oriented and not control point and weight oriented. Furthermore, typical
design requirements may be posed in both quantitative and qualitative terms. It can be very frustrating
with indirect design to, for example, shape a “fair” surface that approximates unstructured 3D data.
Unstructured shape constraints go contrary to the principles of cross-sectional design.

Physics-based modeling techniques provides a means of overcoming these difficulties. It is possible to
construct free-form dynamic surfaces with natural behavior governed by physical laws [20, 15, 9]. Celniker
and Gossard [4] developed an interesting prototype system for interactive free-form design based on this
idea and the finite-element optimization of energy functionals. Bloor and Wilson [3] used similar energies
optimized through numerical methods and they employed B-splines for this purpose. Subsequently, Welch
and Witkin [24] extended the approach to trimmed hierarchical B-splines. Thingvold and Cohen [22]
proposed a hybrid deformable B-spline whose control points are mass points connected by elastic springs
and hinges.

The dynamic NURBS swung surfaces proposed in the present paper are inspired by the recent de-
velopment of a physics-based generalization of standard geometric NURBS, called dynamic NURBS, or
D-NURBS [21]. Like D-NURBS, dynamic NURBS swung surfaces have continuous mass and damping
distributions, as well as an elastic energy. With proper choice of physical parameters, they behave like
physical surfaces. This allows a designer to sculpt shapes interactively in a natural and predictable way
using a variety of force-based tools. The surfaces in Fig. 2 were interactively sculpted in this fashion from
the prototype shapes indicated in the caption. In addition, the designer can express aesthetic criteria such
as fairness in the form of deformation energies. Functional design requirements can be easily implemented
through a set of global or local constraints. Furthermore, time is fundamental to the physics-based for-
mulation. Shape design is generally a time-varying process—a designer is often interested not only in the
final equilibrium shape but also in the intermediate shape variation due to parameter changes. Since the
physical model is built upon the standard NURBS geometric foundation, shape design may proceed inter-
actively or automatically at the physical level, while existing geometric toolkits are concurrently applicable
at the geometric level.

We use Lagrangian mechanics to formulate the equations of motion of dynamic NURBS swung surfaces
and finite element analysis to reduce these equations to efficient algorithms that can be numerically simu-
lated with standard techniques. One of the challenges in this effort has been to overcome the nonlinearity
of the dynamic formulation which results from the nonlinearity of the underlying swung NURBS geometry.
Thus, the mass, damping, and stiffness matrices in the dynamic formulation must be recomputed at each
simulation time step. The nonlinearity is fundamental to swung surfaces, and it does not go away even if
the NURBS generator curves are reduced to linear B-splines by fixing the weights to unity.

1.2 Overview

Section 2 defines kinematic versions of the basic NURBS curve generators in the swung surface and gives
the kinematic equations. In Section 3, we formulate the dynamic NURBS swung surface and derive their
equations of motion. We discuss the numerical simulation of these equations in Section 4. Section 5
discusses the use of forces and constraints for physics-based design. Section 6 presents applications of
dynamic NURBS swung surfaces to interactive sculpting, scattered data fitting, and rounding/blending
and discusses the results. In Section 7 we show that dynamic NURBS swung surfaces are a special case
of D-NURBS surfaces [21] that have been subjected to a dimensionality-reducing nonlinear constraint.
Section 8 concludes the paper.
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Figure 1: Construction of a cubical NURBS swung surface. (a) NURBS profile curve on x-z plane. (b)
NURBS trajectory curve on x-y plane. (c) Cube surface wire-frame.

2 Kinematic NURBS Curve

A kinematic NURBS curve extends the geometric NURBS definition by explicitly incorporating time. The
kinematic curve is a function of both the parametric variable u and time t:

c(u, t) =
∑n

i=0 pi(t)wi(t)Bi,k(u)∑n
i=0 wi(t)Bi,k(u)

. (1)

where the Bi,k(u) are the usual recursively defined piecewise rational basis functions [6, 12], pi(t) are the
n + 1 control points, and wi(t) are associated non-negative weights. Assuming basis functions of degree
k − 1, the curve has n + k + 1 knots ti in non-decreasing sequence: t0 ≤ t1 ≤ . . . ≤ tn+k . In many
applications, the end knots are repeated with multiplicity k in order to interpolate the initial and final
control points p0 and pn.

To simplify notation, we define the vector of generalized coordinates pi(t) and weights wi(t) as

p(t) =
[

p�
0 w0 · · · p�

n wn

]�
,

where � denotes transposition. We then express the curve (1) as c(u, p) in order to emphasize its depen-
dence on p whose components are functions of time.

The velocity of the kinematic spline is

ċ(u, p) = Jṗ, (2)

where the over struck dot denotes a time derivative and J(u, p) is the Jacobian matrix. Because c is a
3-component vector-valued function and p is an 4(n + 1) dimensional vector, J is a 3 × 4(n + 1) matrix,
which is expressed as

J =

⎡
⎢⎢⎣ · · ·

⎡
⎢⎢⎣

∂cx
∂pi,x

0 0

0 ∂cy

∂pi,y
0

0 0 ∂cz
∂pi,z

⎤
⎥⎥⎦ ∂c

∂wi
· · ·

⎤
⎥⎥⎦ (3)

where
∂cx

∂pi,x
=

∂cy

∂pi,y
=

∂cz

∂pi,z
=

wiBi,k∑n
j=0 wjBj,k

;

∂c
∂wi

=
∑n

j=0(pi − pj)wjBi,kBj,k

(
∑n

j=0 wjBj,k)2
.
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The subscript x, y, and z denote the component of a 3-vector. Furthermore, we can express the curve as
the product of the Jacobian matrix and the generalized coordinate vector:

c(u, p) = Jp. (4)

The proof of (4) can be found in [21].

3 Dynamic NURBS Swung Surface

In this section, we formulate the underlying geometry of the dynamic swung surfaces and derive the
Jacobian and basis function matrices that lead to succinct expressions analogous to (2) and (4) for the
velocity and position functions of the surface, respectively. This allows us to derive equations of motion
for the dynamic swung surface including mass, damping, and deformation energy distributions.

Geometrically, a dynamic swung surface is generated by swinging one planar kinematic NURBS profile
curve on x-z plane along a second kinematic NURBS trajectory curve on x-y plane [13] (Fig 1). Let the
two generator curves c1(u, a) and c2(v, b) be of the form (1). The swung surface is then defined as

s(u, v, t) =
[

α(t)c1,xc2,x α(t)c1,xc2,y c1,z

]�
(5)

where α is an arbitrary scalar which scales the swung shape proportionally on x-y plane. The second
subscript denotes the component of a 3-vector.

Assume that c1 has basis functions of degree k − 1 and that it has m + 1 control points ai(t) and
weights wa

i (t). Similarly, c2 has basis functions of degree l − 1 and that it has n + 1 control points bj(t)
and weights wb

j(t). Therefore,
a(t) = [a�0 , wa

0, . . . , a
�
m, wa

m]�

and
b(t) = [b�

0 , wb
0, . . . , b

�
n , wb

n]�

are the generalized coordinate vectors of the profile curves. We collect these into the generalized coordinate
vector

p =
[

α a� b�
]�

.

This vector has dimensionality M = 1 + 4(m + 1) + 4(n + 1).

3.1 Jacobian Matrix

Denoting the Jacobian matrices of the two profile curves as J1(u, a) and J2(v, b), the curve position and
velocity functions take the form of (2) and (4):

c1(u, a) = J1a, ċ1(u, a) = J1ȧ,

c2(v, b) = J2b, ċ2(v, b) = J2ḃ,

where J1 is a 3 × 4(m + 1) matrix, and J2 is a 3 × 4(n + 1) matrix. Both are of the form (3).
If we express each row vector of the Jacobian matrices explicitly as Xi, Yi and Zi, we can write the

block forms:
J1 =

[
X�

1 Y�
1 Z�

1

]�
and

J2 =
[

X�
2 Y�

2 Z�
2

]�
.
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The swung surface is therefore written as

s(u, v, p) =

⎡
⎢⎣ α(t)(X1a)(X2b)

α(t)(X1a)(Y2b)
Z1a

⎤
⎥⎦ . (6)

The velocity of the swung surface is
ṡ(u, v, p) = Lṗ (7)

where L(u, v, p) is the Jacobian matrix with respect to the generalized coordinate vector p. Hence, L
comprises the vectors ∂s/∂α, ∂s/∂a, and ∂s/∂b, which are given as follows:

∂s
∂α

=

⎡
⎢⎣ (X1a)(X2b)

(X1a)(Y2b)
0

⎤
⎥⎦ = Ac2 = (B−C)c1

where

A(u, a) =

⎡
⎢⎣ X1a 0 0

0 X1a 0
0 0 0

⎤
⎥⎦ , B(v, b) =

⎡
⎢⎣ X2b 0 0

Y2b 0 0
0 0 1

⎤
⎥⎦ , C =

⎡
⎢⎣ 0 0 0

0 0 0
0 0 1

⎤
⎥⎦ ;

∂s
∂a

=

⎡
⎢⎣ α(X2b)X1

α(Y2b)X1

Z1

⎤
⎥⎦ = BαJ1,

where Bα(α, v, b) = αB + (1− α)C; and

∂s
∂b

=

⎡
⎢⎣ α(X1a)X2

α(X1a)Y2

0

⎤
⎥⎦ = AαJ2,

where Aα(α, u, a) = αA. Hence, we express the Jacobian matrix as

L =
[

Ac2 BαJ1 AαJ2

]
(8)

Note that A, Aα, B, Bα, and C are 3 × 3 matrices. Therefore, Ac2 is a 3 vector, BαJ1 is a 3× 4(m + 1)
matrix, and AαJ2 is a 3× 4(n + 1) matrix. Thus, L is a 3 × M matrix.

3.2 Basis Function Matrix

Unlike J in (4), L cannot also serve as the basis function matrix of the swung surface. Let

H1 =
[

0 BαJ1 0
]
, H2 =

[
0 CJ1 AαJ2

]
,

H3 =
[

Ac2 CJ1 0
]
, H4 =

[
0 CJ1 0

]
.

It is straightforward to verify that

3s(u, v, p) = H1p + H2p + H3p = Lp + 2H4p.

Thus we have
s(u, v, p) = Hp, (9)

where
H = (L + 2H4)/3 (10)

is the 3 × M basis function matrix.

5



3.3 Equations of Motion

The equations of motion of our dynamic NURBS swung surface are derived from the work-energy version
of Lagrangian dynamics [7]. To proceed with the Lagrangian formulation, we express the kinetic energy
due to a prescribed mass distribution function µ(u, v) over the parametric domain of the surface and a
Raleigh dissipation energy due to a damping density function γ(u, v). To define an elastic potential energy,
we adopt the thin-plate under tension energy model which was proposed in [19] and also used in [4, 24, 21]

U =
1
2

∫ ∫ (
α1,1

∂s�

∂u

∂s
∂u

+ α2,2
∂s�

∂v

∂s
∂v

+ β1,1
∂2s�

∂u2

∂2s
∂u2

+β1,2
∂2s�

∂u∂v

∂2s
∂u∂v

+ β2,2
∂2s�

∂v2

∂2s
∂v2

)
du dv. (11)

The αi,j(u, v) and βi,j(u, v) are elasticity functions which control tension and rigidity, respectively, in
the two parametric coordinate directions. Other energies are applicable, including the non-quadratic,
curvature-based energies in [20, 11]).

Applying the Lagrangian formulation, we obtain the second-order nonlinear equations of motion

Mp̈ + Dṗ + Kp = fp + gp, (12)

where the mass matrix is
M(p) =

∫ ∫
µL�L du dv,

the damping matrix is

D(p) =
∫ ∫

γL�L du dv,

and the stiffness matrix is

K(p) =
∫ ∫

(α1,1L�
u Hu + α2,2L�

v Hv + β1,1L�
uuHuu + β1,2L�

uvHuv + β2,2L�
vvHvv) du dv

(the subscripts on L and H denote parametric partial derivatives). M, D and K are M ×M matrices. The
generalized force, obtained through the principle of virtual work [7] done by the applied force distribution
f(u, v, t) is

fp(p) =
∫ ∫

L�f(u, v, t) dudv.

Because of the geometric nonlinearity, generalized inertial forces

gp(p) = −
∫ ∫

µL�L̇ṗdu dv

are also associated with the models. The derivation of the equations of motion (12) proceeds in the same
manner as for D-NURBS (see [21] for the details).

4 Numerical Simulation

The evolution of p, determined by (12) with time-varying matrices, cannot be solved analytically in general.
Instead, we pursue an efficient numerical implementation using finite-element techniques [8].

Standard finite element codes explicitly assemble the global matrices that appear in the discrete equa-
tions of motion [8]. We use an iterative matrix solver to avoid the cost of assembling the global M, D, and
K. In this way, we work with the individual element matrices and construct finite element data structures
that permit the parallel computation of element matrices.
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4.1 Matrix Structure and Computation

4.1.1 Mass and Damping Matrices

Both the mass and the damping matrices involve the integration of L�L in the parametric domain where L
is given in (8). Based on (8), the symmetric matrix L�L is decomposed into the following block matrices:

L�L =

⎡
⎢⎣ F1,1 F1,2 F1,3

F2,1 F2,2 F2,3

F3,1 F3,2 F3,3

⎤
⎥⎦ (13)

where
F1,1 = c�2 A�Ac2 = (X1a)2 ‖c2‖2,
F1,2 = F2,1 = c�2 A�BαJ1 = α ‖c2‖2 (X1a)X1,
F1,3 = F3,1 = c�2 A�AαJ2 = α(X1a)2c�2 J2,
F2,2 = J�

1 B�
α BαJ1 = α2 ‖c2‖2 X�

1 X1 + Z�
1 Z1,

F2,3 = F3,2 = J�
1 B�

α AαJ2 = α2X�
1 (X1a)c�2 J2, and

F3,3 = J�
2 A�

αAαJ2 = α2(X1a)2J�
2 J2.

4.1.2 Stiffness Matrix

Clearly
Lu =

[
Auc2 Bα(J1)u (Aα)uJ2

]
, Lv =

[
A(c2)v (Bα)vJ1 Aα(J2)v

]
.

In addition, since J1 is not a function of v, we have

(H4)u =
[

0 C(J1)u 0
]
, (H4)v = 0.

We decompose K into two matrices. Let

K1 =
1
3

∫ ∫
(α1,1L�

u Lu + α2,2L�
v Lv + β1,1L�

uuLuu +

β1,2L�
uvLuv + β2,2L�

vvLvv) du dv (14)

and

K2 =
2
3

∫ ∫
(α1,1L�

u (H4)u + α2,2L�
v (H4)v + β1,1L�

uu(H4)uu +

β1,2L�
uv(H4)uv + β2,2L�

vv(H4)vv) du dv (15)

So, in view of (10), it is easy to verify
Kp = (K1 + K2)p (16)

To examine the structure of K1 and K2, we consider without loss of generality only the second cross
derivative term for K1. The entry is the integral of (β1,2/3)L�

uvLuv where

L�
uvLuv =

⎡
⎢⎣ U1,1 U1,2 U1,3

U2,1 U2,2 U2,3

U3,1 U3,2 U3,3

⎤
⎥⎦ , (17)

where
U1,1 = (c2)�v A�

u Au(c2)v = (X1a)2u ‖(c2)v‖2,
U1,2 = U2,1 = (c2)�v A�

u (Bα)v(J1)u = α ‖(c2)v‖2 (X1a)u(X1)u,
U1,3 = U3,1 = (c2)�v A�

u (Aα)u(J2)v = α(X1a)2u(c2)�v (J2)v,
U2,2 = (J1)�u (Bα)�v (Bα)v(J1)u = α2 ‖(c2)v‖2 (X1)�u (X1)u + (Z1)�u (Z1)u,
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U2,3 = U3,2 = (J1)�u (Bα)�v (Aα)u(J2)v = α2(X1)�u (X1a)u(c2)�v (J2)v , and
U3,3 = (J2)�v (Aα)�u (Aα)u(J2)v = α2(X1a)2u(J2)�v (J2)v .
Next, we discuss K2. Because (H4)v = 0, (15) can be simplified as

K2 =
2
3

∫ ∫
(α1,1L�

u (H4)u + β1,1L�
uu(H4)uu) du dv (18)

We consider the first derivative entry

L�
u (H4)u =

⎡
⎢⎣ 0 U′

1,2 0
0 U′

2,2 0
0 U′

3,2 0

⎤
⎥⎦ (19)

Using the foregoing notations, it is easy to verify that
U′

1,2 = c�2 A�
u C(J1)u = 0,

U′
2,2 = (J1)�u B�

αC(J1)u = (Z1)�u (Z1)u, and
U′

3,2 = J�
2 (Aα)�u C(J1)u = 0

Thus, K2 is symmetric. Also, K1 is obviously symmetric. Therefore, K is symmetric.

4.2 Element Data Structures

We define an element data structure which contains the geometric specification of the surface patch el-
ement along with its physical properties. A complete dynamic swung surface is then implemented as a
data structure which consists of an ordered array of elements with additional information. The element
structure includes pointers to appropriate components of the global vector p (control points and weights).
Neighboring elements will share some generalized coordinates. The shared variables will have multiple
pointers impinging on them. We also allocate in each element an elemental mass, damping, and stiffness
matrix, and include in the element data structure the quantities needed to compute these matrices. These
quantities include the mass µ(u, v), damping γ(u, v), and elasticity αi,j(u, v), βi,j(u, v) density functions,
which may be represented as analytic functions or as parametric arrays of sample values.

4.3 Calculation of Element Matrices

The integral expressions for the mass, damping, and stiffness matrices associated with each element are
evaluated numerically using Gaussian quadrature [16]. We shall explain the computation of the element
mass matrix; the computation of the damping and stiffness matrices follow suit. Assuming the parametric
domain of the element is [u0, u1]×[v0, v1], the expression for entry mij of the mass matrix takes the integral
form

mij =
∫ u1

u0

∫ v1

v0

µ(u, v)fij(u, v) du dv,

where fij are entries of the matrix in (13). Given integers Ng and Nh, we can find Gauss weights ag, bh

and abscissas ug, vh in the two parametric directions such that mij can be approximated by [16]

mij ≈
Ng∑
g=1

Nh∑
h=1

agbhµ(ug, vh)fij(ug, vh).

We apply the de Boor algorithm [5] to evaluate fij(ug, vh). In general, Gaussian quadrature evaluates the
integral exactly with N weights and abscissas for polynomials of degree 2N − 1 or less. In our system we
choose Ng and Nh to be integers between 4 and 7. Our experiments indicate that matrices computed in
this way lead to stable, convergent solutions.

Note that in the case where the mass, damping, and stiffness properties are uniform over the surface
and, therefore, reduce to scalar quantities, the double sum in the Gaussian integration formula decomposes
into the product of two independent sums over each of the univariate domains of the generator curves and
it becomes much more efficient.
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4.4 Discrete Dynamics Equations

To integrate (12) in an interactive modeling environment, it is important to provide the modeler with
visual feedback about the evolving state of the dynamic model. Rather than using costly time integration
methods that take the largest possible time steps, it is more crucial to provide a smooth animation by
maintaining the continuity of the dynamics from one step to the next. Hence, less costly yet stable time
integration methods that take modest time steps are desirable.

The state of the dynamic NURBS swung surface at time t + ∆t is integrated using prior states at time
t and t − ∆t. To maintain the stability of the integration scheme, we use an implicit time integration
method, which employs discrete derivatives of p using backward differences

p̈(t+∆t) = (p(t+∆t) − 2p(t) + p(t−∆t))/∆t2,

and
ṗ(t+∆t) = (p(t+∆t) − p(t−∆t))/2∆t.

We obtain the time integration formula(
2M + ∆tD + 2∆t2K

)
p(t+∆t) = 2∆t2(fp + gp) + 4Mp(t) − (2M− ∆tD)p(t−∆t) (20)

where the superscripts denote evaluation of the quantities at the indicated times. The matrices and forces
are evaluated at time t.

We employ the conjugate gradient method to obtain an iterative solution [16]. To achieve interactive
simulation rates, we limit the number of conjugate gradient iterations per time step to 10. We have observed
that 2 iterations typically suffice to converge to a residual of less than 10−3. More than 2 iterations tend to
be necessary when the physical parameters (mass, damping, tension, stiffness, applied forces) are changed
significantly during dynamic simulation. Hence, our implementation permits the real-time simulation of
dynamic swung surfaces on ordinary graphics workstations. Quadratic and cubic surfaces with more than
200 constrained control points can be simulated at interactive rates.

The equations of motion allow realistic dynamics such as would be desirable for physics-based computer
animation. It is possible, however, to make simplifications that further reduce the computational cost of
(20) to interactively sculpt larger surfaces. For example, in CAGD applications such as data fitting where
the modeler is interested only in the final equilibrium configuration of the model, it makes sense to simplify
(12) by setting the mass density function µ(u, v) to zero, so that the inertial terms vanish. This economizes
on storage and makes the algorithm more efficient. With zero mass density, (12) reduces to the first-order
system

Dṗ + Kp = fp. (21)

Discretizing the derivatives of p in (21) with backward differences, we obtain the integration formula

(D + ∆tK)p(t+∆t) = ∆tfp + Dp(t) (22)

5 Physics-Based Shape Design

In the physics-based shape design approach, design requirements may be satisfied through the use of
energies, forces, and constraints. The designer may apply time-varying forces to sculpt shapes interactively
or to optimally approximate data. Certain aesthetic constraints such as “fairness” are expressible in terms
of elastic energies that give rise to specific stiffness matrices K. Other constraints include positional or
normal specification at surface points, and continuity requirements between adjacent surface patches. By
building the dynamic swung surface upon the standard geometry of the NURBS swung surface, we allow
the modeler to continue to use the whole spectrum of advanced geometric design tools that have become
prevalent, among them, the imposition of geometric constraints that the final shape must satisfy.
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5.1 Applied Forces

Sculpting tools may be implemented as applied forces. The force f(u, v, t) represents the net effect of all
applied forces. Typical force functions are spring forces, repulsion forces, gravitational forces, inflation
forces, etc. [20].

For example, consider connecting a material point (u0, v0) of a dynamic swung surface to a point d0 in
space with an ideal Hookean spring of stiffness k. The net applied spring force is

f(u, v, t) =
∫ ∫

k(d0 − s(u, v, t))δ(u− u0, v − v0) du dv, (23)

where the δ is the unit delta function. Equation (23) implies that f(u0, v0, t) = k(d0 − s(u0, v0, t)) and
vanishes elsewhere on the surface, but we can generalize it by replacing the δ function with a smooth kernel
(e.g., a unit Gaussian) to spread the applied force over a greater portion of the surface. Furthermore, the
points (u0, v0) and d0 need not be constant, in general. We can control either or both using a mouse to
obtain an interactive spring force.

5.2 Constraints

In practical applications, design requirements may be posed as a set of physical parameters or as geometric
constraints. Nonlinear constraints can be enforced through Lagrange multiplier techniques [10, 18, 14]. This
approach increases the number of degrees of freedom, hence the computational cost, by adding unknowns λi,
known as Lagrange multipliers, which determine the magnitudes of the constraint forces. The augmented
Lagrangian method [10] combines the Lagrange multipliers with the simpler penalty method [15]. The
Baumgarte stabilization method [2] solves constrained equations of motion through linear feedback control
(see also [9, 21]). These techniques are appropriate for the dynamic swung surfaces with constraints.

Linear geometric constraints such as point, curve, and surface normal constraints can be easily incorpo-
rated into dynamic swung surface by reducing the matrices and vectors in (12) to a minimal unconstrained
set of generalized coordinates. For example, the two generator curves must be embedded in x−z and x−y

planes, respectively. If the model is confined as a surface of revolution, the degrees of freedom associated
with the second profiles must be constrained geometrically to admit a circle. Linear constraints can be
implemented by applying the same numerical solver on an unconstrained subset of p. See [21] for a detailed
discussion on constraints in the context of D-NURBS.

Dynamic surfaces constructed from NURBS geometry have an interesting idiosyncrasy due to the
weights. While the control point components of p may take arbitrary finite values in �, negative weights
may cause the denominator to vanish at some evaluation points, causing the matrices to diverge. Although
not forbidden, negative weights are not useful. We enforce positivity of weights at each simulation time
step by simply projecting any weight value that has drifted below a small positive threshold back to this
lower bound (nominally 0.1). Another potential difficulty is that lower weight values tend to flatten the
surface in the vicinity of the control points, lowering the deformation energy; thus the weights may tend
to decrease. One solution is to use a more complex deformation energy that does not favor flat surfaces as
in [11]. Alternatively, we can counteract the tendency and also give the designer the option of constraining
the weights near certain desired target values w0

i by including in the surface energy the penalty term
c
∑

(wi − w0
i ), where c controls the tightness of the constraint.

6 Applications and Results

We have developed a prototype modeling system based on dynamic NURBS swung surfaces. Currently,
the system implements surfaces with basis functions of order 2, 3, or 4 (i.e., from linear to cubic) and
geometric constraints. The system is written in C and is packaged as an interactive Iris Explorer module
on Silicon Graphics workstations. It may be combined with existing Explorer modules for data input and
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surface visualization. Our parallelized iterative numerical algorithm takes full advantage of a 4D/380VGX
multiprocessor.

Users can sculpt surface shapes in conventional geometric ways, such as by sketching control polygons
of arbitrary profile curves, repositioning control points, and adjusting associated weights, or according to
the physics-based paradigm through the use of forces. They can satisfy design requirements by adjusting
the internal physical parameters such as the mass, damping, and stiffness densities, along with force gain
factors, interactively through Explorer control panels. The following sections demonstrate applications of
dynamic NURBS swung surfaces to rounding and blending, scattered data fitting, and interactive sculpting.

6.1 Rounding and Blending

The rounding and blending of surfaces is usually attempted geometrically, by enforcing continuity require-
ments on the fillet which interpolates between two or more surfaces. By contrast, the dynamic NURBS
swung surface can produce a smooth fillet by minimizing its internal deformation energy subject to posi-
tion and normal constraints. The dynamic simulation automatically produces the desired final shape as it
achieves equilibrium.

Fig. 3 demonstrates the rounding of a polyhedral toroid. The profile curve on the x-z plane is a
quadratic NURBS curve with 17 control points. The trajectory curve on the x-y plane is also a quadratic
NURBS with 17 control points. Note that, the corners of the curves can be represented exactly with
multiple control points or approximately by setting a very large weight. If this model were a general
NURBS surface, it would have 289 control points and weights. As a swung surface it has only 34 control
points and weights which are considered the generalized coordinates of the dynamic model. The wire
frame and shaded shapes is shown in Fig. 3(a) and Fig. 3(b). After initiating the physical simulation, the
corners and sharp edges are rounded as the final shape equilibrates into the minimal energy state shown
in Fig. 3(c).

Fig. 4 illustrates a blending example involving a cylindrical pipe. The circular profile is a quadratic
NURBS with 7 control points. The piecewise linear trajectory is obtained from a quadratic NURBS with
5 control points. The initial right-angle pipe and the final rounded pipe are shown in Fig. 4(a-c).

6.2 Scattered Data Fitting

A useful modeling technique is based on fitting surfaces to unstructured constraints, generally known as
scattered data fitting. Interesting situations arise when there are fewer or more data points than there are
degrees of freedom in the model, leading to under-constrained or over-constrained fitting problems. The
inclusion of an elastic energy in our dynamic surfaces makes them applicable to such problems.

The data interpolation problem is amenable to common constraint techniques [10]. Approximation can
be approached by physically coupling the dynamic NURBS swung surface to the data through Hookean
spring forces (23). We interpret d0 in (23) as the data point (generally in �3) and (u0, v0) as the parametric
coordinates associated with the data point (which may be the nearest material point of the surface). The
spring constant c determines the closeness of fit to the data point. 1

To find the closest point on the model for arbitrarily sampled data (x0, y0, z0), we exploit the special
symmetric structure of NURBS swung surface through the following two-step search scheme. We first find
the v0 such that c1(v0) is nearest to (x0, y0). Then we search the isoparametric curve s(u, v0) and find the
u0 such that s(u0, v0) is the closest to (x0, y0, z0). Experiments show that this approximation approach
leads to satisfactory results because the mapping is recomputed at each simulation step. More importantly,
we reduce the complexity of optimal matching from O(mn) for a general m by n D-NURBS surface [21] to
O(m + n). For large m and n, the dynamic simulation is speeded up significantly. Other techniques such
as nonlinear optimization are applicable to finding the closest point.

1Cross-validation provides a principled approach to choosing the relevant physical parameters—typically the ratio of data
force spring constants to surface stiffnesses—for given data sets [23]. For the special case of zero-mean Gaussian data errors,
optimal approximation in the least squares residual sense results when c is proportional to the inverse variance of data errors.
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An important advantage of our models, despite the fact that they are profile surfaces, is that they can
be fitted to arbitrarily distributed empirical data that are not aligned along any particular isoparametric
curve pattern. We first use a dynamic swung surface generated by two quadratic profiles with 10 and 7
control points to reconstruct a clay pot which has been densely sampled by a cylindrical laser scanner to
produce about 1.2 × 106 data points. We randomly selected 20 data points for the reconstruction. The
degrees of freedom of the surface’s trajectory curve are constrained to keep it circular, thereby admitting
only surfaces of revolution. Fig. 5 shows the sample points, original cylindrical, and the final fitted shape,
which includes the texture map of the object acquired by the scanner. The elastic energy of the surface
allows it to interpolate between data points. The physical parameters used in this experiment were mass
µ = 0.0, damping γ = 60.0, bending stiffness parameter β1,1 = 14.0 while all the others are zero, data
spring constants ci = 900.0. The surface fitting stabilizes in a few seconds with a time step ∆t = 0.3.

Next, we use the same surface model to approximate four other objects. Fig. 6(a-d) shows the final
reconstructed shapes from these fitting experiments using synthetic data to recover another pot, a vase, a
bottle, and a wine glass. The number of randomly sampled data are 10, 13, 14, and 17, respectively.

6.3 Interactive Sculpting

In the physics-based modeling approach, not only can the designer manipulate the individual degrees of
freedom with conventional geometric methods, but he can also move the object or refine its shape with
interactive sculpting forces.

The physics-based modeling approach is ideal for interactive sculpting of surfaces. It provides direct
manipulation of the dynamic surface to refine the shape of the surface through the application of interactive
sculpting tools in the form of forces. Fig. 2 illustrates the results of four interactive sculpting sessions using
spring forces. A sphere was generated using two quadratic curves with 4 and 7 control points and was
sculpted into the ovoid shown in Fig. 2(a). A torus whose two profile curves are quadratic with 7 and 7
control points, respectively, has been deformed into the shape in Fig. 2(b). A hat shape was created from
two curves with 9 and 6 control points and was then deformed by spring forces into the shape in Fig 2(d).
Finally, we generated a wine glass shape using two curves with 7 and 5 control points and sculpted it into
the more pleasing shape shown in Fig 2(c).

7 Constrained D-NURBS Formulation

It is known that a geometric NURBS swung surface is a NURBS surface [13]. In this section, we show that
dynamic NURBS swung surfaces are, analogously, D-NURBS surfaces [21] that have been subjected to a
dimensionality-reducing nonlinear constraint.

7.1 D-NURBS Surface

A D-NURBS surface generalizes the geometric NURBS surface:

s(u, v, t) =
∑m

i=0

∑n
j=0 qi,j(t)wi,j(t)Bi,k(u)Bj,l(v)∑m

i=0

∑n
j=0 wi,j(t)Bi,k(u)Bj,l(v)

. (24)

The (m + 1)(n + 1) control points qi,j(t) and weights wi,j(t), which are functions of time, comprise the
D-NURBS generalized coordinates. We concatenate these N = 4(m+1)(n+1) coordinates into the vector:

q(t) =
[
· · · q�

i,j wi,j · · ·
]�

.

Similar to (2) and (4), we have

ṡ(u, v, q) = Jq̇, s(u, v, q) = Jq. (25)
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where J(u, v, q) is the 3 × N Jacobian matrix of the D-NURBS surface with respect to q. The motion
equations of D-NURBS surfaces are

Mqq̈ + Dqq̇ + Kqq = fq + gq, (26)

where the mass matrix Mq, the damping matrix Dq,and the stiffness matrix Kq are all N × N matrices,
and fq is the generalized force vector acting on q. The gq is the generalized inertial force. See [21] for the
details of the D-NURBS formulation.

To reduce the D-NURBS surface to a dynamic swung surface, we apply the nonlinear constraint

qi,j =
[

αai,xbj,x αai,xbj,y ai,z

]�
wi,j = wa

i w
b
j . (27)

where α, ai, wa
i , bj, and wb

j, for i = 0, . . . , m and j = 0, . . . , n, are defined as in Section 3. Differentiating
(27), we obtain

q̇i,j =

⎡
⎢⎣ α̇ai,xbj,x + αȧi,xbj,x + αai,xḃj,x

α̇ai,xbj,y + αȧi,xbj,y + αai,xḃj,y

ȧi,z

⎤
⎥⎦

ẇi,j = ẇa
i w

b
j + wa

i ẇ
b
j (28)

Using the notations in Section 3, we can rewrite (27) and (28) in the matrix form

q̇ = Gṗ, q = Bp, (29)

where B and G are N × M matrices with M = (4m + 4n + 9).
Substituting (29) into (26), we arrive at the equations of motion for the dynamic NURBS swung surface

(12), where the M × M mass, damping, and stiffness matrices are given by

M = G�MqG, D = G�DqG, K = G�KqB.

The generalized forces with respect to p are

fp = G�fq, gp = G�(gq − MqĠṗ).

The constraint reduces the 4(m+1)(n+1) generalized coordinates of the D-NURBS surface to the 4m+4n+9
generalized coordinates of the dynamic NURBS swung surface.

8 Conclusion

We have proposed dynamic NURBS swung surfaces and have formulated them in two different ways:
(i) constructively from two NURBS profile curves, and (ii) by applying a nonlinear constraint to general
dynamic NURBS surfaces. Like D-NURBS, the new model is a physics-based generalization of its geometric
counterpart. The model is derived systematically through Lagrangian mechanics and implemented using
concepts from finite element analysis and efficient numerical methods.

Time is fundamental to the dynamic formulation, which can continuously evolve the control points and
weights in response to applied forces to produce physically meaningful and intuitively predictable shape
variation. Additional control over the shape stems from the modification of physical parameters. Elastic
energy functionals allow the qualitative imposition of fairness criteria through quantitative means. Linear
or nonlinear constraints may be imposed either as hard constraints that must not to be violated, or as soft
constraints to be satisfied approximately in the form of simple forces. Dynamic NURBS swung surfaces fit
sampled data as they achieve static equilibrium subject to the shape constraints.

13



Our prototype interactive modeling system demonstrates the flexibility of dynamic swung surface mod-
els in a variety of applications. Our results indicate that these surfaces with different topological structures
offer broad geometric coverage and are amenable to efficient numerical simulation to support interactive
design. Finally, since our models are built on the industry-standard NURBS geometric substrate, designers
working with them can continue to employ the existing array of geometric design toolkits.
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(a) (b)

(c) (d)

Figure 2: Assorted Dynamic NURBS Swung Surfaces. Open and closed surfaces shown were sculpted
interactively from prototype shapes noted in parentheses (a) Egg shape (sphere). (b) Deformed toroid
(torus). (c) Hat (open surface). (d) Wine glass (cylinder).

(a) (b) (c)

Figure 3: Rounding of polyhedral toroid. (a) Wireframe. (b) Shaded object. (c) Final rounded shape.
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(a) (b) (c)

Figure 4: Surface blending of pipe. (a) Wireframe. (b) Shaded object. (c) Final smooth blend.

(a) (b) (c)

Figure 5: Fitting of 3D laser scanner data. (a) Original cylinder wireframe. (b) Reconstructed pot
wireframe. (c) Textured pot.
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(a) (b)

(c) (d)

Figure 6: Four fitted shapes. (a) Pot. (b) Vase. (c) Glass. (d) Bottle.
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