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In this paper, we propose a novel scalar-field-
guided adaptive shape deformation (SFD)
technique founded on PDE-based flow con-
straints and scalar fields of implicit func-
tions. Scalar fields are used as embedding
spaces. Upon deformation of the scalar field,
a corresponding displacement/velocity field
will be generated accordingly, which results
in a shape deformation of the embedded ob-
ject. In our system, the scalar field creation,
sketching, and manipulation are both natural
and intuitive. The embedded model is further
enhanced with self-optimization capability.
During the deformation we can also enforce
various constraints on embedded models.
In addition, this technique can be used to
ease the animation design. Our experiments
demonstrate that the new SFD technique is
powerful, efficient, versatile, and intuitive
for shape modeling and animation.
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Efficient and intuitive shape deformation techniques
are vital to the success of geometric modeling, com-
puter animation, physical simulation, and other vi-
sual computing areas. Free-form deformation (FFD)
is one popular technique that meets this need. In
essence, an object deformation based on FFD is
conducted indirectly by deforming the enclosing
space in which the object is defined and embedded.
Every vertex of the object has a unique parame-
terization that initially defines its position in the
space. When the space is altered, it gives rise to the
shape deformation of its embedded object based on
the initial parameterization. One appealing advan-
tage of FFD-based techniques over other traditional
modeling/editing methods is that they can be ap-
plied to any geometric object since the surrounding
space is independent of objects’ mathematical repre-
sentations. Therefore, designers do not need to worry
about the underlying (perhaps complicated) geo-
metric formulation and topological structure of an
embedded object when making the desired deforma-
tions. Various FFD techniques have been proposed
during the past two decades [2, 7–9, 19, 20, 28].
Despite many attractive properties, such as the nat-
ural control of space definition, there are several
difficulties associated with the current FFD tech-
niques. First, while very useful for coarse-scale de-
formations of an object, the technique can be time
consuming to use for finer-scale deformations [29],
where a very dense and customized control lattice
shape is usually required [20]. When dealing with
a large number of complex control lattices (which
define the space), this tends to be cumbersome and
counterproductive. Designers have to construct the
complex control lattice to define the space embed-
ding the object and alter the large number of con-
trol lattices to deform the space to make the de-
sired deformations of the object. Although the axis-
based FFD approaches and the directly manipulated
FFD approaches [2, 7, 19] are relatively intuitive and
efficient, they can offer only limited deformations.
Second, the control lattice is less flexible and can-
not easily have very complex topology. It is difficult
to perform a large number of distinct deformation
types. Third, the traditional FFD operation is gener-
ally a single operation applied to static models. Re-
finement and optimization can only occur before or
after the deformations. For instance, if a low curva-
ture region is not subdivided prior to the deforma-
tion, the model is no longer capable of representing
the deformation accurately. To alleviate this prob-
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lem, intermediate steps have to be introduced during
the deformation steps.
In this paper, we propose a novel adaptive shape
deformation technique, or SFD, founded on PDE-
based flow constraints and scalar fields of implicit
functions, that employs a scalar field as the embed-
ding space. Users can interactively sketch a scalar
field of an implicit function via a mouse or a 3D
haptic interface to embed either an entire model or
a part of the model. The embedding space based
on scalar field is of diverse types, which implic-
itly defines a complicated geometry and an arbi-
trary topology. Upon deformation of the embedding
space (i.e., the modification of scalar field), the ver-
tices of the embedded object throughout the entire
space will move in accordance with the enforced
flow constraints, which result in FFDs of the em-
bedded object. The deformation velocity of each
vertex on the model is very general and can easily
adopt any user-desired constraints. Our SFD tech-
nique greatly generalizes the traditional FFD ap-
proaches and affords a larger number of shape de-
formations. The SFD space construction, sketching,
and manipulation are more natural and easy to use
than previous FFD techniques based on parametric
geometry.
Furthermore, to represent deformations more ac-
curately, the embedded models are equipped with
self-optimization capability. Adaptive subdivision
and mesh optimization are tightly coupled with SFD,
supporting versatile multiresolution deformations.
Since our SFD can be treated as a time-evolving
process (rather than a single operation), it allows
self-adaptive refinement and mesh improvement to
interleave with shape deformation throughout the
SFD process. Our algorithm adaptively subdivides
the model into regions that require high resolution.
As the SFD deforms an object, the curvature of
the affected surface is computed and checked to
see if subdivision is necessary. The mesh improve-
ment operations, such as the edge-split operation,
edge-collapse operation, edge-swap operation, and
Laplacian mesh smoothing, are then invoked to op-
timize neighborhood shapes, which equalize edge
lengths, allowing vertices to distribute themselves
more evenly during a SFD run. We also incorporate
various constraints on embedded models that enable
our technique to facilitate feature-based design. Our
results demonstrate that the proposed SFD technique
is useful and powerful for shape editing and anima-
tion design.

2 Related work

2.1 Free-form deformation

A deformation technique developed by Barr [2] uses
a set of hierarchical transformations for deforming
an object. This technique uses the surface normal
vector of the undeformed surface and a transforma-
tion matrix to calculate the normal vector of an arbi-
trarily deformed smooth surface. Unfortunately, this
technique restricts the possible definitions of the de-
formable space to that of a single coordinate sys-
tem and the ways in which the space can be altered.
Sederberg and Parry [28] proposed to deform solid
geometry in a free-form manner. The vertices on
the object embedded in the original lattice structure
are mapped to the deformed lattice using a trivari-
ate Bézier spline. However, the FFD can be accom-
plished only with a parallelpiped lattice structure.
Coquillart [8] developed the extended free-form de-
formation, or EFFD, as an extension of Sederberg
and Parry’s technique, which uses nonparallelepiped
3D lattices. The goal of this technique is to change
the shape of an existing surface either by bending it
along an arbitrarily shaped curve or by adding ran-
domly shaped bumps to it. Chang and Rockwood’s
approach [7] deforms an object by repeatedly apply-
ing affine transformations in space. But this tech-
nique also limits the ways in which the space sur-
rounding the curve can be altered. MacCracken and
Joy [20] presented a FFD technique that uses ar-
bitrary lattices, namely, Catmull-Clark subdivision
volumes. An underlying model can be deformed by
establishing positions of model points within the
converging sequence of lattices and then tracking the
new positions of these points within the deformed se-
quence of lattices. This technique allows a variety of
deformable regions to be defined and thus a broader
range of shape deformations to be generated. How-
ever, the lattice space definition is laborious and dif-
ficult. This technique requires a great deal of CPU
time and memory in general.
Recently, Singh and Fiume [29] presented wires for
interactive, geometric deformation. The manipula-
tion of wires deforms the surface of an associated
object near the curves. Crespin [10] presented a FFD
technique with the use of deformation primitives.
Each of them results in a deformation on an associ-
ated part of an object. The blending functions asso-
ciated with primitives are then used to combine the
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deformation introduced by each primitive. However,
the combinations for global deformations and local
deformations are different. Jin et al. [16] proposed
a constrained local deformation technique based on
generalized metaballs. Schmitt et al. [27] presented
a shape-driven technique for functionally defined
heterogeneous volumetric objects. Fundamentally,
the aforementioned four approaches all employed
implicit functions associated with deformation prim-
itives (such as curve, point, metaballs, and so on) to
configure a specific, static pointwise function map-
ping to achieve FFD. Unlike those approaches, our
paper introduces a new SFD technique by establish-
ing deformation methods defined on entire scalar
fields instead of building a mapping function from
deformation primitives, even though we also employ
similar primitives to construct scalar fields. In this
way, a larger number of deformation types can be
achieved. As the scalar field is modified, a defor-
mation of the space is created and a corresponding
velocity field will be generated according to PDE-
based flow constraints, which evolves the shape of
the embedded object or part of the object to deform
over time. Therefore, during the deformation pro-
cess, the self-optimization process can be substan-
tially evolved to maintain the model quality.

2.2 Level set methods and implicit modeling

Our work is also partially related to level set ap-
proaches. The level set method was first presented
in [23]. Level set models are deformable implicit sur-
faces where the deformation of the surface is con-
trolled by a speed function in the level set partial
differential equation (PDE). Level set methods have
been successfully applied in image processing, com-
puter vision, and visualization. In computer graph-
ics, Desbrun et al. [11] and Breen et al. [6] used this
method for shape morphing, and Whitaker [32] em-
ployed this technique for 3D reconstruction. More
recently, Museth et al. [22] and Bærentzen et al. [1]
presented a level set framework for interactively edit-
ing implicit surfaces, where they defined a collection
of speed functions that produce a set of surface edit-
ing operators. The speed functions describe the ve-
locity at each vertex on the evolving surface in the di-
rection of the surface normal only. For level set meth-
ods, the essential problem is to construct implicit
functions or implicit models based on application-
oriented speed functions. Note that models to be de-

formed must first be converted into volumetric repre-
sentation and represented as a single isosurface.
To date, most algorithms only focus on a single level
set, such as implicit surface applications [4] or level
set approaches. The isosurface property of implicit
functions has not been fully utilized. Our SFD ap-
proach is the first method to provide deformations of
an existing model by constraining the vertices of the
model to stay on their initial, yet different, level sets
of an underlying implicit function.
For interactive design of scalar fields, Bloomen-
thal et al. [5] used skeleton methods to construct
implicit surfaces. Each skeletal element is associ-
ated with a locally defined implicit function. In-
dividual functions are blended to form an implicit
surface using a polynomial weighting function that
can be controlled by users. The blobby model [3],
also known as soft object [34], is another popular
technique for the design of implicit surfaces. Im-
plicit functions are also used to represent volumes.
Recently, Raviv and Elber [25] presented a 3D in-
teractive sculpting paradigm that employed a set of
scalar uniform trivariate B-spline functions as object
representations. Users can indirectly sculpt objects
to a desirable shape by directly modifying relevant
scalar control coefficients of the underlying func-
tions with virtual sculpting tools. Schmitt et al. [26]
presented an approach to constructive modeling of
FRep solids [24] defined by real-valued functions us-
ing 4D uniform rational cubic B-spline volumes as
primitives. Hua and Qin [13, 14] presented a haptics-
based modeling system founded on dynamic spline-
based implicit functions and physics-based modeling
to directly manipulate any level set of their im-
plicit objects. Turk and O’Brien [30] introduced new
techniques for modeling with interpolating implicit
surfaces.

3 SFD space definition
using scalar field

From a mathematical point of view, there are ba-
sically two approaches to formulating geometric
surfaces: parametric forms and implicit forms. Im-
plicit forms treat coordinates as functional argu-
ments rather than as functional values. In general,
surfaces expressed by an implicit form can be formu-
lated as:

{X ∈ �3| f(X) = c}. (1)
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Fig. 1. Panel a shows an implicit function graph as the illustrative height function, and panel b shows its corresponding
scalar field as the intensity image. A 2D object (a free-form planar curve or even an arbitrarily defined contour) can be
embedded in the 2D scalar field as shown in b and deformed by altering the embedding space as shown in c
Fig. 2. A polygonal object (a) is embedded in a scalar field (b) and deformed by altering the scalar field (c). Note that only
b shows a cross-sectional view of the scalar field (see the cutting plane) and a single level set (see the light-blue transparent
sphere). Panel c shows the deformed object, where the color indicates the scalar value distribution over the object. Large
scalar values in the extremities are indicated by red, while regions with small scalar values are colored yellow

Indeed, when c is 0, we say that f implicitly defines
a locus, called an implicit surface. The function f is
called the implicit function, or the field function, and
defines the scalar field. The implicit surface is some-
times called the zero level set of f . The related level
set (also called an isosurface) corresponds to an iso-
value c. The function f may be of any mathematical
expression containing polynomials or nonpolynomi-
als. It may also be an arbitrary procedural process
(i.e., a black box function) that produces a scalar
value for a given point in space.
In our work, the scalar field can be used as SFD
embedding space, which wraps a to-be-deformed ob-
ject. Note that, in strong contrast to traditional FFD
space, the SFD space is an implicit-function-based
scalar field instead of a lattice-based geometric ob-
ject. Figure 1a shows a 2D implicit function graph,
and Fig. 1b is the scalar field corresponding to the
function. There is a 2D object (in green) embedded
in the scalar field. Note that the green-colored object
(in Fig. 1) can be arbitrarily defined, and it need not
be a certain level set of the SFD encompassing space.
When the scalar field is deformed (Fig. 1c), the 2D
object is deformed accordingly. Figure 2 shows a 3D

example. The teacup model is embedded inside a 3D
scalar field. After altering the scalar field, the teacup
is significantly deformed. In this paper, we give users
three ways to construct and manipulate scalar fields.
We will discuss them in Sect. 6.

4 Scalar-field-guided shape
deformation

Let us briefly overview our idea of applying scalar
fields of implicit function to perform deformations
on any existing polygonal models. First, we embed
an entire model or a part of the model into a scalar
field and calculate the scalar values at all vertices
of that embedded part. Then, during the deformation
process the vertices are always constrained on the
level sets where they originally reside by enforcing
PDE-based flow constraints. Once users deform the
embedding space (i.e., the scalar field), the vertices
will move accordingly, which results in FFD of the
embedded object.
Since the SFD enforces the policy that the relocated
position of a vertex X(t) of the deformed object must
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a b

Fig. 3. a Ambiguity in determining the vertex motion. b Straight line of flow constraint and the normal velocity component
along the gradient vector

remain on the same level set when scalar field space
is deformed, the trajectory of the vertex can be repre-
sented as follows:

{X(t)| f(X(t), t) = c}. (2)

The derivative of f(X(t), t) yields

d f(X(t), t)

dt
= ∂ f(X(t), t)

∂X
dX(t)

dt
+ ∂ f(X(t), t)

∂t
= 0,

(3)

where ∂ f(X(t),t)
∂X is the gradient at X. To simplify the

notation, we represent the gradient using ∇ f and
abbreviate f(X(t), t) as f . Therefore, Eq. 3 can be
rewritten as follows:

∇ f · dX(t)

dt
+ ∂ f

∂t
= 0. (4)

Note that d X(t)
dt and ∂ f

∂X are both vectors. Therefore,
there is an ambiguity, and the solution for the ver-
tex velocity from Eq. 4 is not unique. As shown
in Fig. 3a, the evolution of p at the next time step
could be p′ or p′′. The velocity d X(t)

dt cannot be solved
uniquely with the flow constraint alone. As shown in
Fig. 3b, the solutions for the velocity are restricted to
the straight line of the flow constraint equation, ∇ f ·
d X(t)

dt + ∂ f
∂t = 0. Dividing v into (vn, vt, vw), where

n = ∇ f
‖∇ f‖ represents the unit principal normal vector

of the isosurface of the scalar field, t represents the
unit tangent vector, and w represents the unit binor-
mal vector, we know that only the normal velocity,

vn, is perpendicular to the constraint line. So the dot
product in Eq. 4 retains only the item containing vn.
Therefore, we can obtain the velocity of the normal
flow as follows:

vn = − 1

‖∇ f‖
∂ f

∂t
n. (5)

This normal flow scheme is essentially the basis of
level set methods and has been used widely in sam-
pling implicit surfaces [33], computer vision [21],
and level-set-based applications [6, 11] for tracking
the target objects. The normal flow scheme con-
siders only the evolution velocities along the nor-
mals of isosurfaces. It is good for minimizing the
similarity between the active model and the target
model. However, the intermediate deformations are
not natural and are not dealt with or addressed in
the aforementioned work. In essence, the aforemen-
tioned work designed the normal velocities vn to
evolve the function f .
By contrast, our objective is to provide a general SFD
technique. We compute vertex velocities v based on
the change of f . The motion of the embedded ob-
ject inside the scalar field should be natural, versatile,
and without strong limitation. Therefore, we need
to consider the velocities along three linearly inde-
pendent directions simultaneously. In this paper, we
consider the general velocity d X(t)

dt along the three co-
ordinate axes, x, y, z, of the 3D space. The general
velocity is also represented using (vx, vy, vz) or v. To
obtain the unique solution from the flow constraint
Eq. 4 and also maintain the smoothness motion of
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the deformed model during the SFD process, we add
a further smoothness constraint over the model. The
vertex velocity variation inside a local region is min-
imized. This gives rise to minimizing the following
objective function:

E =
∫ (

∇ f ·v+ ∂ f

∂t

)2

+λ(‖∇v‖)2dx, (6)

where λ is a Lagrange multiplier.
By discretizing the above objective function, Eq. 6
can be minimized iteratively. Consider a vertex k and
its adjacent neighboring vertex set Qk in an opti-
mized mesh,

Qk = { j|−→jk ∈ M},
where M denotes a set of all the edges of the embed-
ded model. Note that the mesh of the model will un-
dergo an optimization process as described in Sect. 5.
The error of the flow constraint approximation is as
follows:

c(k) =
(

∂ f

∂x
vx(k)+ ∂ f

∂y
vy(k)+ ∂ f

∂z
vz(k)+ ∂ f

∂t

)2

.

The smoothness of the motion of the local region
can be computed according to the velocity difference
between the vertex, k, and its adjacent neighboring
ones, j ∈ Qk .

s(k) = 1

‖Qk‖
∑
j∈Qk

[(vx(k)−vx( j))2 + (vy(k)

−vy( j))2 + (vz(k)−vz( j))2],
where ‖Qk‖ denotes the number of vertices in Qk.
Therefore,

E =
∑

k

(c(k)+λs(k)). (7)

The solution, satisfying ∂E
∂vx(k)

= 0, ∂E
∂vx(k)

= 0, and
∂E

∂vx (k) = 0, can minimize the above objective func-
tion E. The derivatives of E with respect to vx(k),
vy(k), and vz(k) are as follows:

∂E

∂vx(k)
= 2

(
∂ f

∂x
vx(k)+ ∂ f

∂y
vy(k)+ ∂ f

∂z
vz(k)+ ∂ f

∂t

)

× ∂ f

∂x
+2λ(vx(k)−vx(k)),

∂E

∂vy(k)
= 2

(
∂ f

∂x
vx(k)+ ∂ f

∂y
vy(k)+ ∂ f

∂z
vz(k)+ ∂ f

∂t

)

× ∂ f

∂y
+2λ(vy(k)−vy(k)),

∂E

∂vz(k)
= 2

(
∂ f

∂x
vx(k)+ ∂ f

∂y
vy(k)+ ∂ f

∂z
vz(k)+ ∂ f

∂t

)

× ∂ f

∂z
+2λ(vz(k)−vz(k)),

where (vx(k), vy(k), vz(k)) is the average velocity,
v(k), of all the adjacent neighboring vertices in Qk ,

v(k) = 1

‖Qk‖
∑
j∈Qk

v( j). (8)

Therefore, we can obtain the following equations,
and (vx, vy, vz) can be solved afterwards. To abbrevi-
ate the equations, we omit (k) unambiguously.

(
λ+

(
∂ f

∂x

)2
)

vx + ∂ f

∂x

∂ f

∂y
vy + ∂ f

∂x

∂ f

∂z
vz

= λvx − ∂ f

∂x

∂ f

∂t
,(

λ+
(

∂ f

∂y

)2
)

vy + ∂ f

∂x

∂ f

∂y
vx + ∂ f

∂y

∂ f

∂z
vz

= λvy − ∂ f

∂y

∂ f

∂t
,(

λ+
(

∂ f

∂z

)2
)

vz + ∂ f

∂x

∂ f

∂z
vx + ∂ f

∂y

∂ f

∂z
vy

= λvz − ∂ f

∂z

∂ f

∂t
.

By solving the above equation, we can obtain the fol-
lowing iterative solution:

[vx, vy, vz]� = [vx, vy, vz]� −µ

[
∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z

]�
,

(9)

where µ =
∂ f
∂x vx+ ∂ f

∂y vy+ ∂ f
∂z vz+ ∂ f

∂t

λ+
(

∂ f
∂x

)2+
(

∂ f
∂y

)2+
(

∂ f
∂z

)2 .

Based on the above formulations, we have designed
a dynamic continuous SFD algorithm as follows.
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First, generate a desired scalar field that embeds
a model to be deformed and initialize the velocities
(vx, vy, vz) at all the vertices as 0. After the user al-
ters the scalar field, the embedded model begins to
deform. During the deformation process, perform the
following loop until all the vertices reach the level set
that they originally resided at.
At each time step ∆t, do the following:

1. Update the scalar field f(X, t +∆t) at all the ver-
tices;

2. Deduce ∂ f
∂t = ( f(X, t +∆t)− f(X, t))/∆t;

3. Calculate ∂ f
∂X with finite differences;

4. Compute v according to current vertex velocities;
5. Deduce v according to Eq. 9;
6. Update vertices’ positions by

Xt+∆t = Xt +γ ·v ·∆t;
7. Perform SFD model optimization (Sect. 5);
8. If f(Xt+∆t , t +∆t) ≈ f(X, t), terminate; other-

wise, advance to next time step and repeat the
above steps.

The SFD essentially is an evolution process that
allows self-adaptive refinement and mesh improve-
ment interleaved with the model deformation at each
iteration. In this algorithm, the γ is a step size of
the vertex evolution, which can be specified by users.
This parameter controls how many iterations it takes
to meet the stop conditions. When γ is set to 1, the
loop almost meets the stop conditions with only one
time step. So the deformation is very much like tra-
ditional FFD of the static model in the sense that it
meets the final deformed shape in a single displace-
ment step. The refinement and optimization can only
occur before or after the deformation. If the model
needs to be extensively refined or optimized to repre-
sent the shape deformation accurately during a single
deformation operation, the value of γ should be set
much smaller. Thus the model is more likely to be re-
fined and optimized during the deformation. Usually
we set γ to 0.1. Displaying the above sequence con-
tinuously, we can obtain an animation showing the
dynamic deformation process.

5 SFD model optimization

5.1 Subdivision-based self-adaptive
refinement

Existing adaptive subdivision methods propose only
to add triangles in high curvature areas and pre-

Fig. 4. Local adaptive subdivision in a high curvature
region

vent subdividing of low curvature regions dur-
ing deformations. While this is also the main in-
tent of our method, those adaptive subdivision
schemes apply the subdivision to a static model.
This means that if a low curvature region not pre-
viously subdivided begins to deform, the model is
no longer capable of representing the deformation
accurately.
We interleave shape evolution and self-adaptive re-
finement within a single deformation. Therefore, it
allows the embedded model to represent the defor-
mation more accurately during a deformation. Our
method can generate additional triangles on the fly
and only in regions that require more subdivision.
Low curvature regions not previously subdivided
still have the opportunity to be refined during the de-
formation. As the SFD deforms an object, the curva-
ture of the affected surface is computed and checked
to see if subdivision is necessary. Triangles are added
only when this criterion is met. Thus our method
adds the triangles only in regions that require ad-
ditional subdivision, and in addition all deformed
regions are checked to ensure that subdivision oc-
curs on the appropriate regions. The local subdivi-
sion scheme we used in this paper is shown as Fig. 4.
We also incorporate a complementary decimation
process that merges faces in nearly planar areas and
thereby reduces the polygon–mesh complexity (i.e.,
the number of vertices, edges, and faces). We trigger
decimation by testing the deviation between surface
normals at edge endpoints.
With the help of the subdivision and the decima-
tion, this self-adaptive refinement strategy easily
supports multiresolution deformation of existing
models.
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5.2 Mesh improvement

Since our FFD can be a continuous evolution pro-
cess, we are able to control the dynamic model
throughout the deformation process. The mesh qual-
ity can be improved and maintained at each time
step. In this paper, we consider three issues: a good
vertex distribution, a proper vertex density, and
a good aspect ratio of the triangles. Much research
has been conducted in this field, e.g., [12, 31], pro-
ducing several valuable algorithms.
We employ three mesh improvement operations:
edge-split, edge-collapse, and edge-swap. Condi-
tions under which the operations are valid are dis-
cussed in [12]. First, edge-split and edge-collapse
are used to keep an appropriate node density. An
edge-split is triggered if the edge is too long. Sim-
ilarly, if any two neighboring vertices are too close
to each other, the edge connecting these two vertices
will be collapsed. Essentially, these two operations
split long edges and delete crowded vertices to en-
sure a proper vertex density. Then edge-swap is used
to ensure a good aspect ratio of the triangles. We
swap an edge if doing so will increase the mini-
mum inner angle within its adjacent faces. Repeated
applications of this swap operation always increase
the minimum inner angle and hence result in a con-
strained Delaunay triangulation at the end of the
procedure. We also try to keep vertices uniformly
distributed by performing Laplacian smoothing over
the triangulated surface. In practice, these mesh op-
timization steps are interleaved with the shape de-
formation iterations so that a good computational
mesh is always present. This also helps the iter-
ative solve for minimizing the objective function
Eq. 7.
Ordering the operations this way seems to produce
the best mesh at the end of the mesh improvement
steps. The edge-swap operation can clean up after
the simple edge-split and edge-collapse operations,
and the mesh smoothing is then invoked to opti-
mize neighborhood shapes. The method of maintain-
ing a good computational mesh over a triangulated
surface is iterative and incremental. This makes it
appropriate for use in our scalar-field-guided shape
deformations, in which shape can change gradually
over time. As shown in the flow of the algorithm,
interleaving shape evolution and mesh optimization
tends to equalize edge lengths, allowing vertices
to distribute themselves more evenly during a SFD
run.

6 SFD Space construction
and deformation

To enable users to employ our SFD technique fex-
ibly to perform shape deformations of existing
polygonal objects, our SFD technique is equipped
with three stable, easy-to-use approaches for scalar
field construction and deformation. We will detail
them as follows. Note that topological changes of
isosurfaces of scalar fields do not always lead to
self-intersections of the embedded models. With
our scalar field construction and deformation ap-
proaches, scalar fields do not change dramatically,
and there are fewer opportunities to cause self-
intersections of embedded models (we refer to self-
intersections as the “unstable scenarios”). When
self-intersections do happen, a robust method for
dealing with topological changes is desired. In addi-
tion, when manipulating the scalar field with these
approaches, the resulting scalar field is continuous
and bears the same codomain of the original one.
Therefore, we can always compute a unique solution
for velocities of all the vertices from Eq. 9.

6.1 Sketch-based distance fields

Sketch-based methods for shape design can facilitate
the rapid creation of approximate shapes. Zeleznik et
al. [35] showed how a gesture-based modeler could
be used to simplify conventional CSG-like shape cre-
ation. Teddy [15] extended this to more free-form
models, getting much of its power from its “infla-
tion” operation and from an elegant collection of ges-
tures for attaching additional parts to a shape, cutting
the shape, and deforming it. Most recently, Karpenko
et al. [17] presented free-form sketching with varia-
tional implicit surfaces. We employ this conceptual
design for scalar field construction and modifica-
tion. More precisely, in this approach the manipu-
lated scalar field is actually a signed/unsigned dis-
tance field. The sketched stroke, or contour, is the
silhouette of the zero level set of the resulting dis-
tance field. This sketching technique can greatly ease
the editing of scalar fields for designers/modelers.
Strokes are gathered from the mouse as a collection
of points. In our system, the input strokes are 2D
curves and can be open or closed. If open curves are
used, the resulting distance field is unsigned, i.e., nei-
ther interior nor exterior is defined. The plane con-
taining the 2D curve is called the drawing plane. Un-
like the technique used in [15, 17], the constructed
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5a 5b

6a 6b

6c 6d

Fig. 5. a A contour is extruded along the perpendicular direction of the drawing plane. b The distance value of a point in the
space is equal to the distance value of its perpendicular foot on the drawing plane

Fig. 6. The embedding space can be generated by sketching contours and modified by adding another stroke. c and d are the
resulting distance fields on the drawing plane corresponding to a and b, respectively

zero isosurface does not need to be rounded. There-
fore, the inflation in our system is simply for ex-
truding the contour along the perpendicular direction
of the drawing plane, as shown in Fig. 5a, until it
meets the bounding space or a user-specified bound-
ing region.
In practice, we store only the 2D distance field on the
drawing plane since other slices of the 3D distance
field along the perpendicular direction are exactly the
same (as shown in Fig. 5a). Therefore, to obtain the
distance value of any point in the space, we can sim-
ply project the point onto the drawing plane along
the perpendicular direction of the drawing plane and
then assign the perpendicular foot’s distance value to
the point (Fig. 5b). This method obviates the need to
compute the entire 3D distance field. As a result, the
computational expense is greatly reduced.
The Euclidean distance to a closed contour can
be calculated and stored for each discrete point
in an image (Fig. 6c,d). We calculate the dis-
tance at each required point using methods such
as chamfer distance transforms and vector dis-
tance transforms, which propagate known distances
throughout the image. An interpolation function
is used to determine the distance from any point
located within the quad bounded by distances at
known grid points. In practice, distance values
within a quad are reconstructed from the four cor-

ner distance values stored per quad using standard
bilinear interpolation.
Figure 6 demonstrates one of the sketching opera-
tions in our system. A designer draws a 2D closed
stroke as shown in Fig. 6a. Then, a distance field
on the drawing plane (Fig. 6c) is generated based
on the stroke. To modify the distance field, the de-
signer may draw a stroke starting on the silhouette
of the zero level set of the distance field, briefly
leaving that silhouette and then returning to it. This
sketching results in the deformation of the dis-
tance field. Figure 6d shows the deformed distance
field.

6.2 Skeleton-based scalar fields

Our system also allows users to interactively sketch
skeletons. Then, the scalar field is generated as the
blending of field functions gi of a set of skeletons
si(i = 1, · · · , N),

f(x, y, z) =
N∑

i=1

gi(x, y, z), (10)

where the skeletons si can be any geometric prim-
itive admitting a well-defined distance function:
points, curves, parametric surfaces, simple volumes,
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7a 7b 7c

8a 8b

Fig. 7. A scalar field is defined by blending
skeletons. Panels a, b, and c show three differ-
ent isosurfaces that correspond to three differ-
ent isovalues

Fig. 8. The mannequin model is deformed by
manipulating point skeletons. The mesh indi-
cates an isosurface of the skeleton-based scalar
field

etc. The field functions gi are decreasing functions of
the distance to the associated skeleton,

gi(x, y, z) = Gi(d(x, y, z, si)), (11)

where d(x, y, z, si) is the distance between (x, y, z)
and si , and Gi can be defined by pieces of polyno-
mials or by more sophisticated anisotropic functions.
Figure 7 shows three isosurfaces of a skeleton-based
scalar field. The field functions associated with the
skeletons are Gaussian functions.
Users can interactively sketch skeletons by a mouse
or a 3D pointing device and then define a scalar
field according to these skeletons. In general, each
skeletal element is associated with a locally defined
implicit function; individual functions are blended
using a polynomial weighting function that can be
controlled by designers. Therefore, designers may
enforce global and local control of an underlying
scalar field in three separate ways: (1) defining or
manipulating the skeleton, (2) defining or adjust-
ing those implicit functions defined for each skeletal
element, and (3) defining a blending function to
weight the individual implicit functions. In our sys-
tem, we offer designers the first two ways to modify
the scalar field since they are very easy and intuitive
and require minimal specialized knowledge. When
a designer modifies the scalar field, the embedded

objects are deformed according to our SFD algo-
rithm. Figure 8 shows an example. The user defines
two point skeletons. The field functions of the skele-
tons are general Gaussian functions (note that other
user-specified blending functions can be straight-
forwardly incorporated into our system without any
difficulties). By repositioning these two skeletons
and reducing the strength of the Gaussian func-
tions, the mannequin model is deformed as shown
in Fig. 8b.

6.3 Dynamic spline-based scalar fields

Dynamic spline-based implicit functions [14] utilize
scalar trivariate B-spline functions as the underlying
shape primitives. Different scalar B-spline patches
defined over the 3D working space are collected to
form a volumetric implicit function that can be used
to represent spaces of complicated geometry and ar-
bitrary topology,

f(x, y, z) =
N∑

i=1

si(Ti(x, y, z)), (12)

where si represents the i-th scalar B-spline patch and
Ti is an affine transformation that transforms a point
in the Euclidian space into the parametric domain
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9a 9b 9c

10a 10b

Fig. 9. The teapot polygonal model (a) is embedded
in the scalar field defined by a dynamic spline-
based implicit function (b) and deformed by chang-
ing the scalar field (c). (We only show a single level
set using coarse mesh in b and c)
Fig. 10. The sofa model (a) is deformed through
direct manipulation of a scalar field using a point
force tool (b)

of the i-th patch. In essence, Eq. 12 is a hierarchi-
cal organization of the N scalar B-spline patches.
For details about scalar B-spline expressions and the
spline-based volumetric implicit functions, please
refer to [13].
The function dynamically changes since its coeffi-
cients are time varying. Users can directly manipu-
late the scalar values to evolve the function. Figure 9
shows a polygonal model embedded in a scalar field
defined by a dynamic spline-based implicit function
and deformed by manipulating the scalar field.
Please refer to [14] for complete details about dy-
namic manipulation of spline-based volumetric im-
plicit functions. Here we briefly review the dy-
namic manipulation mechanism so that this paper
is self-contained. Direct and dynamic manipulation
of scalar fields is founded on the above spline-
based volumetric implicit functions and powerful
physics-based modeling. The versatility of the volu-
metric modeling permits designers to easily modify
arbitrary scalar fields, while the inherent physical
properties can offer an intuitive mechanism for di-
rect manipulation. The manipulated scalar field can
have complicated geometry and arbitrary topologies.
Designers can create any scalar fields from scratch
and then deform them. The system provides a large
number of virtual sculpting tools including geomet-
ric tools and force tools. Whenever a sculpting tool
is used on the scalar field, the scalar values in the
affected regions will be modified correspondingly.
When using geometric tools, the designer starts with

a simple primitive such as a cube or sphere and
gradually constructs a more complex model through
successive transformations or a combination of mul-
tiple primitives. When using force tools, the designer
can directly drag a point or subset of points to change
the scalar field. The system will automatically recon-
struct the volumetric implicit function to represent
the new, modified scalar field undergoing defor-
mation. Therefore, when designers manipulate the
scalar field with the system tools, the embedded
object inside the scalar field will be deformed ac-
cording to the change of the scalar field. Figure 10
shows the FFD of a polygonal object (sofa) via dy-
namic manipulation of the scalar field defined by the
spline-based volumetric implicit functions. The user
employs a point force tool to directly manipulate the
scalar field as if he/she were directly manipulating
the embedded model.

7 SFD operations

Given the novel SFD technique and the simple, in-
tuitive, and efficient scalar field construction and de-
formation approaches, users can easily perform vari-
ous SFD operations on existing models. For specific
SFD operations, the chosen scalar field manipula-
tion approach may have some advantages over the
other two available approaches from the perspective
of user interaction. However, for end users, those
SFD tools are transparent. They do not need to make
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11a 11b 11c

12a 12b 12c 12d 12e

13a 13b 13c

Fig. 11. a shows an airplane model with a skeleton. b shows a bending skeleton specified by a designer. c shows the resulting
bending deformation
Fig. 12. Free-form deformations of a 3D nozzle model. a Original model. b Bending. c Shrinking the middle part. d Inflation
on both ends. e Shrinking the bottom and top
Fig. 13. Inflation and shrinking of a spring model. The meshes show two isosurfaces with the same isovalue in two scalar
fields in a and b, respectively

the choice of which one to use for a specific opera-
tion. We equip those SFD tools with the best scalar
field manipulation approach.
For bending operations, users may first draw a set of
skeletons to define the source scalar field. As shown
in Fig. 11a, the user draws a set of points (blobs) to
define the scalar field. Then the user moves the po-
sitions of several points, as shown in Fig. 11b. The
airplane will bend due to this scalar field modifica-
tion. Figure 12b shows another bending operation
on a 3D nozzle model. In that operation, the user
employs a curve skeleton instead. The user simply
sketches a straight line segment near the center of
the object and a bending curve to define two distance

fields. The object is then deformed according to the
difference of these two fields.
For shrinking and inflation, users can define two
sets of skeletons (namely, a source set and a target
set) to define scalar fields. The embedded object will
inflate or shrink according to the field deformation
from the source to the target. Alternatively, users can
just modify some parameters of the source skeletons
to perform the deformation. For the examples shown
in Fig. 12c–e, the nozzle model inflates or shrinks
in several ways. Also as shown in Fig. 13, the user
employs Gaussian blobs as skeletons. The mesh sur-
face in Fig. 13a shows an isosurface of the defined
source scalar field. Figure 13b shows the deformed
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14a 14b 14c

15a 15b

Fig. 14. A dinosaur (a) is deformed with the body squeezed (b) and the neck stretched (b). The user also changes the
position of the dinosaur’s neck (c)
Fig. 15. Tapering on the ship model

object corresponding to the altered scalar field. The
mesh surface denotes an isosurface extracted from
the target scalar field with the same isovalue of the
one shown in Fig. 13a. Figure 13c shows a further
deformed model that shrinks the center part of the
object shown in Fig. 13b.
For squeezing operations, users may first sketch
a closed stroke to define a distance field and then
modify this distance field by adding another stroke.
In this operation, we perform deformation only on
those vertices with positive distance values. For ex-
ample, as shown in Fig. 14a, the user first sketches
a closed stroke (in red) around the body of the di-
nosaur. The corresponding distance field based on
the sketched stroke is generated using the method
described in Sect. 6.1. Then the user sketches an-
other stroke (in green) to deform the distance field.
The embedded dinosaur is then squeezed as shown in
Fig. 14b according to the SFD. Users can also com-
pletely sketch another new stroke to define a target
distance field instead of creating it by modifying the
existing stroke.
For stretching, users can use force-based tools [14]
to directly drag the embedding scalar field, which is
equivalent to dragging the embedded object directly.

In essence, force-based tools alter the scalar field
along the force vector, which results in the stretching
effect of the embedded model along the force vector.
For the example shown in Fig. 14a and b, the user
selects a vertex around the bottom of the dinosaur’s
neck and then drags it along the arrow to produce
a stretching deformation on the dinosaur’s neck.
Users can move part of an object to another lo-
cation by using moving operations (e.g., Fig. 14b
and c). The user sketches a straight line segment
near the center line of the dinosaur’s neck, which de-
fines a source distance field. Then the user draws an-
other stroke, with a small rotation, to define a target
field. The localized dinosaur’s neck is then moved
as shown in Fig. 14c due to this field change. We
will discuss the localization operation in Sect. 8.
Currently no physical properties are associated with
SFD models. Hence the rigidity issue goes beyond
the scope of this paper, though it is a legitimate re-
search concern.
Users can perform tapering operations by simply
sketching strokes. As shown in Fig. 15, the ship
model is tapered on the front part. The user first
sketches an open stroke (shown in red). Then the user
sketches another one (shown in green). The source
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17a 17b16a 16b 16c

18a 18b 19a 19b 19c

Fig. 16. a The user paints an image on an object. b A scalar field can be generated according to the user-painted image and
specified height values. c The object is deformed by the generated scalar field
Fig. 17. Panel a shows a grayscale image. A scalar field can be generated from any grayscale image. The gray values of
the image are used as projective distances along the normals to produce a surface. The scalar value inside the space is the
shortest distance to the generated surface. Panel b shows the deformed object
Fig. 18. Creasing operation. a Original model and sketched strokes around both sides of the cup. The red strokes are for
generating the source distance field, while the green strokes are for generating the target distance field. b Two sharp creases
formed on both sides of the cup
Fig. 19. Deformation using two analytic implicit functions with different parameter configurations. The original model is the
deformed polygonal cup model with creases as shown in Fig. 18b

and target distance fields are generated locally based
on these two strokes. The localized front part is then
tapered according to the field change.
Users can also easily apply embossing and engrav-
ing operations on an object. In these operations,
users can paint a grayscale image or use an exist-
ing one to define an embedding space on the object.
For example, as shown in Fig. 16, the designer paints
a binary image directly on a 3D object. Then a sur-
face S is obtained by projecting the sampling points
of the image along the normal directions with user-
specified distances. Our system then generates a lo-
cal distance field in the region of interest according
to the surface. Figure 16a shows letters painted on
an object by the designer. Figure 16b shows the gen-
erated embedding space according to the specified
height, where the color denotes the distance value.
The red color indicates the longer distance inside
the space, and the yellow color indicates shorter dis-
tance. In embossing and engraving operations, the

source scalar field around the base model is initial-
ized to zero everywhere. Therefore, the deformation
based on the zero source scalar field and the locally
constructed distance field will produce embossing
and engraving effects on the embedded models. Fig-
ure 16c shows the result after performing the SFD
embossing.
Figure 17 shows another embossing example us-
ing an existing image. Figure 17a is an image of
a global map. Here, a surface S is obtained by pro-
jecting the sampling points along the object’s nor-
mals with corresponding grayscale values. Our sys-
tem then generates a local distance field, where the
scalar values are the shortest distances to the sur-
face. The source scalar field is also initialized to
zero everywhere. As shown in Fig. 17b, this im-
age is embossed onto a “soap” shape by using this
space construction approach together with our SFD
technique, i.e., the same technique as used in the
example of Fig. 16. If we project the distance field
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20a 20b

20c 20d

21a 21b

Fig. 20. Deformation of a point-set object. The dragon model contains 437 645 vertices. a Original point set, deformed
several times using the SFD operations. The deformed results are shown in b, c, and d
Fig. 21. Deformation of a volumetric object. The lobster dataset is a CT scanned dataset. a Original isosurface.
b Deformed isosurface with bending tail

along the reverse direction, we can also easily per-
form engraving operations on the models. Note that
the used image is similar to the concept of the dis-
placement map [18]. The difference is that we do
not need to explicitly map the displacement to each
point of the base model. The resolution or config-
uration of the displacement map can be different
from that of the base surfaces. In our approach, once
the distance field is generated, it can guide the de-
formation of the base surface and then produce the
embossing or engraving effects. The mesh of the
base surface is optimized and refined during the de-
formation to represent the detail of to-be-embossed
features.
It is very easy to use SFD to make sharp creases on
the embedded models, which is theoretically difficult

with traditional FFD. Users can perform creasing
operations by simply sketching strokes. As shown in
Fig. 18, the user makes two shape creases on both
sides of the deformed cup model. The user first lo-
calizes the region where the creases will be formed
and then sketches two open strokes (shown in red)
for generating source distance fields. Two unsigned
distance fields are computed based on these two
strokes in the localized regions, which are near the
side of the cup model. Further, the user sketches two
other open curves, shown in green. The target un-
signed distance fields are generated based on these
two curves in the same regions. The SFD forms the
sharp creases according to the field change from the
source one to the target one. Note that the crease
can be very sharp. During the creasing deformation



62 J. Hua, H. Qin: Scalar-field-guided adaptive shape deformation and animation

22a 22b 22c

23a 23b 23c

Fig. 22. The mannequin model is deformed by using the available deformation operations along with the use of point, curve,
normal, and curvature constraints during the design process. In a and b, we produce a bumpy hair-like effect
Fig. 23. Free-form deformations on the car model with the use of available deformation operations and constraining meth-
ods. a Original model. b Deformed model. c Boat-like model deformed from a

some vertices connected by very short edges are col-
lapsed at the top of the crease so that the top of the
sharpest crease is just composed of a series of edges.
In general, this cannot be done using traditional FFD
methods.
Generally, our SFD technique can support any
type of deformation provided that the appropri-
ate source scalar field and target field are given.
Hence users can define two arbitrary implicit func-
tions analytically to embed an object to be de-
formed. We call one a source implicit function,
the other a target implicit function. With SFD,
the embedded object will be deformed accord-
ing to scalar fields of the specified functions. As
shown in Fig. 19, the object is deformed with the
use of an ellipsoid function as the source func-
tion and a hyperboloid function of one sheet as
the target function. With different parameter con-

figurations users can easily produce the deforma-
tions (Fig. 19).
The SFD operations can be applied to point-set
objects and volumetric datasets in the same fash-
ion. Figure 20 shows an example of deformation of
a point-set object. Before deformation, the point-
set object needs to undergo preprocessing. For each
vertex of the object, the preprocessing finds the
neighboring vertices within a specified distance to
the vertex. This information will be used to calcu-
late the average speed among the vertices within
a local region (Eq. 8). The point-set surface is ren-
dered using splatting. Figure 21 shows an exam-
ple of deformation of a volumetric object. We ap-
ply the SFD operation on the underlying grid of
the volumetric dataset. At every time step, the op-
eration first results in the change of positions of
the underlying grid. But the associated density val-
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Table 1. Run time for SFD operations on existing polygonal
models. The number of vertices of the lobster volumetric model
denotes the size of its underlying sampling grid

Model No. of vertices No. of faces
Update
time(ms)

Airplane 2965 5706 0.12
Car 3307 6556 0.14
Cup 3749 7494 0.16
Ship 4892 9510 0.23

Nozzle 5845 9877 0.28
Mannequin 6737 13 408 0.33
Dinosaur 23 984 47 904 1.25
Dragon 437 645 N/A 25.58
Lobster 104×104×34 N/A 20.44

ues do not change. Therefore, the uniform volu-
metric dataset becomes an unstructured one. Then
we employ a trilinear interpolation and resampling
process to distribute the unstructured scalar field
to a uniform one. The scalar field can be visual-
ized and the isosurface of the volumetric object
deformed.

8 Enforcing geometric constraints

Our technique provides a general deformation mech-
anism in the sense that it can easily accommodate
various geometric constraints on the embedded mod-
els. Adding geometric constraints can make our tech-
nique more powerful and facilitate feature-based de-
sign. To enforce constraints, we can simply augment
the original objective function E with the constraint
energy Ec,

En = E +ρEc, (13)

where En denotes the new, overall objective func-
tion and Ec denotes the additional energy term in-
troduced by added constraints. Note that Ec can be
a linear combination of several energy functionals.
The following list contains discretized versions of
their corresponding continuous forms to polygonal
meshes.

Position constraint

E pos = (pi − p′
i)

2, (pi ∈ P), (14)

where pi represents a point before a deformation,
p′

i represents the same point after a deformation, and
P denotes the point set of the object.

Curve constraint

Ecurv =
∑
pi∈C

(pi − p′
i)

2, (15)

where C denotes a constraint curve specified by the
designer. In the implementation, C is discretized into
a set of points.

Normal constraint

Enorm =
∑
pi∈S

(N(pi)− N(p′
i))

2, (16)

where N(pi) denotes the normal at point pi and S
denotes a set of points inside the region where the
normal is to be preserved.

Curvature preserving

Ecurvature =
∑
pi∈S

(K(pi)− K(p′
i))

2, (17)

where K(pi) denotes the total curvature at point pi
and S denotes a region where the curvature is to be
preserved.
When the locations where the user specifies con-
straints do not have vertices of the embedded model,
the new vertices at those locations will be inserted.
Then the model is optimized several times with those
constrained vertices fixed.
A standard implicit iterative method can be used to
numerically compute the minimization of the overall
objective function. The advantage of this approach
is that it is relatively general and can offer an ac-
curate, stable solution even for very large systems.
Therefore, it is well suited for our purposes in SFD
operations. The gradient used in this minimization
process is numerically approximated using the cen-
tral difference of the overall objective function for
the current position of the model vertex with a very
small perturbation.
We can also perform the local SFD operation on
polygonal models by only allowing the movement of
the vertices, where the scalar value evaluates within
a specified scope of the isovalues. For other ver-
tices, they will not move during the deformations.
Users can specify any implicit function to localize
the part of the models to be deformed. In our pro-
totype system, we provide users with three types of
primitives to localize regions, which include rectan-
gular box, cylinder, and sphere. By combining these
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primitives, users are able to localize any part of em-
bedded models.
With all the available operations and constraining
methods, we perform some interesting deformations
on the mannequin model, as shown in Fig. 22. The
mannequin model is significantly deformed to pro-
duce some interesting examples. During the defor-
mations, some facial features are maintained through
the use of constraints. In Fig. 22a and b, we drop
the smoothness constraints in Eq. 6 during the de-
formation and allow only the vertex velocities along
the specified directions to produce a bump-like hair
effect. Figure 23 shows another deformation ex-
ample on the car model. Figure 23b shows a new
racing car model, rebuilt (deformed) from the old
model as shown in Fig. 23a. Figure 23c shows
a boat deformed directly from the car model shown
in Fig. 23a.

9 Implementation

Our system is written in Microsoft Visual C++ and
the rendering is implemented using OpenGL. In our
system, we incorporate the Phantom 1.0 device from
Sensable Technologies into our user interface. Dur-
ing the deformation process, users can use a mouse
or the Phantom to manipulate the scalar field. When
directly manipulating spline-based scalar fields us-
ing force tools [14], users can even feel the defor-
mation force applied to the deformable model, which
results in the deformation.
We have experimented with our SFD technique on
a wide range of PCs with no special hardware. Those
deformations can be performed on a relatively low-
end system in real time. Unlike subdivision-based
FFD techniques, our SFD technique does not require
a large amount of memory. From a theoretical point
of view, the timing achieved depends essentially on
the number of vertices of the models and the eval-
uation time of the scalar fields at those vertices. On
a 2.2-GHz PC with 1 GB RAM we have performed
the same inflation deformations on the models. In
this test, the used scalar field is a simple point skele-
ton admitting a Gaussian field function. We have
examined the timings achieved for a single defor-
mation iteration (i.e., one run from step 1 to step 6
of our algorithm described in Sect. 4). The recorded
time, which is the CPU time of the single deforma-
tion iteration minus the rendering time,is shown in
Table 1.

10 Conclusion

In this paper, we have articulated a novel scalar-
field-guided shape deformation, or SFD, method-
ology founded on PDE-based flow constraints and
scalar field functions. The new SFD paradigm is
fundamentally different from traditional FFD tech-
niques in that we employ scalar fields as SFD embed-
ding spaces. A scalar-field-based embedding space
is of diverse types and its space definition is much
simpler yet both powerful and intuitive for various
visual modeling applications. In our prototype sys-
tem, we have developed a suite of easy-to-use tech-
niques for efficiently constructing and manipulat-
ing the space as well as flexibly interacting with
various geometric shapes. With the SFD method,
users can directly sketch the scalar field of an im-
plicit function via a mouse or a 3D haptic inter-
face to control the deformation of any embedded
model. In addition, the embedding space can be of
complicated geometry and arbitrary topology. The
deformation velocity for any model point can be
either very general or constrained subject to user-
specified requirements. Therefore, our SFD tech-
nique supports a larger number of shape deformation
types than other techniques. Furthermore, the em-
bedded model has self-adaptive and optimization ca-
pabilities throughout the SFD process to accommo-
date versatile deformations, maintain the mesh qual-
ity, and preserve shape features. We have conducted
a large number of experiments that demonstrate that
our new SFD technique is powerful, flexible, natu-
ral, and intuitive for shape modeling and geometric
design in animation and interactive graphics.
Our current system does not deal with deformations
where parameterization, such as torsion, is used. But
this could be easily solved by introducing additional
parameterized variables into pure scalar fields. At
present, we are exploring new research in several di-
rections. First, the continuity between the deformed
part and the undeformed part is difficult to control.
Manual specification from users has been used fre-
quently in traditional FFD techniques. It is, however,
much more challenging in our system because SFD
is essentially a dynamic process. Second, our SFD
technique is potentially useful for creating animated
characters in the film industry and shortening the an-
imation design cycle. With a few key frames gener-
ated from our SFD technique, it is also possible to
use our SFD technique to obtain the “in-between”
ones containing the entire motion sequence of ob-
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jects. If we further incorporate physical properties
and other relevant constraints, realistic simulation
and animation can be achieved. Third, in these ap-
plications, preventing self-intersections or perform-
ing correct topology changes during deformations
should also be considered. Finally, we would like to
enhance all the deformation operations with haptics,
so that the user can have realistic, physical, and force
feedback when manipulating SFD models.
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