
Visual Comput (2007) 23: 285–296
DOI 10.1007/s00371-007-0096-9 O R I G I N A L A R T I C L E

Kevin T. McDonnell
Hong Qin

A novel framework for physically based
sculpting and animation of free-form solids

Published online: 14 February 2007
© Springer-Verlag 2007

K.T. McDonnell (�)
Dowling College, Department of
Mathematics and Computer Science,
Idle Hour Blvd.,
Oakdale, NY, 11769-1999, USA
mcdonnek@dowling.edu

H. Qin
Department of Computer Science, Stony
Brook University, Stony Brook, NY,
11794-4400, USA
qin@cs.sunysb.edu

Abstract This paper presents a new,
physically based model for per-
forming finite element simulation
of deformable objects in which all
quantities – strain, stress, displace-
ment, etc. – are computed entirely
in local frames of reference. In
our framework, subdivision solids
with non-homogeneous material
properties, such as mass and defor-
mation distributions, can be defined
throughout continuous, volumetric
domains. This capability enables an
animator or virtual sculptor to exert
fine-level control over deforming
objects and to define a wide variety

of physical behaviors. Furthermore,
since all quantities pertinent to phys-
ical simulation are computed locally,
our model facilitates both large-scale
and small-scale deformations, as well
as rigid or near-rigid transformations.
We demonstrate applications of
our framework in animation and
interactive sculpting and show that
interactive simulation of non-trivial,
volumetric shapes is possible with
our methodologies.

Keywords Physically based model-
ing · Subdivision algorithms · Virtual
sculpting · Animation

1 Introduction and motivation

The goal of this paper is to articulate a new physically
based model for manipulating, deforming and animating
volumetric objects. Our framework marries the dynamic
behaviors afforded by finite element models (FEM) with
subdivision solid geometry of complicated topology. Fi-
nite element models permit the specification of a wide
variety of physical behaviors, while subdivision solids fa-
cilitate the definition of topologically complex geomet-
ric objects. The major contribution of our work is a new
model in which all quantities pertinent to physical simu-
lation – stretching, shearing, stress, strain, etc. – are com-
puted with respect to moving local reference frames. The
use of local frames permits the finite elements to move
through space freely, and the run-time solver need not re-
assemble the stiffness matrix with each time-step. Such
attributes of a deformable model are very desirable in in-
teractive sculpting and animation applications.

Our primary motivation for employing a finite elem-
ent model over a mass-spring model is to permit an ani-
mator or virtual sculptor to exert fine-level control over
the material distributions of sculpted objects. While in
a mass-spring system it is possible to specify mass and
stiffness distributions at mass points and springs, a finite
element-based approach permits the assignment of mater-
ial distributions throughout the continuous domain of the
deforming object. Second, although the accuracy of phys-
ical simulation is not our primary interest in this work,
FEM does have the desirable advantage over mass-spring
models of increased realism by way of continuous mater-
ial variation. This permits the animator to create deform-
ations that are more life-like than can be achieved in the
absence of finite elements. Third, a finite element-based
approach can support downstream applications like defor-
mation and interactive manipulation of volumetric data.
Hence, we anticipate that our new model will be of inter-
est to practitioners in fields other than geometric and phys-
ically based modeling.

286 K.T. McDonnell, H. Qin

Figure 1 illustrates examples of the design, manipula-
tion and simulation processes facilitated by our novel solid
modeling approach. First, the designer must construct an
initial control mesh (Fig. 1a) by using sculpting tools
like those briefly discussed in Sect. 4.1 and detailed in
a previous paper [15]. Second, the model is subdivided at
least once, and the resulting mesh of polyhedra is decom-
posed into a set of finite elements (Fig. 1b). Third, the de-
signer employs physically based tools and/or runs an off-
line physical simulation to deform the object (Fig. 1c).
Last, if it is required, a boundary representation of the
model may be extracted and rendered (Fig. 1d) by deter-
mining which polygonal faces lie on the boundary surface
of the model.

2 Background review

2.1 Subdivision solids

Subdivision solid algorithms take as input a polyhedral
mesh and produce a refined mesh containing many more,
smaller polyhedra. Typically, the algorithms are designed
so as to reproduce a volumetric spline of certain type
after an infinite number of subdivisions. The major ad-
vantage they possess over volumetric splines is the ca-
pability to define holes, handles and other non-trivial
topological features in volumetric shapes. The first doc-
umented volumetric subdivision algorithm, that of Mac-
Cracken and Joy [13], generalizes cubic B-spline solids
to meshes of arbitrary topology. Later, Bajaj and col-
leagues [1] proposed an alternative to the MacCracken–
Joy algorithm that also reproduces cubic B-spline vol-
umes under regular topological conditions but is eas-
ier to analyze mathematically. Chang et al. [6] derived
a suite of C1 subdivision solid schemes for application
over hybrid tetrahedral/octahedral meshes. Other work in-
cludes the investigation of wavelet decompositions of sub-
division volumes [3], hierarchical representation of time-
varying data [12], applications of interpolatory subdivi-
sion volumes [4, 14, 19], and physically based animation
and volumetric sculpting [5, 15].

Fig. 1a–d. The design, manipu-
lation and simulation processes
featured in our dynamic solid
modeling approach. a Design
rough shape of object. b Sub-
divide model and discretize into
finite elements. c Sculpt model
and perform further modifi-
cations. d Extract B-rep and
render final object. In this paper
we are concerned mainly with
the deformable models used in
Step c

2.2 Physically based modeling

Physically based models integrate physical properties with
geometric representations to support applications in ani-
mation, shape design, mechanical simulation and fluid dy-
namics. Dynamic solid models were introduced to the
modeling and computer graphics communities by Ter-
zopoulos and colleagues [25]. Closely related to our work
is that of Faloutsos et al. [8], who developed dynamic
free-form deformations. These models facilitate physi-
cally based manipulation of objects embedded in a 3D
space. Our work also bears resemblance to the models
of Qin and colleagues [21, 22], who derived FEM-based
dynamic models for direct manipulation of spline-based
and subdivision-based surfaces, and to those of James and
Pai [11], who developed a dynamic surface model based
on the boundary element method (BEM). Also related
are various techniques for muscle deformation, such as
Ng-Thow-Hing’s work [18] to develop physically based
models of muscle deformations using B-spline volumes.
Like Ng-Thow-Hing, we employ the volumetric B-spline
as the primitive for simulating deformable shapes. Fed-
kiw’s group has also extensively studied issues related
to muscle deformation, such as the simulation of very
large deformations [10], algorithms for generating finite
element meshes suitable for simulating large deforma-
tions [24], level-set-based approaches [16], and models
for achieving anatomically accurate deformations derived
from real data [23]. Although our work does not focus on
muscle deformation, we too must consider many of the is-
sues addressed by Fedkiw et al., particularly with regard to
large deformations and finite element mesh generation.

Debunne et al. [7] proposed an efficient time and
space adaptive deformable model using finite elements
that guarantees user-specified frame rates. Müller and
colleagues [17] presented a dynamic model that employs
non-rotating reference frames at the mesh vertices for
computing elastic forces. In contrast, our model employs
frames of reference that can rotate and deform arbitrarily.
This gives our method the ability to simulate deform-
ing objects that move freely through space. To our best
knowledge, ours is the only volumetric, deformable model

A novel framework for physically based sculpting and animation of free-form solids 287

Fig. 2. a A subdivision solid after
two levels of subdivision along
with its control mesh. b Inte-
rior cell structure. c Wireframe
rendering of subdivided solid.
d Wireframe of boundary only

that employs local reference frames in this fashion. Hauth
et al. [9] introduced a tetrahedral finite element model
for simulation of biological tissues. Recently, Capell and
colleagues [5] addressed the problem of how to perform
hierarchical free-form deformation of embedded models.

3 FEM-based subdivision solids

3.1 Geometric representation

Throughout our discussion of FEM-based subdivision
solids, we use MacCracken–Joy solids [13] for the un-
derlying subdivision scheme. This algorithm, as well as
most other procedural subdivision solid algorithms, can be
expressed as a matrix multiplication:

d = Ap, (1)

where p is a 3N-vector consisting of the concatenated x,
y and z positional components of the N control points;
A is a sparse matrix whose entries are determined by the
subdivision rules, and d is a 3M-vector that concatenates
all the components of the M nodal points that are used to
approximate the limit solid after a certain number of sub-
divisions. An example of a MacCracken–Joy subdivision
solid is depicted in Fig. 2. As one can see, the object pro-
duces a fairly uniform, volumetric decomposition of the
initial control mesh and can accommodate features like
holes and handles. In the interest of brevity, we do not pro-
vide the subdivision rules in this paper; instead, we refer
the interested reader to MacCracken and Joy’s original pa-
per [13].

3.2 Dynamic representation

Conventional FEM procedures solve equations whose un-
knowns are displacements of nodal points from their ini-
tial, undeformed positions. Our FEM-based formulation
starts from the following discrete form of the equation of
motion:

Mxẍ+ Dxẋ+ K xδx= f x, (2)

where the Mx, Dx and Kx matrices represent the mass,
damping and stiffness distributions, respectively, of a mod-
eled object. Note that ẋ and ẍ are the respective velocity

and acceleration of the discretized object x. δx is the com-
panion displacement vector derived from x. In the new
model described in this paper, δx is calculated with respect
to a moving local reference frame. Last, the vector fx col-
lects the total external forces acting on x.

We associate with the FEM equation of motion the ge-
ometric and topological quantities of a subdivision solid.
The physics of the subdivision solid is governed by:

Md̈ + Dḋ + KRd = f d, (3)

where the R operator characterizes deformation due to
stretching and shearing, and d is a vector of the concat-
enated x, y and z positional components of the FEM
nodes. Essentially, the R operator measures local displace-
ments along edges and changes in angles inside a pol-
ygonal face of a finite element. In practice, it is not neces-
sary to assemble R since its effect on d can be computed
by traversing local cell topology. Its structure is discussed
in Sect. 3.2.2.

3.2.1 Mass and damping matrices

To define local Mi , Di and Ki matrices for element i , let
us first define the matrix J, which consists of the shape
functions for the finite elements in a solid:

J =
[
Γ

Γ
Γ

]
(4)

and where Γ = [B0 B0 B0 B0 B0 B1 · · · B3 B3 B3] consists
of the 64 uniform, tricubic B-spline basis functions.1 The
mass matrix can then be computed as Mi = ∫

V µJ� J dV ,
where µ(u, v, w) is the mass density function of one elem-
ent of the solid. Similarly, damping matrix is computed as
Di = ∫

V γ J� J dV , where γ(u, v, w) is the damping dens-
ity function.

3.2.2 Stiffness matrix

Since the subdivision solid has no global parameteriza-
tion, deformations must be approximated through local

1 We use the uniform B-spline basis functions for the shape functions be-
cause the MacCracken–Joy algorithm reproduces uniform tricubic B-spline
solids in the limit of subdivision. Our formulation can be easily generalized
to accommodate other subdivision solid schemes.

288 K.T. McDonnell, H. Qin

computations on individual cell geometry. Furthermore,
we depart from traditional finite element methods [2] by
computing all quantities relative to local frames of ref-
erence, rather than to a single global frame of reference.
Strains along edges correspond to stretching deformations
and can be computed as the changes in edge lengths in the
hexahedral cells. Strains across faces correspond to shear-
ing deformations and can be approximated by finding the
change in internal face angles of the cells, as illustrated
in Fig. 3. The shearing is estimated by finding the angle θ
between two adjacent edges (s1 and s2) of a polyhedron:
θ = cos−1

(s1·s2|s1||s2|
)
. Both deformations are captured by the

quantity Rd. In particular, the i-th row of Rd consists of
the sum two quantities: (i) the sum of all signed changes
in edge lengths (from their rest lengths) of those edges
incident on node i , and (ii) the sum of all vectors a′ −a
and b′ −b induced by changes in angles (from their rest
angles) of those faces of which node i is a member (see
Fig. 3). As one can immediately discern, it is much sim-
pler to compute and assemble Rd on-the-fly, rather than
assemble R separately from d.

During simulation, rather than assemble the global K
matrix explicitly, it is easier to pre-assemble local stiff-
ness matrices and multiply them against the local displace-
ments given by Rd. We shall use cubic finite elements
throughout the discussion, but our approach can be ap-
plied to finite element shape functions of other degrees.
Let Ki denote the local 192×192 stiffness matrix for cubic
element i , and d̂i = Ridi denote the 192-vector of con-
catenated displacements of the 64 nodes due to stretching
and shearing. Conceptually, the matrix Ri encapsulates
the computations required to calculate the local stretch-
ing and shearing displacements. As mentioned earlier, it
need not be assembled explicitly. In each finite element
we store, for each node, a pointer that indicates the node’s
corresponding row in the Rd vector. As the vector Ridi is
computed, its entries are added to the corresponding rows
of Rd. Given d̂i , we can compute Ki d̂i , which corresponds
to the forces contributed by elements to the entire solid as

Fig. 3. To compute the shearing energy as defined by internal an-
gles, we begin by computing where end-points a and b would be if
there were no shearing (given by a′ and b′). The points are rotated
about the nodal point using the axis of rotation (determined by the
cross product s1 × s2). Using these virtual positions we compute
a pair of displacements (aa′ and bb′). In this example we assume
the rest angle is 90 degrees

a result of stretching. Using pointers stored in the element,
the vector Ki d̂i is added to the global vector KRd, which
represents the total internal forces introduced by stretch-
ing and shearing. The same process is carried out for all
elements.

Now, we know from the study of mechanics that the
finite element stiffness matrix of a solid body is written as

K =
∫

V
B�CB dV, (5)

where B is the stress-strain displacement matrix and
whose rows are obtained by appropriately differentiating
and summing the rows of the displacement interpolation
matrix, J. The C is the stress-strain material matrix for
solid bodies and is defined as [2]:

C = E(1−ν)

(1+ν)(1−2ν)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ν
1−ν

ν
1−ν

ν
1−ν

1 ν
1−ν

ν
1−ν

ν
1−ν

1
1−2ν

2(1−ν)
1−2ν

2(1−ν)
1−2ν

2(1−ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6)

where E is Young’s modulus, ν is Poisson’s ratio, and
the matrix entries not shown are zeroes. It is also known
that the strains ε = [εuu εvv εww γuv γvw γwu]� gen-
erate stresses τ =[τuu τvv τww τuv τvw τwu]� accord-
ing to τ = Cε + τ′, where τ′ denotes initial stresses. By
computing strains with respect to local coordinate frames
we find εuu = ∂x

∂u , εvv = ∂y
∂v

, εww = ∂z
∂w

, γuv = ∂y
∂u + ∂x

∂v
,

γvw = ∂z
∂v

+ ∂y
∂w

and γwu = ∂x
∂w

+ ∂z
∂u , where u −v−w de-

fines a local reference frame for a finite element (Figs. 4
and 5). Assuming there are no initial stresses, τ� = ε�C
and we express the principle of virtual work as [2]:∫

V
ε�Cε dV =

∫
V

d̂
�

fp dV. (7)

Using Eq. 5 and Eq. 7 we seek to obtain an explicit ex-
pression for B, which will lead to the formulation for K . In
the interest of brevity, we will derive B for a cubic elem-
ent, but the derivations for other element types follow suit.
Let

x(u, v, w) = Γdi,x (8)

describe the continuous x component of a cubic element’s
position as a function of the 64 nodal positions for elem-
ent i . Let di,x , di,y and di,z indicate the x, y and z

A novel framework for physically based sculpting and animation of free-form solids 289

Fig. 4. The lack of a global parameterization requires each elem-
ent to have its own local reference frame. The standard, orthogonal
u −v−w coordinate system is mapped to the local subdivision
solid geometry to parameterize the element shape functions and
material density distribution functions

Fig. 5. As an object experiences external forces, the local reference
frames stretch, shear and move with the finite elements

coordinates, respectively, of the nodes, and Γ indicate
the 64 uniform, tricubic B-spline basis functions. Define
y(u, v, w) and z(u, v, w) in a similar fashion. To sim-
plify notation in the following discussion, a product of
B-spline basis functions Bj Bk Bl will be denoted B̃m ,
where m = 16 j +4k + l.

Now, let d̂i,x , d̂i,y and d̂i,z row-vectors represent the
x, y and z components, respectively, of the 64 rela-
tive nodal displacements for a cubic element as com-
puted by Ri . Differentiating both sides of Eq. 8 with
respect to u yields ∂x

∂u = [
∂ B̃1
∂u · · · ∂ B̃64

∂u

]
d̂i,x,which we

will rewrite using matrix notation as ∂x
∂u = Γu d̂i,x , where

the subscript u on Γu indicates differentiation of the
basis functions with respect to u. Following a similar
process yields expressions for the other partial deriva-
tives and permits us to express the components of ε
as

εuu = Γu d̂i,x, εvv = Γvd̂i,y, εww = Γwd̂i,z,

γuv = Γu d̂i,y +Γvd̂i,x, γvw = Γvd̂i,z +Γwd̂i,y,

γwu = Γwd̂i,x +Γu d̂i,z.

After collecting and re-ordering the terms, we can express
the strains ε as

ε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εuu

εvv

εww

γuv

γvw

γwu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ B̃1
∂u · · · ∂ B̃64

∂u

0 · · · 0

0 · · · 0

∂ B̃1
∂v

· · · ∂ B̃64
∂v

0 · · · 0

∂ B̃1
∂w

· · · ∂ B̃64
∂w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d̂i,x +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0

∂ B̃1
∂v

· · · ∂ B̃64
∂v

0 · · · 0

∂ B̃1
∂u · · · ∂ B̃64

∂u

∂ B̃1
∂w

· · · ∂ B̃64
∂w

0 · · ·0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d̂i,y

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · ·0

0 · · ·0

∂ B̃1
∂w

· · · ∂ B̃64
∂w

0 · · ·0

∂ B̃1
∂v

· · · ∂ B̃64
∂v

∂ B̃1
∂u · · · ∂ B̃64

∂u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d̂i,z, (9)

which we will denote as ε =B̃x d̂i,x + B̃yd̂i,y + B̃z d̂i,z.
Thus, the strains can be concisely expressed as

ε =
⎡
⎢⎣

B̃x

B̃y

B̃z

⎤
⎥⎦ d̂i = Bd̂i, (10)

where the empty entries in ε are zeroes.
Substituting the right-hand side of Eq. 10 into the left

side of Eq. 7 and carrying out the multiplication yields
an expression of nine terms, the following five of which
affect the x component of the work performed by the in-
ternal stresses:

d̂
�

i,x

(∫
V

B̃�
x C B̃x dV

)
d̂i,x + d̂

�
i,x

(∫
V

B̃�
x C B̃y dV

)
d̂i,y

+ d̂
�
i,x

(∫
V

B̃�
x C B̃z dV

)
d̂i,z + d̂

�
i,y

(∫
V

B̃�
y C B̃x dV

)
d̂i,x

+ d̂
�
i,z

(∫
V

B̃�
z C B̃x dV

)
d̂i,x . (11)

The y and z components of the work can be defined in an
similar fashion.

Differentiating the internal virtual work (Eq. 7) with
respect to d̂x and combining like terms gives the expres-

290 K.T. McDonnell, H. Qin

sion for the internal stresses in x:

∂

∂ d̂i,x

∫
V

ε�Cε dV = 2
(∫

V
B̃�

x C B̃x dV

)
d̂i,x

+2
(∫

V
B̃�

x C B̃y dV

)
d̂i,y +2

(∫
V

B̃�
x C B̃z dV

)
d̂i,z,

(12)

which can be rewritten more concisely in matrix form as:

∂

∂ d̂i,x

∫
V

ε�Cε dV = K x
x d̂i,x + K x

y d̂i,y + K x
z d̂i,z, (13)

where K x
x = 2

∫
V B̃�

x C B̃x dV , K x
y = 2

∫
V B̃�

x C B̃y dV and
K x

z = 2
∫

V B̃�
x C B̃z dV .

Given similar expressions for the stresses in the y and z
directions, we arrive at the following expression for the
internal stresses:

∂

∂ d̂i,x

∫
V

ε�Cε dV + ∂

∂ d̂i,y

∫
V

ε�Cε dV

+ ∂

∂ d̂i,z

∫
V

ε�Cε dV

= (
K x

x d̂i,x + K x
y d̂i,y + K x

z d̂i,z
)

+ (
K y

x d̂i,x + K y
y d̂i,y + K y

z d̂i,z
)

+ (
K z

x d̂i,x + K z
yd̂i,y + K z

z d̂i,z
)
. (14)

Now let Kx = K x
x + K y

x + K z
x and likewise define Ky

and Kz . Finally, the product Ki d̂i can be evaluated from
Eq. 14 by collecting the terms as follows:

Ki d̂i =
[

Kx
Ky

Kz

]
d̂i . (15)

In practice we do not assemble the global K since only
its effect on d̂ is required to solve the equation of motion
(Eq. 20). (Rather, we compute the local Ki d̂i vectors and
add them to the global stresses in KRd in an incremen-
tal, element-by-element fashion using the pointers stored
in the elements.)

3.3 Numerical solver

Equation 3 can be integrated numerically through time
using an implicit solver, where:

ṗ(t +∆t) = p(t +∆t)− p(t −∆t)

2∆t
(16)

and

p̈(t +∆t) = p(t +∆t)−2p(t)+ p(t −∆t)

∆t2 , (17)

where t denotes time.

Now, multiplying both sides of Eq. 3 by A� and apply-
ing Eq. 1 yields:

M̃ p̈+ D̃ ṗ+ K̃ p = f̃p, (18)

where M̃ = A�MA, D̃ = A�MA, K̃ = A�KRA and
f̃p = A� f d . Substituting Eq. 16 and Eq. 17 into Eq. 18
yields

M̃
(

p(t +∆t)−2p(t)+ p(t −∆t)

∆t2

)

+ D̃
(

p(t +∆t)− p(t −∆t)

2∆t

)
+ K̃ p(t) = f̃p. (19)

Last, multiplying both sides of Eq. 19 by 2∆t2 and rear-
ranging terms produces

(2M̃+∆t D̃)p(t +∆t)

= 2∆t2(f̃p − K̃ p(t)
)+4M̃p(t)− (2M̃−∆t D̃)p(t −∆t).

(20)

It is straightforward to employ the conjugate gradient
method [20] to obtain an iterative solution for p(t +∆t).
We have observed that only two to four iterations typic-
ally suffice to converge the system to a residual error of
less than 10−4 because we employ cubic and linear shape
functions. More than two are necessary when the physical
parameters are changed during simulation. In such cases,
the system automatically performs extra iterations to meet
the error tolerance.

The generalized external force vector fd is obtained
through the principle of virtual work done by the ap-
plied force distribution f (u, v, w, t) and is expressed as
fd = ∫

V J�fp(u, v, w, t)dV where t is time. In theory,
forces could be exerted at any continuous parametric
values in an element. However, in practice, we restrict the
application of forces to discrete quadrature points so as
to simplify the implementation and to avoid an expensive
root-finding procedure that would otherwise be required
to find the appropriate values of (u, v, w). We believe this
provides a reasonable trade-off between system perform-
ance and usability.

The shape functions, the material distribution func-
tions, and the external force function are integrated using
the technique of Gaussian quadrature [20]. This numerical
integration technique approximates a definite integral with
a summation, such as:∫ u1

uo

∫ v1

vo

∫ w1

wo

g(u, v, w)du dv dw

≈
N∑

i=1

M∑
j=1

L∑
k=1

qiqjql g(ui, vj, wk), (21)

A novel framework for physically based sculpting and animation of free-form solids 291

where the weights qi , qj and qk and parametric values ui ,
vj , and wk are provided in look-up tables. These look-
up tables are pre-computed and depend on the bounds of
the parametric domains and the degree of the finite elem-
ent shape functions. The accuracy of Gaussian quadrature
is dependent on the number of samples (N, M, L) taken
from the parametric domains. In our implementation we
use only four samples in each parametric domain since
most of the shape functions are cubic.

3.4 Finite elements

3.4.1 Regular cells

After several subdivisions of the initial control mesh, the
vast majority of cells in the subdivided mesh are hexa-
hedral (if we employ MacCracken–Joy subdivision). In
order to compute the elemental mass, damping and stiff-
ness matrices, we assign one finite element to each hexa-
hedral cell that appears in the subdivided mesh. Since
a MacCracken–Joy subdivision solid has no global par-
ameterization, each element must be parameterized in-
dependently (see Figs. 4 and 5). Each element consists of
the 8 vertices that comprise the cell geometry as well as
58 other vertices that complete the 64-node control mesh
of the local B-spline solid. Together, the 64 vertices are
used to characterize the FEM mass, damping and stiff-
ness shape functions. In this manner, the shape functions
define continuous material distributions across the regu-
lar cells. Local deformations are also stored for assembly
later.

3.4.2 Extraordinary cells

While many of the cells in the subdivided MacCracken–
Joy solid exhibit regular topology and can be parameter-
ized using B-splines, a certain percentage of the hexahe-
dral cells always requires special treatment. Such extraor-
dinary cells include those on the boundary of the solid, as
well as those within the 1-neighborhood of extraordinary
vertices (i.e., interior vertices with more than or fewer than

Fig. 6a–d. Assembly of cubic elements for a particular cell. The vertex numbers are used to compute the B-spline basis functions. a The
cell itself. b The 24 vertices located using face-adjacency information. c Locating the two vertices (#28 and #44) of the cell that is
edge-adjacent along the edge defined by vertices numbered 25 and 41. d Locating the vertex (#60) of the cell that is vertex-adjacent by
vertex 41

six neighbors). For each extraordinary cell, we can assign
a linear, hexahedral element and employ traditional, time-
tested finite element methodologies. In our experiments
we did not observe any significant deformation artifacts
caused by the mixing of linear and cubic elements in a sin-
gle object.

3.4.3 Irregular cells

The presence of non-hexahedral cells in the control mesh
results in the creation of a small number of irregular
cells in the subdivided solid. Each irregular cell has an
even number of quadrilateral faces. Irregular cells present
a challenge for incorporation into the physical model
since, to our knowledge, there are no standard finite elem-
ents that can handle octahedra, decahedra, and so forth.
Our model employs pyramidal elements formed through
the introduction of virtual nodes in the centers of each
cell. The pyramidal elements are treated as degenerate,
linear hexahedral elements [2] and participate fully in the
simulation. This approach unavoidably introduces a small
amount of error into the system. During our experiments
we did not perceive any significant negative visual impact
from the inclusion of these elements.

3.4.4 Element assignment

Given the three types of cells that exist in the dynamic
solid model (regular, extraordinary and irregular), the sys-
tem must be able to distinguish between the three types
in order to assign finite elements. Irregular cells are triv-
ial to discern and can be immediately subdivided into
pyramids. Then the system must locate hexahedral cells
that can be assigned cubic elements. The radial-edge data
structure [26] provides invaluable assistance in this pro-
cess. Our algorithm for detecting and assembling cubic
elements proceeds as follows:

1. First, verify that (see Fig. 6a) the cell has 6 faces; each
of the cell’s faces is not on the boundary; each of the
cell’s 8 vertices is not on the boundary; each of the

292 K.T. McDonnell, H. Qin

Model #CC #FE FPS MSPI %BE %LE %PE

Soccer player 24 1536 7.4 135 24% 76% 0%
Sea monster 38 320 21.3 47 94% 3% 4%
33 block 27 1728 3.2 310 58% 42% 0%
Chair 76 984 11.1 90 68% 3% 29%
43 block 64 296 11.9 84 58% 33% 0%
Head 123 1241 9.1 110 82% 1% 17%
Bridge 150 1200 4.7 213 95% 5% 0%
Nozzle 99 792 13.3 75 100% 0% 0%

Table 1. Details for some of the sculpted
models discussed in this paper. #CC =
Number of control cells. #FE = Num-
ber of finite elements. FPS = Frames
per second. MSPI = milliseconds per
iteration. %BE = percentage of elem-
ents that are cubic B-spline elements.
%LE = percentage that are linear elem-
ents. %PE = percentage that are pyra-
midal elements. (Percentages may not
sum to 100% due to rounding.) Timings
were recorded on a 2.8 GHz Pentium
4-based computer with 1 GB RAM

cell’s vertices has valence 8; and each of the cell’s 26
neighbors is a hexahedron.

2. For each face, find the four vertices of the cell adjacent
to the current cell that is face-adjacent to the current
cell (Fig. 6b).

3. For each edge, find the two vertices of the cell adjacent
to the current cell that is edge-adjacent to the current
cell (Fig. 6c).

4. For each vertex, find the cell adjacent to the current cell
that is vertex-adjacent to the current cell (Fig. 6d).

For sake of clarity, Fig. 6 shows how to locate only
a subset of the vertices in Steps 3 and 4. The numbers
assigned to each vertex are used to maintain a proper or-
dering and orientation of the vertices in memory so that
the B-spline basis functions can be evaluated correctly.
The adjacency information in the radial-edge data struc-
ture records, among other quantities, face orientation data,
which makes it straightforward to identify and label the 64
vertices.

3.4.5 Element data structures

Each finite element’s data structure contains the geo-
metric and physical properties associated with the elem-
ent, including pointers to appropriate components of the
global vector d as well as the nodal displacements, d̂.
We also allocate in each element its elemental mass,
damping and stiffness matrices, and include in the data
structure the quantities needed to compute these matri-
ces. These quantities include the continuous mass

Fig. 7a–d. Topology-based sculpting tools: a deletion, b extrusion and local changes to subdivision rules, c merging, d local subdivision.
The initial control mesh of each model is displayed in wireframe

(µ(u, v, w)) and damping (γ(u, v, w)) density functions,
which are represented as parametric arrays of sample
values.

4 Applications

We have applied our new FEM-based solid modeling ap-
proach to several domains, including haptics-based volu-
metric sculpting and animation of soft, solid bodies.

4.1 Shape design

Our dynamic, haptics-based sculpting system features nu-
merous sculpting tools that permit users to design, simu-
late and probe virtual objects. One can also perform simu-
lation and analysis of models to examine the behavior
of virtual objects and to compute various material distri-
butions. The hardware platform for both applications in-
cludes a generic PC and a Sensable Technologies PHAN-
ToM 1.0 3D haptic input/output device. Table 1 provides
some timing information and details about the sculptures
featured in this paper.

The design of dynamic subdivision solids typically
begins with a series of topological and geometric mod-
ifications of a base shape, such as a cube. Our cur-
rent implementation permits the user to delete mate-
rial, create protrusions by extruding material from the
surface, merge disconnected portions of a model, sub-
divide the model locally to generate detailed features,

A novel framework for physically based sculpting and animation of free-form solids 293

Fig. 8a,b. Haptics-based sculpting tools. a The user pulls on the
man’s nose. b The user probes the stiffness distribution of a sea
monster model. Low stiffness = green, high stiffness = red. The
color saturation of the background indicates the strength of the hap-
tic forces felt by the user. These two objects were created with a
previous system [15] but are shown here being manipulated with
our new approach

and make local changes to the subdivision rules to cre-
ate sharp features. These operations are illustrated in
Fig. 7.

Our sculpting system also features several physically
based tools that rely on forces to deform subdivision
solids. The user may pull and push on the model, inflate
and deflate objects, perform curve-based manipulation,

Fig. 9a–c. Force-based sculpt-
ing tools: a Curve-based ma-
nipulation, b stiffness painting.
The red color in the legs of the
chair indicate regions of high
stiffness. c Inflation/deflation

Fig. 10a–e. A model in which the mass distribution has been modified globally, but on which the same force has been applied. a Original
model with indicated force to be applied. b–e Model with varying mass distributions after the external force has been applied. Here, u =
(u, v,w)

and modify the stiffness and mass distributions at run-
time. Figures 8 and 9 demonstrate these capabilities.

4.2 Animation

Our finite element formulation of dynamic subdivision
solids can also be used to generate animations of solid
bodies. Our finite element approach provides greater con-
trol and flexibility than a mass-spring model since the ani-
mator can specify forces and material quantities anywhere
within the volumetric space occupied by an object. Fig-
ures 10–12 show several physically based animations. It
is also possible to impose boundary constraints to change
the outcome of the simulation, as can be seen in Figs. 13
and 14. Such constraints can be imposed via the penalty
method (i.e., through strong spring forces) or through the
dimension reduction technique. We used the latter in the
referenced examples.

5 Conclusion

We have developed a new finite element modeling tech-
nique for physically based deformation and simulation of
subdivision solid objects. Our approach employs a novel
deformation model that is able to compute stretching

294 K.T. McDonnell, H. Qin

Fig. 11. A head sculpture is animated with our new finite element model

Fig. 12. A new chair is designed via force-based tools. Boundary constraints were imposed on the bottom portions of the legs to fix their
positions

Fig. 13. A nozzle CAD model experiences external forces in the indicated directions. A cut-away view of the model shows the interior
geometry. The three volume renderings show, respectively, the internal strains, the displacements of nodes from their initial positions, and
the volumetric distortions of the finite elements

A novel framework for physically based sculpting and animation of free-form solids 295

Fig. 14. A bridge CAD model
experiences external forces in
the indicated directions. Gaps in
the vertical parts of the bridge
result in a buckling effect. Note
that boundary constraints were
imposed on the lower parts of
the pylons to prevent them from
moving

and shearing energies for elements moving freely through
space. As a result, our approach marries some of the bene-
fits of traditional finite element models – such as decom-
position of solid bodies into continuous elements – with
the ability to simulate large deformations and displace-
ments of solid objects. We have shown that our new model
is well-suited for practical use in interactive sculpting and
animation, two applications that typically require free and
unhindered movement of deforming shapes. Our frame-

work can be implemented in a straightforward manner and
supports simulation of non-trivial models at interactive
rates on a modern PC platform.

Acknowledgement This research was supported in part by the NSF
CAREER award CCR-9896123, the NSF grant DMI-9896170, the
NSF ITR grant IIS-0082035, the NSF grant IIS-0097646, a Honda
Initiation Award, an Alfred P. Sloan Fellowship, the GAANN grant
P200A9703199, and a Dowling College equipment grant.

References
1. Bajaj, C., Shaefer, S., Warren, J., Xu, G.:

A subdivision scheme for hexahedral
meshes. Visual Comput. 18(5–6), 343–356
(2002)

2. Bathe, K.-J.: Finite Element Procedures.
Prentice Hall, Englewood Cliffs, NJ (1996)

3. Bertram, M.: Biorthogonal wavelets for
subdivision volumes. In: Proceedings of the
Seventh ACM Symposium on Solid
Modeling and Applications, pp. 72–82
(2002)

4. Bertram, M.: Volume refinement fairing
isosurfaces. In: Proceedings of IEEE
Visualization 2004, pp. 449–456 (2004)

5. Capell, S., Green, S., Curless, B.,
Duchamp, T., Popovic, Z.:
A multiresolution framework for dynamic
deformations. In: Proceedings of the 2002
ACM SIGGRAPH/Eurographics
Symposium on Computer Animation,
pp. 41–47 (2002)

6. Chang, Y., Qin, H.: A framework for
multi-dimensional adaptive subdivision
objects. In: Proceedings of the Ninth
ACM Symposium on Solid Modeling
and Applications, pp. 123–134
(2004)

7. Debunne, G., Desbrun, M., Cani, M.,
Barr, A. H.: Dynamic real-time
deformations using space and
time adaptive sampling. In: Computer
Graphics (Proceedings of ACM
SIGGRAPH 2001), pp. 31–36 (2001)

8. Faloutsos, P., van de Panne, M.,
Terzopoulos, D.: Dynamic free-form
deformations for animation synthesis. IEEE
T. Vis. Comput. Graph. 3(3), 201–214
(1997)

9. Hauth, M., Gross, J., Strasser, W.:
Interactive physically based solid dynamics.
In: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 17–27 (2003)

10. Irving, G., Teran, J., Fedkiw, R.:
Tetrahedral and hexahedral invertible finite
elements. Graph. Models 68(2), 66–89
(2006)

11. James, D. L., Pai, D. K.: ARTDEFO:
Accurate Real Time Deformable Objects.
In: Computer Graphics (Proceedings of
ACM SIGGRAPH ’99), pp. 65–72, 1999

12. Linsen, L., Pascucci, V., Duchaineau, M. A.,
Hamann, B., Joy, K. I.: Hierarchical repres-
entation of time-varying volume data with
4√2 subdivision and quadrilinear B-spline

wavelets. In: Proceedings of the Tenth
Pacific Conference on Computer Graphics
and Applications, pp. 346–355
(2002)

13. MacCracken, R., Joy, K. I.: Free-form
deformations with lattices of arbitrary
topology. In: Computer Graphics
(Proceedings of ACM SIGGRAPH ’96),
pp. 181–188 (1996)

14. McDonnell, K. T., Chang, Y., Qin, H.:
Interpolatory, solid subdivision of

unstructured hexahedral meshes. Visual
Comput. 20(6), 418–436 (2004)

15. McDonnell, K. T., Qin, H.,
Wlodarczyk, R. A.: Virtual clay:
A real-time sculpting system with haptic
toolkits. In: Proceedings of 2001 ACM
Symposium on Interactive 3D Graphics,
pp. 179–190 (2001)

16. Molino, N., Bridson, R., Teran, J.,
Fedkiw, R.: A crystalline, red green strategy
for meshing highly deformable objects with
tetrahedra. In: Proceedings of the 12th
International Meshing Roundtable,
pp. 103–114 (2003)

17. Müller, M., Dorsey, J., McMillan, L.,
Jagnow, R., Cutler, B.: Stable real-time
deformations. In: Proceedings of ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA) 2002,
pp. 49–54 (2002)

18. Ng-Thow-Hing, V., Fiume, E.:
Application-specific muscle representations.
In: Proceedings of Graphics Interface 2002,
pp. 107–115 (2002)

19. Pascucci, V., Bajaj, C.: Time critical isosur-
face refinement and smoothing. In: Procee-
dings of the 2000 IEEE Symposium on
Volume Visualization, pp. 33–42 (2000)

20. Press, W. H., Teukolsky, S. A.,
Vetterling, W. T., Flannery, B. P.: Numerical
Recipes in C++: The Art of Scientific
Computing, 2nd edn. Cambridge University
Press, Cambridge (2002)

296 K.T. McDonnell, H. Qin

21. Qin, H., Mandal, C., Vemuri, B. C.:
Dynamic Catmull-Clark subdivision
surfaces. IEEE T. Vis. Comput. Graph.
4(3), 215–229 (1998)

22. Qin, H., Terzopoulos, D.: D-NURBS:
A physics-based geometric design
framework. IEEE T. Vis. Comput. Graph.
2(1), 85–96 (1996)

23. Teran, J., Molino, N., Fedkiw, R.,
Bridson, R.: Adaptive physics based

tetrahedral mesh generation using level
sets. Eng. Comput. 21(1), 2–18 (2005)

24. Teran, J., Sifakis, E., Blemker, S.,
Ng-Thow-Hing, V., Lau, C., Fedkiw, R.:
Creating and simulating skeletal muscle
from the Visible Human data set. IEEE T.
Vis. Comput. Graph. 11(3), 317–328 (2005)

25. Terzopoulos, D., Platt, J., Barr, A.,
Fleischer, K.: Elastically deformable
models. Computer Graphics (Proceedings

of ACM SIGGRAPH ’87) 21(4), 205–214
(1987)

26. Weiler, K. J.: Topological Structures for
Geometric Modeling. PhD thesis,
Rensselaer Polytechnic Institute, 1986

PROFESSOR KEVIN T. MCDONNELL is an
assistant professor of Computer Science at
Dowling College in Oakdale, NY. Previously,
he was a research scientist in the Department of
Computer Science at Stony Brook University,
where he was also a fellow of the Center for
Visual Computing (CVC). He received his Ph.D.
in Computer Science at Stony Brook University
in Computer Science in 2003, where he also
earned his M.S. degree. He graduated summa
cum laude with a B.S. in both Computer Science
and Applied Mathematics from Stony Brook in
1998. In 1998 he was awarded both a University
Graduate Research Fellowship and a GAANN
fellowship (Graduate Assistance in Areas of
National Need). His research interests include
physically based modeling, geometric model-
ing, scientific visualization, and interactive 3D
graphics. He is a member of Phi Beta Kappa,
ACM, and the IEEE Computer Society.

DR. HONG QIN is a full professor (with tenure)
of Computer Science in the Department of
Computer Science at Stony Brook University.
He received his B.S. degree and his M.S. degree
in Computer Science from Peking University
in Beijing, China. He received his Ph.D. (1995)
degree in Computer Science from the University
of Toronto. During his years at the University
of Toronto (UofT), he received a UofT Open
Doctoral Fellowship. In 1997, Professor Qin
was awarded an NSF CAREER Award from
the National Science Foundation (NSF). In
December 2000, Professor Qin received
a Honda Initiation Grant Award. In February
2001, Professor Qin was selected as an Alfred P.
Sloan Research Fellow by the Sloan Foundation.
Currently, he is an associate editor of IEEE
Transactions on Visualization and Computer
Graphics (IEEE TVCG) and he is also on the
editorial board of The Visual Computer (Inter-
national Journal of Computer Graphics). His
research interests include geometric and solid
modeling, graphics, physics-based modeling and
simulation, computer aided geometric design,
human-computer interaction, visualization, and
scientific computing. Detailed information about
Dr. Hong Qin can be found on his website:
http://www.cs.sunysb.edu/∼qin.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

