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This paper presents a sculptured solid model-
ing system founded upon free-form splines:
(i) tri-variate B-spline solids for regular (i.e.,
topologically cuboid) shapes and (ii) dy-
namic MacCracken–Joy subdivision-based
solids of arbitrary topology. Our primary
contribution is that we integrate the geom-
etry of sculptured free-form solids with the
powerful physics-based modeling frame-
work by augmenting pure geometric entities
with material properties and physical behav-
iors. We have developed a sculpting system
with an array of design tools that afford users
the ability to deform and sculpt a variety of
free-form solids via a three-dimensional in-
put device.
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During the past decade, solid modeling has quickly
gained popularity as a convenient and natural para-
digm for representing, manipulating and interacting
with three-dimensional objects in interactive graph-
ics, animation, CAD/CAM, art and entertainment,
scientific visualization, and virtual environments.
This is primarily because a solid model offers en-
gineers an unambiguous shape representation of
a physical entity (Requicha and Rossignac 1992).
To date, the vast majority of popular solid modeling
approaches, as well as commonly-used solid mod-
eling systems, are built upon the following geomet-
ric foundations: constructive solid geometry (CSG),
boundary representation (B-reps), and cell decom-
position. CSG techniques exploit semi-algebraic sets
and Boolean operations to combine simple primi-
tives such as blocks, spheres, cylinders, cones, and
tori into more complex solids. B-reps typically de-
fine a solid in terms of its surface geometry along
with extra topological information. Cell decompo-
sition methods usually approximate solids by using
a set of 2D cross-sectional slices or a group of cu-
bical units such as identical voxels and by employ-
ing a hierarchically structured octree scheme. When
the goals are to interactively sculpt solid objects,
deform the solid geometry with ease in real-time,
modify the solid topology, and conduct kinematic
and dynamic analysis of physical solids, prior rep-
resentations and the current state-of-the-art in solid
modeling fall short in offering designers an array
of flexible and powerful modeling and sculpting
tools.
Free-form solid modeling, in contrast, provides mod-
elers with a more flexible interface for designing
a much wider range of objects than the aforemen-
tioned approaches. Typical examples of sculptured
solids include tri-variate B-splines, Hermite solids
and non-uniform rational B-splines (NURBS) solids.
However, free-form solids such as tri-variate B-
splines typically offer users more degrees of freedom
(i.e., control points, weights, etc.) than what they can
actually handle. In addition, free-form solids based
on parametric geometry are constrained to model-
ing topologically regular shapes. It is very difficult
to extend the geometric coverage of free-form solids
to shapes of arbitrary topology without resorting to
a large set of non-intuitive geometric constraints.
Subdivision-based solid modeling, such as the Mac-
Cracken–Joy subdivision scheme for volumetric
construction (MacCracken and Joy 1996), allows
users to create sculptured solids of arbitrary topol-
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Fig. 1. Several dynamic subdivision-based solids created in our sculpting environment

ogy from user-specified initial control lattices. De-
spite their modeling superiority, subdivision solids
also suffer from a large number of control points
and an associated complex topological structure of
their control lattices. These shortcomings severely
restrain the modeling flexibility of subdivision solids
as well as other popular free-form solids, since
users essentially must interact with solid geom-
etry through tedious and laborious operations on
a large number of irregularly distributed control
vertices.
In this paper, we systematically develop a physics-
based modeling framework for free-form solids that
can overcome many of the limitations associated
with conventional solid modeling techniques. Within
our novel dynamic modeling framework, free-form
solids are equipped with mass and damping dis-
tributions, internal deformation energies, and other
material properties. Consequently, users can sculpt
solids in a physically plausible and accurate man-
ner as if they are manipulating real-world physical
clay. Figure 1 illustrates several objects that were
sculpted in our system. Our free-form solids, whose
control points are governed by differential equations
of Lagrangian mechanics, respond dynamically to
applied forces in an intuitive and natural fashion.

Note that our prior efforts on physics-based mod-
eling primarily centered on surface modeling tech-
niques (Qin and Terzopoulos 1996; Qin et al. 1998).
Surface modeling, in general, makes it difficult to
realize the full potential of physics-based modeling
due to its intrinsic deficiencies in modeling inte-
rior properties of physical solids (i.e., virtual clay).
This paper pioneers the dynamic modeling method-
ology of spline-based solids through the physics-
based derivation of tri-variate B-spline solids and
subdivision-based solids of arbitrary topology. To
achieve real-time sculpting performance, we dis-
cretize the continuum of both B-spline solids and
subdivision solids into a set of finite-element-like
cells and associate a novel mass–spring framework
with free-form solids. Hence, general non-linear ma-
terial properties can be attached to solid geometry
with ease. We have developed a prototype solid mod-
eling environment in which the real-time deforma-
tion and sculpting processes can be easily facilitated
through a set of intuitive virtual tools and through the
use of efficient numerical algorithms.
The remainder of this paper is organized as fol-
lows: We discuss the motivation and present our
contributions in Sect. 2. In Sect. 3, we detail the
geometry of free-form solids and review prior re-
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search in relevant areas. In Sect. 4 we present our
dynamic formulation and algorithms. In Sect. 5 we
discuss the details of our implementation and sculpt-
ing system and then present our experimental re-
sults with time performance. Finally, we conclude
the paper and outline future research directions in
Sect. 6.

2 Motivation and contribution

At present, curve and surface modeling techniques
are extensively used for representing a wide range
of geometric shapes. However, such representations
are far from adequate for modeling real-world ob-
jects when both interior properties and dynamic
behaviors of the underling shape are of prime sig-
nificance to modelers. In contrast, solid modeling
has recently emerged as a very powerful paradigm
that can greatly enhance existing surface model-
ing techniques because of its unique advantages
over curve and surface modeling. Despite many ad-
vances in solid modeling during the past decade,
conventional solid modeling techniques based on
algebraic geometry can be rather rigid and inflexi-
ble. Free-form solids are a superior modeling can-
didate to CSG, B-reps and cell decomposition be-
cause (i) they have great potential to model a much
wider range of real-world objects; (ii) they com-
bine the benefits of free-form surface boundaries
and interior geometry within a unified representa-
tion scheme; and (iii) they facilitate efficient algo-
rithms for both interior interrogation and boundary
evaluation.
Nevertheless, state-of-the-art free-form solids can be
very difficult to use due to their bewildering num-
ber of degrees of freedom and their dependency
on non-intuitive control point manipulation. Many
more degrees of freedom (e.g., control points) are re-
quired than for surface models in order to represent
the interior of solid geometry. Consequently, users
are hampered by a large set of control points and
its cumbersome manipulation. Additionally, compli-
cated solids of arbitrary topology cannot be eas-
ily modeled with popular spline geometry such as
tri-variate B-splines and NURBS due to the regu-
lar structure of their control vertices. Hence, con-
siderable user intervention is necessary to perform
the various routine tasks – such as rounding, blend-
ing, and trimming – that one sees in conventional
CAD/CAM applications.

Strongly motivated by the recent advances of phys-
ics-based surface modeling techniques, we develop
a novel dynamic modeling approach for solid mod-
eling. Physics-based modeling attempts to overcome
such shortcomings of geometric modeling through
the integration of material attributes and physi-
cal behaviors with powerful geometric modeling
techniques (Qin and Terzopoulos 1996; Qin et al.
1998). This approach alleviates the user’s burden
of managing large sets of degrees of freedom (e.g.,
a multitude of control points, knots, weights, etc.),
which are typically required for the design of large,
complicated objects. Note that the process of fine-
tuning such low-level variables as control points is
both tedious and cumbersome at best. It forces de-
signers to make many small incremental changes
in order to achieve the composite effect of larger
deformation. When one interacts with parametric
solids, it can be very difficult, sometimes impossi-
ble, to determine which control points lie in front
of each other, relative to the current viewpoint on
a 2D medium such as a computer screen. Further-
more, a purely geometric representation of a solid
does not permit users to effectively validate physi-
cally relevant tests such as finite element analysis,
kinematic simulation, and material property calcu-
lation. Physics-based modeling approaches allow
users to focus more attention on the object and to
more easily create a large array of shape varia-
tions permitted by the underlying solid mathemat-
ics. Based on our physics-based modeling method-
ology for surface design, we now forge ahead to
tackle the challenging problem of integrating dy-
namic modeling algorithms with free-form solids in
order to facilitate volumetric modeling, synthesis,
and manipulation. Our primary contributions are as
follows:
• We integrate material attributes with B-spline and

subdivision solids and formulate a set of equa-
tions of motion for arbitrary free-form solids.
The unified formulation permits users to easily
and quickly deform a solid object in a physi-
cally plausible fashion. More importantly, the dy-
namic modeling method makes it much easier to
define objects with anisotropic material distribu-
tions and to model even materially inhomoge-
neous objects.
• We develop a simple yet effective real-time nu-

merical solver that employs a finite-difference
approximation for the finite-element formulation
of free-form solids. Our solver can achieve in-
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teractive sculpting rates without sacrificing the
modeling accuracy and deformation fidelity. In
general, real-time performance is very difficult
to accomplish when other mature finite-element
solvers are utilized, even for the dynamic sculpt-
ing of rather simplified solid objects. Real-time
interaction is especially important for animators,
who frequently need immediate feedback in their
applications.
• We discretize B-spline and subdivision solids into

a set of cells bounded by a three-dimensional
lattice. (In this paper, lattice stands for a three-
dimensional network of points, edges, faces and
cells, in contrast to a two-dimensional mesh.)
A set of mass points and springs equipped with
material and elastic properties is associated with
geometric cells. A mass–spring discretization
provides users with the intuitive mechanism for
physically manipulating solid geometry. Further-
more, other downstream CAD/CAM applica-
tions such as finite-element meshing and analysis
can be facilitated.
• The mathematics of parametric geometry for

free-form solids always constrains the behavior
of the mass–spring lattice, enforces the spline
structure, and synchronizes two different rep-
resentations throughout the sculpting task. Our
hybrid model also consists of a set of virtual
springs, whose purpose is to help preserve inter-
nal angles on each face of the lattice and thereby
help maintain the object’s general shape. In the
absence of virtual springs, conventional springs
are deployed to connect only immediate neigh-
bors of any mass points. This can easily lead to an
unstable configuration, which hampers the effec-
tive and meaningful sculpting of free-form solids.
• We implement a sculpting system for B-spline

solids and subdivision-based solids that should
appeal to both engineering designers and to non-
technical users because it frees users from the
need to understand the underlying complicated
mathematics of free-form solids. A number of
sculpting tools available in our system expe-
dite the modeling and design tasks and offer
users the realistic illusion of interacting with an
elastic piece of virtual clay. The use of a three-
dimensional input device enables users to freely
navigate and manipulate any regions within free-
form solids. Various physical properties of ob-
jects can be modified at run-time through a graph-
ical user interface.

3 Background

Free-form modeling (i.e., spline-based modeling)
allows designers to create a large variety of very
intricate curves, surfaces and solids by specifying
a (possibly large) set of constraints. Typical con-
straints include locations of control points, values of
weights and/or knots, and other geometric properties
such as tangent and normal vectors, local curvature
magnitude, etc. Among various modeling techniques
and algorithms, B-splines, NURBS and subdivision
schemes are of particular significance to users be-
cause of their modeling power for many man-made
mechanical parts and natural objects. [For a compre-
hensive coverage of spline-based modeling, see Farin
(1997); Mortenson (1997)]. This paper focuses on
B-spline solids and subdivision solids primarily be-
cause (i) the B-spline solid is a special case of
a subdivision solid and (ii) subdivision solids can
represent complicated shapes of arbitrary topology
with a small number of topologically irregular control
points.

3.1 B-spline solids

A continuous B-spline solid, s (u, v,w), is de-
fined as the linear combination of a set of uni-
variate basis functions, Bi,q , B j,r and Bk,s, with
(n+1)× (m+1)× (l+1) control points, p:

s (u, v,w)

=
n∑

i=0

m∑
j=0

l∑
k=0

pi, j,k Bi,q (u) B j,r (v) Bk,s (w) , (1)

where Bi,q , B j,r and Bk,s are piecewise polynomi-
als of order q, r and s, respectively. u, v and w
are parametric variables. The parametric domain of
B-splines can be determined by three sets of non-
decreasing knot sequences. Univariate basis func-
tions are then formulated recursively through knot
vectors. In the interest of brevity, we refer readers
to Qin and Terzopoulos (1996) for the explicit ex-
pression of B-spline basis functions and many of
their attractive properties. Without loss of general-
ity, we assume that u, v and w all belong to [0, 1].
The control point vector, p, is the concatenation of all
three-dimensional control points p(t)= [x, y, z]T : p
= [pT

0,0,0, pT
0,0,1, . . . , pT

n,m,l]T, where T denotes ma-
trix transposition. Figure 2 illustrates a B-spline solid
with 4× 4× 4 control points and with knot vector
[0, 0, 0, 0, 1, 1, 1, 1].
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Fig. 2. A dynamic B-spline solid (see Sect. 4.1) deformed
in our sculpting system. Only the boundary is rendered

Fig. 3a,b. The mass distributions for the same 6×6×6
B-spline solid but with different knot vectors. a The three
knot vectors are [3, 3, 3, 3, 4, 5, 6, 6, 6, 6]. b The knot
vectors are [3, 3, 3, 3, 3.5, 4, 6, 6, 6, 6]

Typically we use uniformly spaced knot vectors in
our sculpting sessions, although non-uniform B-
splines can also be represented in our systems. In
Fig. 3 we show the approximate mass distribu-
tions of two B-spline solids with 6× 6× 6 con-
trol lattices. In each solid, the corresponding con-
trol points have identical masses, but the different
knot vectors blend and distribute the mass differ-
ently. The three knot vectors in the first solid are all
[3, 3, 3, 3, 4, 5, 6, 6, 6, 6], while in the second solid
all three are [3, 3, 3, 3, 3.5, 4, 6, 6, 6, 6].

3.2 Subdivision techniques

Subdivision schemes are widely used in curve and
surface modeling. Chaikin (1974) introduced the
concept of subdivision to the modeling community
for generating a smooth curve from an arbitrary con-
trol polygon. In the limit, Chaikin’s curve converges
to a quadratic B-spline. Subsequently, a wide variety

of subdivision schemes for modeling smooth sur-
faces of arbitrary topology have been derived follow-
ing Chaikin’s pioneering work on curve generation.
The existing subdivision schemes can be broadly
categorized into two distinct classes, namely, (i)
approximating subdivision techniques and (ii) inter-
polating subdivision techniques.
Among the approximating surface schemes, the
techniques of Doo and Sabin (Doo 1978) and Cat-
mull and Clark (1978) generalize the idea of ob-
taining uniform bi-quadratic and bi-cubic B-spline
patches, respectively, from a rectangular control
mesh. Catmull and Clark developed an algorithm for
recursively generating a smooth surface from a poly-
hedral mesh of arbitrary topology. The Catmull–
Clark subdivision surface can be reduced to a set
of standard B-spline patches except at a finite num-
ber of degenerate points. Loop (1987) presented
a similar subdivision scheme based on the general-
ization of quartic triangular B-splines for triangular
meshes. Most recently, non-uniform Doo–Sabin and
Catmull–Clark surfaces that generalize non-uniform
tensor-product B-spline surfaces to arbitrary topolo-
gies were introduced by Sederberg et al. (1998). The
most well-known interpolation-based subdivision
surface scheme is the “butterfly” algorithm proposed
by Dyn et al. (1990). The butterfly method, like other
subdivision schemes, makes use of a small neighbor-
hood of vertices for subdivision. It requires simple
data structures and is rather straightforward to imple-
ment. Nevertheless, it needs a topologically regular
setting of the initial (control) mesh in order to ob-
tain a smooth C1 limit surface. Zorin et al. (1996)
have improved this interpolatory subdivision scheme
(which we call the modified butterfly scheme) that
retains the simplicity of the butterfly scheme and re-
sults in much smoother surfaces even from irregular
initial meshes.

3.3 MacCracken–Joy subdivision solids

Unlike subdivision curves and surfaces, little re-
search has been published on modeling solids
through subdivision techniques. MacCracken and
Joy extended the subdivision rules for Catmull–
Clark surfaces to generate a volumetric model from
a lattice of control vertices (MacCracken and Joy
1996). However, their goal for using subdivision
techniques was to contrive a space in which an ar-
bitrary object could be deformed (i.e., free-form de-
formation, FFD). In this paper, we treat the volumet-
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Fig. 4. A solid, torus-like object that has been subdivided a few times using the solid subdivision rules. The complex
topology becomes apparent when the solid is drawn in wireframe

ric MacCracken–Joy subdivision scheme as a novel
free-form spline solid that is obtained in the limit
through recursive application of subdivision rules on
a user-specified lattice of control vertices.
Given an initial control lattice in 3-space, the sub-
division solid rules recursively subdivide the lattice
and refine the three-dimensional space occupied by
the lattice. The lattice consists of a set of closed cells
that are defined by a collection of their constituent
faces. The faces in the lattice are comprised of an
ordered list of edges that are defined by their end
vertices. Hence, there are four types of geometric
entities in the lattice: cells, faces, edges and points.
Figure 4 shows an example of a solid.
The subdivision scheme recursively applies a set
of four rules, one for each type of element, in or-
der to achieve successively finer representations of
the original lattice. Each element in the lattice pro-
duces a new vertex that must be subsequently incor-
porated into the next finer level of the subdivided
lattice. Although many alternative subdivision rules
can be devised, we follow the original rules as de-
scribed by MacCracken and Joy in our paper be-
cause this set of rules generates a B-spline solid
in the limit if the initial control lattice is regular
(i.e., each vertex shares six edges, and each cell is
topologically cuboid). Hence, the B-spline solid ex-
plained above is a special case of our subdivision
solids.
The subdivision solid rules include:

• Cell points: For each cell, the cell point is its cen-
troid.
• Face points: For each face, the face point is the

weighted average: f = c0+2a+c1
4 , where a is the

face’s centroid and c0 and c1 are the centroids of
the cells on either side of the face.
• Edge points: For each edge, the edge point is the

weighted average: e = cavg+2aavg+(n−3)m
n , where

cavg is the average of the centroids of the cells
that contain the edge, aavg is the average of the
centroids of the faces that contain the edge, m is
the mid-point of the edge, and n is the number of
faces that contain the edge.
• Vertex points: For each vertex p, the vertex point

is the weighted average: v = cavg+3aavg+3mavg+p
8 ,

where cavg is the average of the centroids of the
cells that contain the point, aavg is the average of
the centroids of the faces that contain the point,
and mavg is the average of the mid-points of the
edges that contain the point.

Note that these rules are a straightforward exten-
sion of the subdivision rules for surfaces originally
described in Catmull and Clark (1978). For exam-
ple, a tensor-product tri-variate B-spline solid with
uniform knot sequence [0, 1, 2, 3, 4, 5, 6, 7] can be
obtained in the limit of the recursive subdivision
process (Fig. 5) on 4× 4× 4 control lattice, with-
out any special rules on boundary elements (e.g.,
face, edge, and vertex). We can introduce a spe-
cial set of rules for boundary elements in the solid
lattice in order to enhance the geometric flexibil-
ity of subdivision solids. In particular, we can use
Catmull–Clark subdivision rules for surface genera-
tion in which a smooth rounded boundary of the solid
will be obtained instead. Alternatively, we can mod-
ify the rules to produce sharp edges on the boundary
(MacCracken and Joy 1996; DeRose et al. 1998).
Figure 6 illustrates the same initial control lattice for
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Fig. 5. A tri-variate B-spline solid with uniform knot dis-
tribution obtained in the limit of the subdivision process.
The second image shows a zoomed view of the solid after
deformation. The control lattice is drawn in wireframe
Fig. 6. Different sets of rules are applied to the boundary
for the same initial cross-shaped control lattice

which different surface subdivision rules have been
applied on the boundary.
The new lattice is then assembled as follows: Cell
points are connected to the new face points of the
faces that defined the cell; face points are connected
to the new edge points of the edges that defined the
face; and edge points are connected to the new ver-
tex points of the vertices that defined the edge. In the
limit of this recursive subdivision process, a smooth
free-form solid, s, can be obtained:

s (x)=
n∑

i=1

pi B̂i (x) , (2)

where x is a parametric value whose domain is
a 3-space occupied by the initial lattice, pi is a con-
trol point, which is one of the original lattice points,
B̂i (x) is a basis function, and n is the number of the
initial vertices defined by the original lattice. Note
that the affine rules explained above naturally es-
tablish one-to-one point correspondences between

lattices in two consecutive levels within the subdi-
vision hierarchy. As with Catmull–Clark surfaces,
the basis functions B̂i (x) of subdivision solids in
the limit can be defined explicitly over the origi-
nal lattice. However, it is non-trivial to derive the
closed-form analytic equation for B̂i (x), given an
initial control lattice of arbitrary connectivity and
topology. In contrast, when the initial lattice is reg-
ular, a certain basis function, Bh (x), can be com-
puted from three univariate B-spline basis functions:
Bh (x) = Bi,q (u) B j,r (v) Bk,s (w) , where Bi,q (u),
B j,r (v), and Bk,s (w) are the piecewise B-spline
polynomials. This is because the subdivision solid
of a regular lattice reduces to a standard tri-cubic
B-spline solid.

3.4 Physics-based modeling

Although free-form modeling approaches are power-
ful for representing smooth volumetric shapes, they
constitute a purely geometric representation. In ad-
dition, conventional geometric modeling may be in-
convenient for representing complicated solids, be-
cause modelers are faced with the tedium of indi-
rect shape modification and refinement through time-
consuming operations on a large number of con-
trol vertices. Despite the advent of advanced three-
dimensional graphics interaction tools, these indirect
geometric operations remain non-intuitive and labo-
rious, in general. In contrast, physics-based models
respond to externally applied forces in a very intu-
itive manner. The dynamic formulation marries the
model geometry with time, mass, damping and con-
straints via a force-balance equation. Dynamic mod-
els produce smooth, natural motions that are intuitive
to control. In addition, they facilitate interaction –
especially direct manipulation – of complex geome-
tries and topologies. Furthermore, the equilibrium
state of the model is characterized by a minimum
of the deformation energy subject to the imposed
constraints. The deformation energy functionals can
be formulated to satisfy local and global modeling
criteria, and geometric constraints relevant to shape
control can also be imposed. The dynamic approach
subsumes all of the aforementioned modeling capa-
bilities in a formulation that grounds everything in
real-world physical behavior.
Free-form deformable models were introduced to
computer graphics by Terzopoulos et al. (1987)
and further developed by Terzopoulos and Fleischer
(1988), Pentland and Williams (1989), and Metaxas
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and Terzopoulous (1992). Qin and Terzopoulos in-
troduced D-NURBS surfaces, an extension to tra-
ditional NURBS that permits more natural control
of the geometry of the surface (Qin and Terzopou-
los 1996; Terzopoulos and Qin 1994). Later, Qin et
al. extended such ideas to dynamic subdivision sur-
faces (Qin et al. 1998; Mandal et al. 1999). Most
recently, Dachille et al. (1999) combined haptic in-
teraction with dynamic B-spline surfaces to provide
a very natural user interface for deformation. To date,
however, most physics-based modeling work has
focused on dynamic surface modeling. This paper in-
corporates spline-based and subdivision-based solid
modeling into the dynamic framework.

4 Formulation and algorithms

This section presents the dynamic modeling formu-
lation and numerical algorithms for the both B-spline
solids and subdivision solids. We begin with the
formulation for dynamic B-spline solids and follow
with a natural generalization to dynamic subdivision
solids.

4.1 Dynamic B-spline solids

In order to incorporate physical properties into
a B-spline solid, we synchronize B-spline solid ge-
ometry with a mass–spring lattice. This relationship
can be expressed as the matrix multiplication

c= Bq , (3)

where q collects all the positional components (i.e.,
x, y, and z coordinates) of the control points, c
contains the positions of the mass points, and B is
a transformation matrix whose entries are the basis
functions evaluated at various parametric values. B is
uniquely determined by the parametric values of c.
Suppose, for example, that B is of size n×m, where
n is the number of control points and m = m0m1m2.
The basis functions are uniformly sampled at m0, m1
and m2 in the u, v and w directions, respectively.
These weights are then stored in B and when multi-
plied with q give the positions of the mass points, c.

4.2 Dynamic subdivision solids

In order to associate material properties with a subdi-
vision solid, we begin by expressing the subdivision

process using the same matrix–vector multiplication
formulation as in Eq. (3):

d=Ap . (4)

Again, we exploit the idea exhibited in Eq. (3). How-
ever, unlike B-spline solids, subdivision techniques
do not offer users explicit analytic formulations of
basis functions. It is a tremendous challenge to accu-
rately evaluate these basis functions for our dynamic
modeling formulation. Hence, we construct the basis
function matrices in a different manner. We assume
that vector where p contains the positions of the lat-
tice points at the initial, coarsest level. As shown in
Eq. (2), such points are called the “control points”
of a subdivision solid in analogy with parametric
solids. Vector d contains the positions of the points
in the lattice at the current subdivision level. We call
these vertices “data points” or “mass points,” since
each of them is assigned a mass. (Note that if no
subdivision has been performed, d= p.) We use the
discretized point set d to approximate the continu-
ous subdivision solid in the interest of the simplicity
and efficiency of dynamic simulation and manipula-
tion. Note that after several levels of subdivision are
conducted, d can be considered to be a good approxi-
mation with high precision. A contains weights given
by the subdivision rules and defines how to obtain the
data point positions in d from p.
During the subdivision process, each new data point
is defined by a certain affine combination of the ex-
isting points as computed by the subdivision rules.
We can store this collection of weights for each point
in A. We can then perform the matrix multiplication
in Eq. (3) to obtain the positions of the points in the
new lattice. Below we describe how to compute A.
Assume we wish to subdivide our solid n times. We
can express this process as a right-multiplication of
n+1 matrices, constructed as follows:

1. Run the subdivision algorithm once on p to obtain
the first subdivided lattice. Name this new lattice
d(1) and the subdivision matrix A(1).

2. Given lattice d( j), compute A( j) using the subdi-
vision scheme, and multiply A( j) by d( j) to get
d( j+1): d( j+1) =A( j)d( j).

3. Set j← j+1.
4. If j ≤ n, then go to step 2. Else stop.

After n levels of subdivision are conducted, our
data point set d (used to approximate the continu-
ous MacCracken–Joy solid) can be assigned to the
current lattice d(n) : d= d(n). We find that the above
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algorithm produces the following series of multipli-
cations:

d(1) =A(1)p ,

d(2) =A(2)d(1) ,

...

d= d(n) = A(n)d(n−1) .

We collect all the terms and arrive at: d= A(n)A(n−1)

· · ·A(1)p. Assigning A=A(n)A(n−1) · · ·A(1) gives us
the compact form of Eq. (3), where A is an ap-
proximation of the discretized basis function matrix,
obtained through a procedure-based subdivision al-
gorithm using the subdivision solid rules. Note that
the accuracy of this approximation depends on the
subdivision level, and it can be satisfied within any
user-specified tolerances. Figure 1 shows various ex-
amples of dynamic subdivision solids. We can repre-
sent objects of arbitrary topologies as well as organic
shapes such as a soccer player.

4.3 Dynamics equations

Now we set the stage to define how the dynamic
system evolves over time. A dynamic solid is char-
acterized by its position s (x, t), velocity ṡ (x, t)
(which stands for ∂s(x,t)

∂t ), and acceleration s̈ (x, t)

(i.e., ∂2s(x,t)
∂t2 ) along with material properties includ-

ing mass density, µ (x), damping density, γ (x), and
the internal energy functional, E (s). The continuous
form of the Lagrangian equations of motion can be
written as

µs̈+γ ṡ+ ∂E (s)
∂s
= f , (5)

where f (s) is the sum of all external force distri-
bution acting on s (x). A large variety of physical
behavior of s (elasticity, plasticity, etc.) results from
different mathematical formulations of energy func-
tionals, E (Terzopoulos and Fleischer 1988).
Based on concepts from differential geometry, a 3×3
metric tensor function G (s),

G=



∂s
∂u · ∂s

∂u
∂s
∂u · ∂s

∂v
∂s
∂u · ∂s

∂w

∂s
∂v
· ∂s

∂u
∂s
∂v
· ∂s

∂v

∂s
∂v
· ∂s

∂w

∂s
∂w
· ∂s

∂u
∂s
∂w
· ∂s

∂v
∂s
∂w
· ∂s

∂w


 ,

remains unchanged if there is no solid deformation
of s (x) [i.e., rigid-body motion does not modify the

tensor function G (s)] during the process of dynamic
sculpting and animation. Note that (u, v,w) is the
parametric coordinate for x. To minimize the volu-
metric variation of a solid s, we let

E =
∫

Ω

∑
i

∑
j

ci, j (u, v,w)
(

gi, j − g(0)
i, j

)2
dudvdw

throughout this paper, where gi, j is the (i, j) entry of
G, the superscript of gi, j denotes the default value at
the rest shape (t = 0), and ci, j serves as the weighting
function (Terzopoulos and Fleischer 1988).
The discretization of free-form solids will transform
Eq. (5) to Lagrangian dynamics of all mass points:

Md̈+Dḋ+Kd= fd . (6)

Since the data point set of a solid is constrained by
control points, we obtain a new set of motion equa-
tions whose unknowns are p:

ATMAp̈+ATDAṗ+ATKAp=ATfd . (7)

Therefore, we can directly compute the acceleration
of the control points (p̈) based on the forces acting on
the lattice of the current data points d:

ATMAp̈+ATDḋ+ATKd= ATfd , (8)

ATMAp̈= ATfd−ATDḋ−ATKd , (9)

p̈= (
ATMA

)−1 (
ATfd−ATDḋ−ATKd

)
. (10)

4.4 Numerical integration

In order to achieve real-time, interactive perfor-
mance in our sculpting system, we employ an ex-
plicit integration method to steer our physical simu-
lation. At each time-step, the state of the system is
advanced based on the preceding states. The sum-
marized forces on the discretized lattice are applied,
and then the accelerations of the control points are
computed using Eq. (10).
The velocities ṗ of the control points are updated
according to the applied forces and material quanti-
ties (i.e., mass, damping, and stiffness). The control
points are moved to their new positions:

ṗ(t+∆t)= ṗ(t)+ p̈(t)∆t ,

p(t+∆t)= p(t)+ ṗ(t)∆t ,

where the variable t denotes time, and ∆t stands for
one time-step. The updated control point positions
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p(t+∆t) and their velocities are further used to up-
date the discretized model defined by d(t+∆t) =
Ap(t+∆t) and ḋ(t+∆t)= Aṗ(t+∆t).

5 Sculpting system

We have developed a prototype sculpting system
that allows users to interactively model, design, and
deform B-spline solids and subdivision solids in
real-time. This section details the implementation
issues.

5.1 Forces and constraints

The discretized dynamic model has material prop-
erties such as mass, stiffness and damping distribu-
tions. Currently, these values are distributed equally
throughout the solid in our sculpting system, al-
though it would be simple to extend our implementa-
tion to permit heterogenous distributions. The mass
points are connected to their immediate neighbors
through springs. These springs correspond to just
the diagonal entries of the metric tensor G, which
seek to maintain the Euclidean distances between all
neighboring points. However, nearest-neighbor con-
nections would not sufficiently constrain the overall
deformation of the solid due to the lack of control
of off-diagonal entries in G (which attributes to dif-
ferential quantities of local angles). For this reason,
we incorporate an additional set of virtual springs
into conventional mass–spring systems. These vir-
tual springs, whose stiffnesses may be different from
normal springs, are intended to help maintain inter-
nal angles of each face, and thereby minimize the
volumetric distortion of a solid object. Note that,
since the stiffness matrix K (derived from E) is
a function of s and is extremely complex due to
the non-linear nature of E, it would be nearly im-
possible to achieve real-time sculpting performance
if the system were to assemble it at each time-step
based on the energy functional E. Therefore, our
mass–spring configuration explained above only in-
tends to achieve the objective of minimizing the vol-
umetric distortion (characterized by

∣∣G−G(0)
∣∣) in

an approximate sense. More accurate implementa-
tions based on the finite-element method would be
more desirable for certain applications such as en-
gineering design and analysis. Such approaches are
currently under investigation.

Fig. 7. The virtual and normal springs associated with
a typical face of a lattice. Solid circles: mass points; solid
squares: virtual points. The position of mass point m1’s
virtual point, v1, is defined as the average of the positions
of m1’s neighboring mass points: v1 = 1

2 (m2+m4)

Figure 7 illustrates an example of four virtual springs
for a single face element. For each point m of each
face in the finest lattice, we introduce a correspond-
ing virtual point, v, whose location is defined as the
mid-point of the two points adjacent to point m in the
same face. One end of the virtual spring is attached to
m and the other end to the virtual point. The location
of the virtual point is updated dynamically as the ac-
companying positions of the two points evolve over
time. The rest length of the spring remains constant
during the entire sculpting process, however. The vir-
tual springs resist any changes in their corresponding
internal angles for each face, and thereby assist in
minimizing local distortions. Note that unlike tradi-
tional “diagonal” springs, one end-point of a virtual
spring is a mass point and the other a massless point
whose position is determined by geometry. Figure 8
shows a typical cell with and without virtual springs.
In the interest of clarity, normal springs are drawn as
straight lines.
Figure 9 provides a global view of the major steps
in our system architecture. After an initial prepro-
cessing stage, the simulation runs in a loop and
continuously updates the state of the dynamic solid
object in real-time. The simulation process starts
with a preprocessing stage in which we subdivide
the solid to the requested level, pre-compute sev-
eral matrices and initialize the physical state. Dur-
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8

9

Fig. 8. A typical regular cell of a mass-spring lattice both with and without virtual springs. Normal springs are drawn as
straight lines in order to avoid cluttering the figure. Solid circles: mass points; solid squares: virtual points
Fig. 9. System architecture of the physical simulation

ing the simulation, the system evolves as follows:
First, all internal forces are reset to zero. Second, for
each spring, the force exerted on each mass point at-
tached to the spring is computed by Hooke’s law:
f = −k (l− l0), where l0 is the spring’s rest length.
Third, the forces exerted by the virtual springs are
taken into account, again using Hooke’s law. After
we compute the force exerted on the mass point that

is attached to a virtual spring, exactly one-half of
that force is applied in the opposite direction to each
of the endpoints that define the virtual point’s posi-
tion (see Fig. 10). This is done in order to preserve
total internal energy. The sum of all forces exerted
on a mass point is then subtracted from any exter-
nal user-applied forces on the point. A damping force
is applied uniformly over all mass points to prevent
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10

11

Fig. 10. The user exerts a force f on a mass point, and the virtual spring causes additional forces to be applied. (Note that
f1+ f2 =−f)
Fig. 11. Matrices d, A and p are partitioned to speed up the simulation

oscillations and to bring the system to an eventual
rest state. We then divide the force acting on each
point by the mass in order to compute the point’s
acceleration. The positions of the virtual points are
updated. Finally, we compute the accelerations of the
control points using Eq. (10) and update their po-
sitions. At any time during the simulation, the user
may modify the object’s topology, and the system
will rebuild the necessary data structures to effect the
change.

5.2 Fixed regions and local modifications

For large control lattices, our model has the po-
tential of being computationally expensive due to
a very large number of mass points. In order to im-
prove system performance, our model can be mod-
ified to constrain a set of selected control points
that are attributed to certain fixed regions. This re-
duces the amount of data that needs to be processed
by the system and thereby increases the simulation
speed. This reduces the size of all matrices, which
decreases the time required to perform expensive
matrix multiplications. In addition, by fixing con-
trol points, we reduce the number of mass points
and springs that need to be examined during the
physical simulation. That is, if a mass point’s po-
sition is determined solely by fixed control points,
it need not be processed by the numerical integra-
tion phase of the algorithm. Such modifications also
speed up the simulation and enable the designer
to make changes only in the localized region(s) of

his/her interest without affecting a large portion of
the solid object.
The necessary modifications to the matrices are
fairly straightforward. We break the free and fixed
portions of the model into two matrix–vector multi-
plications that we can then add together. When we
fix a control point, we delete its components in p
and its corresponding column in A. For each data
point that becomes fixed, we remove its component
in d as well as its corresponding rows in A and fd.
We also delete its rows and columns in M, D and
K. Note that we can consider a data point as “fixed”
only when all of the control points that define its po-
sition are fixed. Specifically, we separate each of p
and A into two matrices: p1, p2, A1 and A2, where
p1 and p2 contain the positions of the free and fixed
control points, respectively, and A1 and A2 contain
the weights for the free and fixed control points,
respectively. The familiar d = Ap is replaced with
d = A1p1+A2p2 so that the positions of the fixed
points in p2 correctly influence the positions in d.
Figure 11 illustrates this change. Vector d1 contains
the positions of the free points from d. Note that
there is no need to assemble a second matrix for the
fixed points of d, since they will not appear in any
matrix multiplication.

5.3 Data structures

For the dynamic B-spline solid, no complicated data
structures were required to represent the model.
Most information was stored in arrays and matri-



K.T. McDonnell, H. Qin: Dynamic sculpting and animation of free-form subdivision solids 93

12a 12b 12c 12d

13a 13b 13c 13d

Fig. 12a–d. Original cube-like object a before and b after minor deformation caused by the rope tool. The user c highlights
and then d deletes a cell of the control lattice

Fig. 13a–d. The user a highlights several faces and then b extrudes material. The user c fixes the left side, front side and
underside of the solid and then d deforms it

ces. A subdivision solid requires a somewhat so-
phisticated data structure to store the adjacency and
connectivity information of the lattice. For this pur-
pose we used a modified version of the radial-edge
data structure (Weiler 1986; Muuss et al. 1991).
Given a point, edge, face or cell, this data struc-
ture can help one determine which components
comprise which elements, which elements are ad-
jacent to which elements, etc. This functionality
is achieved through the use of numerous arrays of
pointers.

5.4 Sculpting tools

Figures 12 and 13 demonstrate applications of some
of the sculpting tools in our system. The main sculpt-
ing tool in our system is a non-compressible rope
tool that permits the user to interactively deform the
solid. Through the use of a three-dimensional input

device, the user can select any vertex of the dis-
cretized lattice and drag it along any direction in
three dimensions. Forces acting on the given mass
point result in a solid deformation that behaves in
a physically plausible manner. We undergo a simple
linear search to determine which point in the lattice
is the closest to the current location of the three-
dimensional cursor.
We have implemented an extrusion tool for the sub-
division solid that lets the user grow protrusions
from the existing solid. After using the input de-
vice to select a face on the surface of the object,
the user presses a button in the GUI, and the sys-
tem creates a new cell in the control lattice and
affixes it to the highlighted face. The size of the
new cell is calculated based on the information
about the existing cell to which it is attached, and
it grows along the normal direction of the selected
face. The use of a radial-edge data structure (see
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Sect. 5.3) makes it easy to add and delete geometric
primitives (points, edges, faces and cells) from the
model.
Trimming is supported for the subdivision solid by
allowing the user to select any cell in the control
lattice and to subsequently remove it. This opera-
tion, as well as the extrusion process, entails recon-
structing most of the data structures that represent
both the geometry and physical properties of the ob-
ject. The topology, on the other hand, can be up-
dated quite easily because of the radial-edge data
structure.
We have also implemented a useful and simple fea-
ture that permits the user to instruct the system to
reset all of the rest lengths of the springs to their cur-
rent lengths. This has the effect of re-defining the rest
state of the system to its current state. In this way
we can deform an elastic object but force it to take
on a new rest shape at any time during the simula-
tion. Essentially, this causes a normally elastic ob-
ject to become temporarily plastic for the purpose
of sculpting. Note that the rest lengths of the vir-
tual springs must also be updated to their current
lengths.
Control points can be fixed at run-time by mov-
ing the cursor to the desired point and pressing
a button in the GUI. The matrices and other data
structures are re-assembled on the fly. Other pa-
rameters, such as spring stiffness and damping
factor, can be modified at run-time through the
GUI.

5.5 Results and time performance

We document the various solids sculpted in our sys-
tem and report their time performances in Tables 1
and 2. The test platform was a Microsoft Windows
NT PC with a single Intel Pentium III 550 MHz CPU
and 512 MB RAM. As one would expect, the update
time grows linearly with an increase in the number of
control points, since a mass–spring lattice lies at the
core of the physical model.

6 Conclusions

We have presented a novel dynamic framework for
deforming and sculpting free-form solid objects. The
primary objective was to develop a physics-based
manipulation approach for popular and powerful

Table 1. Various example B-spline solids deformed in our sys-
tem, their sizes, and their time performance. Data points: the
number of sampled points in the discretized B-spline volume.
Update time: the number of milliseconds the program takes to
execute one full time-step

Control Data Update
points points time (ms)

4×4×4 10×10×10 40
4×4×4 12×12×12 61
4×5×6 10×10×10 41
5×5×5 10×10×10 61
5×5×5 12×12×12 92
6×6×6 10×10×10 61
6×6×6 12×12×12 111

solid modeling. We have devised a dynamic algo-
rithm and have implemented a system that permits
physically plausible deformation and manipulation
of virtual clay expressed by either B-spline or by
subdivision solids. The use of a simple, efficient nu-
merical solver enables the system to perform in real-
time. The virtual springs minimize local distortion of
the solid by resisting change in internal angles. Using
the dynamic modeling approach, graphic modelers
can naturally enforce various functional and aes-
thetic requirements on a free-form solid without the
need to explicitly manipulate the control vertices.
Therefore, general users are freed from comprehend-
ing the underlying complex geometric structure and
abstract mathematical formulations. Moreover, they
are provided with a set of intuitive tools that af-
ford a natural interface for interacting with a solid
object. Our experiments have demonstrated the ap-
plicability of the dynamic modeling techniques in
solid modeling. Our formulations, algorithms, and
system techniques are very general in the sense that
they can be applied to arbitrary parametric or subdi-
vision solids in a hierarchical and adaptive fashion.
We envision several generalizations resulting from
our current results in the near future, including ex-
tensions to other subdivision schemes and to other
physical domains, such as fluid dynamics and heat
transfer. Local or adaptive subdivision of a free-
form solid would permit users to sculpt finer details
and smaller features in localized regions of the limit
solid. The use of an efficient implicit solver in our
sculpting system would afford larger time-steps in
physical simulation. More sophisticated sculpting
tools would enable users to create a wider array of
shape variations for free-form solids with ease.
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Table 2. Various subdivision solids sculpted in our system, their sizes, and their time performance. Initial cells: the number of
geometric elements in the control lattice; data cells: the number of elements in the finest subdivided lattice

Sub. Initial Data Update
Model name level cells cells time (ms)

Cube (43) 1 27 216 10
Cube (43) 2 27 1728 72
Torus 2 8 448 20
Torus 3 8 3584 122
Gear 2 16 960 42
Tetrahedron with holes 3 1 1744 61
Cube with holes 2 20 1280 61
Soccer player 2 24 1536 92
Cactus 2 26 1664 94
Spiked object 1 75 600 71
Holed object 1 135 1080 189
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