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Figure 1: Harmonic volumetric mapping from a solid polycube model(a) to the solid Buddha model(b). (c) is the color-coded distance field
of the Buddha interior. This color-coded distance field is transferred from the Buddha to the polycube model as shown in (d). (e) and (g)
show the tetrahedral mesh of the polycube model with two different cross-sections. It is utilized to remesh the solid Buddha model; and the
results are visualized with corresponding cross-sections in (f) and (h), respectively.

Abstract

Harmonic volumetric mapping for two solid objects establishes a
one-to-one smooth correspondence between them. It finds its ap-
plications in shape registration and analysis, shape retrieval, in-
formation reuse, and material/texture transplant. In sharp contrast
to harmonic surface mapping techniques, little research has been
conducted for designing volumetric mapping algorithms due to its
technical challenges. In this paper, we develop an automatic and ef-
fective algorithm for computing harmonic volumetric mapping be-
tween two models of the same topology. Given a boundary mapping
between two models, the volumetric (interior) mapping is derived
by solving a linear system constructed from a boundary method
called the fundamental solution method. The mapping is repre-
sented as a set of points with different weights in the vicinity of
the solid boundary. In a nutshell, our algorithm is a true meshless
method (with no need of specific connectivity) and the behavior of
the interior region is directly determined by the boundary. These
two properties help improve the computational efficiency and ro-
bustness. Therefore, our algorithm can be applied to massive vol-
ume data sets with various geometric primitives and topological
types. We demonstrate the utility and efficacy of our algorithm in
shape registration, information reuse, deformation sequence analy-
sis, tetrahedral remeshing and solid texture synthesis.
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1 Introduction

With the rapid development of modern 3D digital acquisition tech-
niques, more and more volumetric objects are routinely obtained
and stored in shape repositories. How to effectively analyze, com-
pare, and search these objects and reuse their information becomes
a technical challenge in the fields of graphics, vision, and computer
aided geometric design. The difficulties stem from the fact that (1)
shapes of the modeled objects vary significantly, (2) they are ac-
quired from different viewing positions, and (3) oftentimes shapes
are deformable with time-varying behaviors. One viable approach
for the matching and analysis purpose is to establish the correspon-
dence between objects of interest. Towards this goal, we need either
a registration process between objects or a parameterization tech-
nique from objects onto certain canonical domains, both of which
are very difficult due to the geometric and topological complexity
of the underlying volumetric objects. Fundamentally, building the
correspondence between objects is equivalent to seeking a mapping
from one domain to another, which becomes one of the key issues
nowadays in graphics and solid modeling fields. Two dimensional
surface mappings and three dimensional volumetric mappings are
most relevant and deserve extensive research investigation.

Computing correspondence between two surfaces has been widely
studied, usually for surface deformation or morphing purpose. Its
variation, parameterizing a surface onto planar domains also be-
comes a central research topic in the graphic and modeling area.
This arose from applications such as texture mapping; and it aids in
many scientific computations such as providing domains for con-
tinuous surface spline construction and physically-based simula-



tion or deformation. In reality, despite the necessity of surface
mapping techniques, interior volume data carries abundant infor-
mation including material, density, texture, etc. (beyond pure ge-
ometric information). Not only the thin-shell of the object but the
whole solid model should be taken into account in many cases of
solid modeling, shape analysis, and physically-based computation.
For example, most of the physically-based deformation techniques
are volume-driven. Volumetric mapping between objects instead of
surface mapping, serves as a better and more accurate tool for this
task. In spite of this strong need, due to its technical challenges
and computational complexity, much less work has been actually
carried out in volumetric mapping compared with the surface case.
In this paper, we aim to pursue a robust, efficient, and accurate al-
gorithm to compute the harmonic volumetric mapping between two
solid objects. We make use of the boundary method, in which the
behavior of the interior region of the volume data is determined
only by its surface boundary, thus naturally reduces this volume
problem to that of its boundary surface scale. The harmonicity of
the mapping is guaranteed by the fundamental solution method.

Harmonicity of the maps characterizes smoothness, which is a nat-
ural phenomenon that depicts the minimized physical energy con-
figuration that arises from the difference between two shapes. In
the surface case, harmonic mapping tries to achieve this by vanish-
ing on the source surface the Laplace-Beltrami operator. Intuitively
speaking, finding a harmonic mapping between two surfaces with
fixed boundary correspondence is like computing the final deforma-
tion of a rubber membrane. The membrane has the source surface
as its relaxed shape configuration, and is wrapped onto the target
shape with certain fixed boundary constraints. The mapping that
leads to the physically-natural final deformation should minimize
the harmonic energy and is what the algorithm aims to achieve.
Similarly, for harmonic volumetric mapping, we fix the boundary
mapping, which is now a surface mapping between the two given
solid objects. Then we seek a smooth interior region mapping by
enforcing 3D Laplacian everywhere to be zero. This is equivalent
to arriving at the final stable configuration of a solid rubber subject
to its boundary shape constraint.

Unlike the surface case, the variational procedure that minimizes a
predefined energy needs to adjust a much larger number of points,
which usually results in an intolerable computation complexity.
According to the maximum principle of harmonic functions, inte-
rior value of a smooth field is determined by its boundary setting.
Therefore we can use a boundary method called method of funda-
mental solution (MFS) to solve this problem, hence reducing the
volumetric solid problem to just the boundary surface scale. To our
best knowledge, this is the first work in the computer graphics area
that MFS is employed to solve the volumetric mapping problem.

Several applications are used to demonstrate the efficacy of our
mapping technique. These applications also show the importance
of the volumetric harmonic mapping. The first and natural applica-
tion is to use this correspondence to establish a registration between
two solid models. Information on one model can be transferred to
another; thus material, texture and disparate functions defined on
a volume domain can be transplanted and reused easily. With the
registration being established, we can also measure the distance be-
tween shapes naturally by the energy required to deform one solid
object to the other. We are able to visualize the deformation en-
ergy distribution, which aids in shape and deformation sequence
analysis. Second, a solid parameterization can be computed once
we have the mapping between a solid object and a canonical 3D
domain. We transplant the tetrahedralization of standard regular
shapes such as polycubes onto other objects. Such a remeshing
mechanism provides a highly regular tetrahedron structure for com-
plex solid objects, which makes the geometry operations and com-
putations more efficient, and suitable for graphics hardware accel-

eration. Third, our method can be used for a solid texture synthesis,
which creates solid texture from the object’s boundary surface tex-
ture mapping.

Our specific contributions are threefold:

1. We develop a simple and efficient algorithm that can robustly
and automatically compute the harmonic volumetric mapping
from one volumetric object to another.

2. To the best of our knowledge, this is the first attempt to bring
the fundamental solution method into the graphic modeling
community. The technique is an efficient meshless bound-
ary method with great potential. Earlier work provides some
theoretical analysis from the mathematics and mechanical en-
gineering point of view, but it lacks experimental validation.
We conduct experiments on the problem of computing har-
monic volumetric mapping using this method; and we provide
some valuable suggestions of using this method in the model-
ing area.

3. We demonstrate our harmonic volumetric mapping with sev-
eral applications, which not only illustrate our mapping re-
sults, but also show the strong potential of volumetric map-
ping as a tool for future graphics and modeling research.

We will briefly review the related literature in Section 2. Then we
introduce the theory and algorithm of our method in Section 3, fol-
lowed by Section 4 with some implementation details and property
discussions. Finally, we demonstrate our experimental results with
some applications in Section 5 and conclude our work in Section 6.

2 Related Work and Background Knowledge

Harmonic maps have been extensively studied in the literature of
surface parameterization. It is addressed from the point of view of
minimizing Dirichlet Energy. The discrete version of harmonic en-
ergy was first proposed by Pinkall and Polthier [Pinkall and Polth-
ier 1993] and later introduced to computer graphics field in work
of Eck et al. [Eck et al. 1995]. By discretizing the energy de-
fined in [Pinkall and Polthier 1993], Desbrun et al. [Desbrun et al.
2002] constructed free-boundary harmonic maps. More harmonic
and conformal maps are studied and surveyed by Floater and Hor-
mann [Floater and Hormann 2005]. The harmonic maps between
surfaces arose from shape blending [Kanai et al. 1998] and are
widely used in shape morphing application later [Lee et al. 1999;
Michikawa et al. 2001; Praun et al. 2001; Kraevoy and Sheffer
2004; Schreiner et al. 2004].

Harmonicity in volumetric sense is similarly defined as the vanish-
ing Laplacian, representing the smoothness of the mapping func-
tion. Wang et al. [Wang et al. 2004b] studied the formula of har-
monic energy defined on tetrahedral mesh and computed the dis-
crete volumetric harmonic maps via a variational procedure. Ju et
al. [Ju et al. 2005] generalized the mean value coordinates [Floater
2003] from surfaces to volumes and built a smooth volumetric in-
terpolation based on this.

We construct the mapping through a meshless procedure by using
a boundary method called method of fundamental solution (MFS).
Notable work among boundary methods for solving elliptic partial
differential equations (PDEs) includes the classical boundary in-
tegral equation and boundary element method (BIE/BEM), which
has been widely used in many engineering applications [Banerjee
1994], and was introduced into computer graphics for the simula-
tion of deformable objects in [James and Pai 1999]. One of the
major advantages of the BIE/BEM over the traditional finite ele-
ment method (FEM) and finite difference method (FDM) is that



only boundary discretization is usually required rather than the en-
tire domain discretization needed for solving the PDEs numerically.
Compared with the BIE/BEM approach, the MFS uses only the fun-
damental solution in the construction of the solution of a problem,
without using any integrals over boundary elements. Furthermore,
the MFS is a true meshless method, since only boundary nodes are
necessary for all the computation. “Meshless” has the advantage of
simplicity that neither domain nor mesh connectivity is required in
storage and computation; so it becomes very attractive in scientific
computing and modeling [Belytschko et al. 1996; Guo et al. 2006].
A comprehensive review of the MFS and kernel functions for solv-
ing many elliptic PDE problems was documented in [Fairweather
and Karageorghis 1998].

3 Theory and Algorithm

To compute a volumetric map ~f from a given solid object M1 to
another M2 is equivalent to building up a smooth one-to-one cor-
respondence between them. The boundary constraint is a surface
mapping ~f ′ from the boundary surface of M1, denoted as ∂M1, to
the boundary surface of M2, ∂M2.

Our problem setting is in R
3, so the mapping ~f(p) = q (p ∈ M1,

and q ∈ M2) can be decomposed into three components for three
axes as f1, f2, and f3. In each direction, fi maps the point p onto
a component qi of q. This problem is reduced to the computations
of three separate fi, with boundary mapping constraints in each
corresponding axis.

3.1 An Intuitive Explanation of Our Ideas

We first introduce our ideas in an intuitive way from the electro-
statics point of view. Our target is the smooth mapping in each
direction: fi. It is just like building up a smooth scalar field defined
in the region M1 with given boundary conditions. This smoothness
can be simulated using an electric field. Many electric particles are
placed outside of M1; each of them has some amount of charges.
If the electric field of these particles simulates the boundary condi-
tion(or in other words, we make the electric potential on the bound-
ary surface ∂M1 to have the fi’s boundary constraint value); then
we can use this electric particle system to simulate our mapping,
which is rigorously written as a partial differential equation with
boundary conditions in Section 3.2. The electric field provides a
correct simulation for our problem because the electric field is har-
monic, and it satisfies the vanishing Laplacian everywhere in R

3,
except for the positions where these particles are placed. There-
fore, we also call these particles singularity points or source points,
and we place them outside of M1.

Since the electric field guarantees the vanishing Laplacian every-
where, we only need to enforce the boundary conditions with these
particles. If we fix their positions, how many charges each particle
should carry are the freedoms we try to solve in order to enforce the
boundary constraint. When all these freedoms are settled down, the
value of fi on any interior point is the electric potential in that po-
sition. In Section 3.2, we will show the kernel function of the fun-
damental solution method to 3D harmonic problem has the same
formula of how we compute potential in the electric field.

Intuitively, if we have dense enough particles placed outside of M1,
a boundary condition is always able to be well approximated, ex-
cept in some highly discontinuous boundary regions. For more de-
tails we refer readers to [Garabedian 1998].

3.2 Problem Formulations

We now formulate the volumetric mapping problem as follows:

Given a mapping ~f ′ between the boundary surfaces ∂M1 and ∂M2:
~f ′(p) = q, p ∈ ∂M1,q ∈ ∂M2, our goal is to compute a mapping
~f :M1 →M2 such that

{
∆~f(p) = 0 p ∈M1,
~f(p) = ~f ′(p) p ∈ ∂M1.

where the∆ is defined continuously in 3D as

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

and ∆~f = 0 for ~f = (f0, f1, f2) is equivalent to ∆fi = 0 for all
i = 1, 2, 3.

Since ∆ is a linear self-adjoint differential operator, we can com-
pute its Green Function: given ∆fi(x) = gi(x), we denote ∆−1

as the inverse of the operator∆,∆∆−1 = I where I is the identity
operator; and we can write the solution as fi(x) = ∆−1gi(x).

Note that ∆−1gi(x) =
∫
K(x,x′)gi(x

′)dx′, here the kernel
K(x,x′) is the Green’s function associated with ∆, and we want
that it satisfies ∆K(x,x′) = δ(x − x′) where δ(x − x′) is the
Dirac function.

The solution to the above equation can thus be written in terms of
the Kernel function as

fi(x) =

∫
K(x,x′)gi(x

′)dx′.

The Kernel function of 3D Laplacian operator is known to be
K(x,x′) = 1

4π
1

|x−x′|
, where |x − x′| denotes the distance be-

tween the points x and x′.

Since fi in the interior region is determined by the boundary val-
ues, we solve it using Fundamental Solution Method (MFS) [Fair-
weather and Karageorghis 1998] with the above kernel. The lin-
ear nature of Laplacian operator indicates that the boundary-based
method such as MFS is most suitable since the interior is now repre-
sented in an exact manner; we only need to enforce a given bound-
ary condition function ~f ′, or f ′i for each fi. The approximation
equation we use to evaluate fi on an interior or boundary point p is

fi(~w, ~Q;P) =

Ns∑

n=1

wn · k(P,Qn),P ∈M1. (1)

In the above equation, ~w = (w1, w2, ·, wNs
)T is the vector of un-

known coefficients we want to solve, representing the charges car-
ried by each particle, where Ns is the number of source points. In
addition, ~Q is a 3Ns-dimensional vector containing positions of
all Ns three-dimensional source points. As we introduced above,
Qn ∈ R

3, n = 1, · · · , Ns lies outside of M1, in other words, they
are placed on the boundary ∂M̃1 of a region M̃1 containing M1(i.e.
M1 ⊂ M̃1).

Note that, with arbitrary ~w, fi satisfies the Laplacian operator in an
exact manner in the interior region but usually violates the boundary
conditions. Hence we solve the set of expansion constraints ~w to
fit the boundary conditions. This fitting process reduces to a linear
system:

A~w = ~bi.



Matrix A has its element Ar,s = k(Pr,Qs) with Pr be-
ing the constraint point (also called collocation point) on the
boundary ∂M1, and Qs being the source point on ∂M̃1. ~bi
is the vector of images of these collocation points under the
boundary condition, i.e. ~bi = {bi1, bi2, · · · , biNc

}T =

{f ′i(P1), f
′
i(P2), · · · , f

′
i(PNc

)}T , where Nc is the number of
collocation points.

3.3 Algorithm

The algorithmic flow is as follows:

In: Two solid objects M1 and M2, and their boundary surface
mapping ~f ′ : ∂M1 → ∂M2.

Out: A harmonic volumetric mapping ~f : M1 → M2 s.t. on
boundary ~f(p) = ~f ′(p),p ∈ ∂M1 and in the interior re-
gion: ∂2 ~f

∂x2 +
∂2 ~f

∂y2
+ ∂2 ~f

∂z2
= 0.

(1) Place the source points and the collocation points. (Sec-
tion 4.1 and Section 4.5).

(2) Compute the coefficient matrix using the method of funda-
mental solutions with respect to source points Qs and collo-
cation points Pr according to Equation 1.

(3) Decompose the coefficient matrix using Singular Value De-
composition. (Section 4.2 and Section 4.6).

(4) Solve this linear system with input boundary mapping con-
straints ~f ′ using the decomposition result from Step (3), and
get the harmonic volumetric mapping ~f (represented by Equa-
tion 1).

The resultant volumetric mapping is harmonic, guaranteed by the
kernel function we used. It minimizes the harmonic energy, which
will be discussed in Section 4.3.1. We assume the initial bound-
ary surface mapping is given as an input, and in Section 4.4, we
briefly discuss how to obtain this surface mapping with existing
techniques.

4 Implementation and Discussion

4.1 Placing Source Points and Collocation Points

We place the source points uniformly on an offset surface near the
boundary surface of the solid model, as shown in Figure 2(b), the
following procedure is a robust way to create such a sampling. The
reason that we conduct the source points placement in this way will
be discussed in Section 4.5. The algorithm makes use of the implicit
form of the surface boundary of the solid model:

(1) Compute the distance field in R
3 of the given object bound-

ary surface ∂M1 using technique introduced in [Larsen et al.
2000]. We get a distance evaluation function dist(p) that the
signed distance from any point p ∈ R

3 to ∂M1 can be com-
puted efficiently.

(2) Build an offset surface ∂M̃1 using Bloomenthal’s polygoniza-
tion method [Bloomenthal 1994]. It takes an implicit dis-
tance evaluation function dist2(p) defined in R

3 as the input.
Therefore, to build the offset surface ∂M̃1 with distance d to
∂M1, we set such input function dist2(p) = dist(p) + d.

(3) Uniformly sample n points on mesh ∂M̃1.

(a) (c)

(b) (d) (e)

Figure 2: Volumetric harmonic mapping from the solid Igea model
to a solid sphere model. (a) The source and target solid objects are
shown. (b) Source points are placed on an offset surface. (c) and
(d) The harmonic energy distribution of the mapping is color-coded
and illustrated on two different cross-sections. (e) The deformation
energy distribution is illustrated over one cross-section.

The collocation points are chosen from the vertices p on the bound-
ary surface of source solid model(p ∈ ∂M1).

4.2 Solving the Linear System with the Dense Coeffi-
cient Matrix

As discussed in Section 3.2, we want to solve the linear system
A~w = ~b. Element in the coefficient matrix A is the value of the
kernel function on each collocation point, which is almost never
zero, making the matrix quite dense. The matrix may be ill-
conditioned [Ramachandran 2002], in which case, regular linear
system solvers such as Gaussian elimination or LU decompositions
often fail to produce a meaningful solution. Singular value decom-
position (SVD) is a stable and robust approach for accurate results
even when the coefficient matrix is ill-conditioned. Another advan-
tage is that once we have decomposed the matrix, we can use the
result for rapidly recomputing new mappings whenever boundary
conditions change. This efficiency also arises from the boundary
method, detailed discussion about this aspect will be given in Sec-
tion 4.6. More advantages of using SVD in MFS are discussed
in [Ramachandran 2002].

4.3 Energy of Volumetric Mapping

4.3.1 Harmonic Energy

Harmonic Energy measures the smoothness of the mapping. It
is measured by the integration of the square of the gradient over
the interior region domain. Both the source and the target models
should be normalized to unit size in volume before computing the
harmonic energy. The total harmonic energy of this mapping is

∫

M1

< ∇~f,∇~f > dx. (2)

We built a volumetric grid and compute the gradient of the mapping
on each grid point, then use the following formula to approximate



the energy:
∑

pu,v,w∈M1

||∇~f(pu,v,w)||
2 · vol(pu,v,w), (3)

where vol(pu,v,w) is the interior volume on grid point pu,v,w,
and vol(pu,v,w) equals to the volume of the intersection of M1

and the small grid cube Cubepu,v,w
centered at pu,v,w. Here,

the edge length of Cubepu,v,w
is the distance between two adja-

cent grids. We can use the volume of Cubepu,v,w
to approximate

vol(pu,v,w). With the grid sampling density increasing, the value
of Equation (3) is asymptotic to Equation (2). We use the sim-
ple volume grid data structure because it is easy to implement and
efficient in tracing values of its neighboring grid points: the gradi-
ent of the harmonic mapping on each grid point can be represented
by three vectors: ∇~f = (∇f1,∇f2,∇f3), so ||∇~f(pu,v,w)||

2 =
||∇f1||

2+ ||∇f2||
2+ ||∇f3||

2. In the example of Figure 2, the har-
monic energy distribution of the volumetric mapping is colorized
in (c) and (d) over two different cross-sections. The color-coding
scheme in our paper is as shown in the bar in (c): red represents
maximum while blue represents minimum.

4.3.2 Deformation Energy

Once a correspondence between two solid objects is created, the
interior voxel point’s deformation can be estimated easily. This
provides us a formal mechanism to compute the energy required
to deform one object to another. Later we will use this energy to
measure the distance between shapes in deformation sequences.

We compute the deformation energy starting from the classical
strain and stress tensor analysis. Green’s strain tensor ε is used to
quantify the local strain undergoing a 3-dimensional deformation.
If a point p is mapped to q, then the 3× 3 tensor ε has its elements
εij represented as

εij =
∂q

∂pi
·
∂q

∂pj
− δij ,

where 1 ≤ i, j ≤ 3 are indices in axis directions, δij is the Kro-
necker delta:

δij =

{
1 : i = j
0 : i 6= j

.

According to differential geometry, this strain tensor is invariant
under rigid transformation and vanishes under identity mapping.
The stress tensor represents the information of the internal forces
under the deformation. A simplified linear form of elastic stress
with the assumption of isotropy is defined as

σij =

3∑

k=1

λεkkδij + 2µεij ,

where λ and µ are two Lamé constants of material, respectively
representing rigidity and resistance to volume dilation change. For
example, in most of our experiments, we pick the parameter of rub-
ber, i.e., λ = 0.0335, µ = 0.0224. The elastic potential density η
on this point p is measured by

η(p) =
1

2

3∑

i=1

3∑

i=1

σijεij ,

representing the internal elastic energy under the shape change.
Similar to Equation (3), the total deformation energy of this vol-
umetric mapping is computed by

∑

pu,v,w∈M1

η(pu,v,w) · vol(pu,v,w). (4)

Figure 2(e) color-codes the deformation energy distribution of the
volumetric mapping from solid Igea model to the solid sphere.

4.4 Initial Boundary Surface Mapping

(a) (b)

(c) (d)

(e) (f)

Figure 3: Different boundary conditions lead to different volumetric
mapping results even for the same target object. Volumetric map-
pings from the solid Teapot model to a solid Cup model (a) under
two different boundary mapping conditions (see (c) and (e)) have
different harmonicity as shown in (d) and (f) (energy distributions
are depicted on the Teapot model respectively). (c) and (e) highlight
different surface mappings with magnified views.

Our proposed algorithm is simple and fully automatic once the ini-
tial boundary surface mapping is provided. Surface mapping tech-
niques [Kanai et al. 1998; Lee et al. 1999; Michikawa et al. 2001;
Praun et al. 2001; Kraevoy and Sheffer 2004; Schreiner et al. 2004;
Zayer et al. 2005] can be used to build up the initial boundary map-
ping. We hope this surface mapping creation can be simple and
automatic as well. On the other hand, the harmonic volumetric
mapping depends on the initial surface mapping. How to gener-
ate such a mapping and how the quality of this mapping affects the
volume mapping are worthy of more comprehensive research stud-
ies for this topic. Since the detailed discussion goes beyond the
focus of this paper, we will only briefly discuss how we get a suit-
able initial surface mapping. We consider mapping between solid
objects with the same topology, that is, the objects have pairs of
corresponding boundary surfaces. Consider the mapping between
each surface pair: (1) If the boundary surfaces are closed genus
zero surfaces, the conformal surface mapping suffices. This map-



ping can be computed/combined through the conformal mapping
between the surface and a sphere[Gu et al. 2004]. (2) If the sur-
faces are of higher genus, we prefer a globally smooth mapping
and compute their quasiconformal mapping as the initial boundary
condition using techniques introduced in [Li et al. 2007].

Volumetric mappings between two objects differ under different
surface boundary mapping conditions. Our experiment demon-
strates this in Fig 3. The harmonic volumetric mappings from
the solid Teapot model to the solid Cup model have different har-
monicity under two different boundary surface mappings(as shown
in (a)). We render the mesh connectivity for the points on the tar-
get boundary surfaces to better visualize the boundary condition
differences((c),(e)). The second boundary mapping condition is
smoother(e) than the first one(c); it leads to a volumetric mapping(f)
with smaller harmonic energy. The harmonic energy distributions
for two volumetric mappings are visualized on the Teapot model us-
ing a same cross-section. The color-coding scheme used in (d),(f)
is as the bar depicts in (b).

In the near future, we will examine the technical issue of how the
surface mapping and the volumetric mapping are related in a quan-
titative way, and how one mapping guides the computation of the
other. By adjusting the surface boundary mapping condition ac-
cordingly, we will pursue the free boundary volumetric mapping
with minimum harmonic energy.

4.5 Discussion on Source and Collocation Point
Placement

(a) (b)

Figure 4: Source Points Placement. Source points are sampled ei-
ther on a bounding sphere (a) or on an offset surface of the given
model (b).

One important issue that we have to address is how many source
points we need to use and where to place them. Using our elec-
tric field model, imagine that we are now trying to refine our con-
trol of the electric field behavior using electric particles, the more
particles (i.e., source points) we have, naturally the more refined
result we should be able to get with the increasing computational
complexity. On the other hand, numerically, their positions also
matter. If all source points are placed in one position, there would
be no way that we can achieve more satisfactory results with more
source points. The positions of these source points actually deter-
mine the behavior of the coefficient matrix A, which can be highly
ill-conditioned [Kitagawa 1988]. The condition number of the ma-
trix generally increases as the distance from M̃1 to M1 increases,
though the accuracy of the MFS approximation increases under this
situation [Golberg and Chen 1999]. That is to say, distant source
points give a smoother approximation, but unavoidably introduce
larger numerical error. Theoretically optimal results of source posi-
tions are unknown at present; current literatures usually suggested
placing source points uniformly on a sphere within three times the
diameter of M1 [Golberg and Chen 1999][Bogomolny 1985], an-
other type of suggestions [Tanklevich et al. ] is to place them on a

similar offset surface of M1. The real-world computations in me-
chanical engineering field usually choose the source and collocation
points in a trial-and-error manner or with the help of human experi-
ences. Inspired by the above pioneering work, we use experimental
results to find a suitable setting rule for our mapping problem, and
guide the source and collocation points placement in order to bridge
the gap between theoretical results and practical common senses.

We conduct experiments in the following three aspects to find a
suitable configuration for our volumetric mapping problem:
(1) the shape of the surface M̃1(source points are sampled on an
offset surface or a sphere);
(2) the distance from M1 to M̃1;
(3) the number of the source points and collocation points.

The experimental results are shown in charts plotted in Figure 5.
In this figure, Chart (a) plots the boundary constraint error when
source points are placed on a sphere (see Figure 4(a)), while
Chart (b) shows the case when source points are on an offset surface
(see Figure 4(b)). In Chart (a), the x-axis is the radius of the sphere,
denoted as R-Ratio, represented by the ratio of the sphere radius
over the object size. y-axis shows the boundary constraint error, de-
noted as C-Error. C-Error is computed using:

∑
p
||f ′(p)−f(p)||2

for all collocation points p. C-Error measures the total fitting er-
ror of our volumetric mapping to the given boundary constraints.
Therefore we use its value to measure the quality of our mapping.
Chart (b) shows the case that source points are placed on the offset
surface; the x-axis is the distance from ∂M̃1 to ∂M1; its value, de-
noted as O-Distance, is the ratio of the distance over the source
model size. Their corresponding C-Errors are plotted in y-axis.
Chart (c) shows the harmonic energy values (y-axis) under the dif-
ferent offset surface settings (x-axis).

Our statistical data demonstrates that: (1) The closer to the model
boundary source points are placed, the smaller the boundary con-
straint error can be achieved. (2) Placing source points on the
sphere is not as good as on an offset surface. Because we require
the object is totally inside the interior of the sphere, the radius of
the sphere needs to be large enough and the average distance will
be much larger compared with the offset surface placement. (3)
If source points are placed on an offset surface too closed to the
model, the approximation for the fundamental solution is becom-
ing unstable, which is shown from the values of their harmonic
energies (Chart (c)). Therefore, in our experiments and applica-
tions, we usually place source points on an offset surface with 0.1
O-Distance.

Chart (d) further shows how the numbers of source points and con-
straint points affect the boundary constraint errors. We define two
ratios cRatio and sRatio, respectively. The cRatio is defined
as the number of collocation points over the number of boundary
points. The sRatio is defined as the number of source points over
the number of boundary points. The x-axis is the sRatio, and the
y-axis shows the boundary constraint error. Different curves show
the cases using different cRatio. We can clearly see from this chart:
the larger these ratios are, the smaller boundary constraint error will
be achieved. On the other hand, fewer source points create an over-
constraint system which will be solved in a much shorter time. In
our experiments, we usually set cRatio larger than 0.8 but sRatio
around 0.6 for an efficient but well-fitted results for large models.

Unlike fixing the source/collocation points as discussed above, the
positions of source points and collocation points can also be con-
sidered as unknowns in an optimization procedure, in which case
they have to be computed along with the unknown weights during
the optimization procedure. This necessarily complicates the entire
solver and makes the computation procedure highly non-linear.
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Figure 5: Volumetric mappings under different source/collocation point configurations. (a) shows the boundary constraint error(C-Error)
under different R-Ratio when source points are placed on spheres. (b) and (c) plot the constraint error(b) and harmonic energy(c) respectively
under different O-Distance when source points are placed on offset surfaces. In (d), constraint error under different numbers of source points
and collocation points are compared. The x-axis is the sRatio. The y-axis shows the constraint error. Different curves show the cases under
different cRatio.

Near a boundary region whose target shape is seriously wrinkled,
the harmonic mapping may map interior points to the outside of the
target object if the source/collocation points nearby are not dense
enough. Such situation can be effectively remedied by increasing
the density of source/collocation points around this region adap-
tively.

4.6 Accelerating Volumetric Mappings for Time Series

We decompose the coefficient matrix A from the MFS using Sin-
gular Value Decomposition (see Section 4.2), which provides an
efficient way to recompute the volumetric mapping with different
boundary conditions. Under a new boundary configuration ~b′, the
corresponding ~w′ for the new volumetric mapping can be com-
puted directly from A−1 × ~b′. With the decomposition results,
A−1 = V ×W−1×UT , where the matrix W−1 is a diagonal ma-
trix, can be computed directly. Therefore, the decomposition ma-
trix results can be reused under different boundary conditions. This

shows one more advantage of the boundary method over variational
methods, which apply iterations on the entire volume whenever the
boundary condition is given. Under a new boundary condition, vari-
ational methods can not avoid a time-consuming recomputation. In
our applications shown later in Section 5, we take full advantage of
our computational efficiency to compute a large number of sequen-
tial volumetric mappings in a temporal deformation sequence, by
decomposing A only once.

4.7 Comparison with Previous Work

We compare our mapping results with the method introduced in
[Wang et al. 2004b]. In their work, the discretized harmonic energy
is defined on the tetrahedral mesh to guide their variational proce-
dure. Once we compute our mapping, we can evaluate the mapping
on any interior point using Equation (1). We tetrahedralize our vol-
ume data (in our work we produce the tetrahedralization using [Si
2006]), then compare our results with Wang et al.’s work in [Wang
et al. 2004b]. As shown in Figure 6, the volumetric mapping from
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Figure 6: Comparison with previous work. The initial tetrahedralization of solid Igea model is shown in (a). In (b), the tetrahedral mesh on
the solid sphere is transferred from the solid Igea model using our volumetric mapping algorithm. The result computed using Wang et al.’s
variational technique is shown in (c). The harmonic energy distributions of two volumetric mappings are color-coded on resultant tetrahedra
using a uniform color-coding scheme as shown in (d).

(a) (b) (c) (d)

Figure 8: Harmonic volumetric mapping from the solid Sculpture
model(a) to the polycube model(b). (c) color-codes the distance
field of the solid polycube interior. In (d), the color-coding of the
transferred distance field is visualized on the solid Sculpture model.

the solid Igea model (a) to a solid sphere can be visualized by trans-
ferring the tetrahedron mesh of the Igea to the solid sphere. Our
resultant tetrahedron mesh on sphere (b) appears to be smoother
than the mesh produced in [Wang et al. 2004b] (c). This smooth-
ness can also be visualized from the distributions of the discretized
harmonic energy of volumetric mappings, which are color-coded in
(b) and (c) using a uniform scheme (d).

Another important advantage is the meshless property of our al-
gorithm. The discretization accuracy and the computation time of
[Wang et al. 2004b] depends heavily on the tetrahedralization qual-
ity of the source object: dense tetrahedralization necessarily results
in high computational complexity; and irregular tetrahedralization
leads to numerical error in approximating discretized harmonic en-
ergy. In contrast, our algorithm is independent of the connectivity,
and thus is more flexible and can be adaptive to any volumetric data
sets with spatial-varying resolution.

5 Experimental Results and Applications

Now we show some experimental results of harmonic volumetric
mappings in Figure 7, Figure 1 and Figure 8. In Figure 7, a solid
Pierrot model (a) is mapped to a solid sphere (b). The mapping re-
sult can be visualized using (c) and (d). In (c), the distance field
of the interior region of the solid sphere is color-coded using the
scheme shown in Figure 2(c). Here in Figure 7(d), each volume
point p in solid Pierrot model (a) is mapped to an interior point q
in solid sphere model (b). We transfer the color of q to the position
of p. This color-coded distance field on source model transferred

from the target model provides an intuitive way to visualize the vol-
umetric mapping result. We call this visualization method Color-
coded Distance Field Transfer. One more mapping example from
a solid Max-Planck model (e) to the solid sphere (b) is computed
and visualized in the same way as shown in (f). Another method
to visualize volumetric maps is by the tetrahedral mesh. In (g), a
tetrahedralization of solid Max-Planck model (e) is illustrated in
one cross-section. Under the volumetric mapping, each vertex of
the tetrahedral mesh is mapped to a new position inside the solid
sphere. For tetrahedra shown in the cross-section in (g), their ver-
tices are mapped to new positions as shown in (h).

In Figure 1, we visualize the volumetric mapping from a solid poly-
cube model (a) to a solid Buddha model (b). (c) color-codes the
distance field of the interior region of Buddha; and (d) shows the
transferred color-coded distance field. Figure 8 shows another vol-
umetric mapping example from a Sculpture model (a) to the poly-
cube model (b). (c) color-codes the distance field of the polycube
while (d) shows the transferred color-coded distance field.

5.1 Information Reuse

Figure 9: Volumetric harmonic mapping for information reuse. The
material on the solid Moai model is preserved when it deforms dur-
ing the animation.

Once the correspondence between two volume models has been
established, the target object can easily reuse the information the
source volume carries. The above Color-coded Distance Field
Transfer method already demonstrates this. Figure 9 shows another
example. When the Moai model deforms, the material information
on the original model is preserved by the deformed model during
the deformation. We can see from this example that the material
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Figure 7: Volumetric mappings between solid objects and the solid sphere. The source Pierrot model is depicted in (a); the target model is
a solid sphere(b). (c) shows the color-coded distance field in the solid sphere. (d) visualizes the volumetric mapping: each point p in the
original model of (a) is mapped to a point q inside the solid sphere; the target position q’s color (as shown in (c)) is transferred and depicted
on the corresponding p position(as shown in (d)). Another example on the volumetric mapping from the Max-Planck model (e) to the solid
sphere (b) is visualized in (f) by the same color-coded distance field transfer method. Tetrahedral meshes on the Max-Planck model (g) are
mapped into the solid sphere (h). Their corresponding cross-sections are visualized in (g) and (h).

information can be transferred and reused with the help of our vol-
umetric mapping. Information reuse and transfer have more poten-
tial applications in a larger scope, not just limited to material or
solid texture, but applicable for all kinds of volumetric functions.

The direct application with the already-computed correspondence
is registration, with which we can measure the difference between
two objects in a quantitative way and perform both qualitative and
quantitative analysis based on this matching. We will discuss this
in the following sub-section.

5.2 Shape Matching and Analysis

We use an example to demonstrate the application of volumetric
mappings on shape matching and analysis. In this experiment, we
analyze a horse gallop deformation sequence. We use the vertex
correspondence provided in the deformation sequence as the ini-
tial boundary surface mapping to compute the volumetric harmonic
mappings from the referenced initial object to all of its sequentially
deformed objects. Then we compute their deformation energies
based on these mappings. This energy naturally measures the dis-
tance between the deformed shape and the original model. Since
mappings from object to object have been created, not only a nu-
merical distance value between objects, but also the error distribu-
tion can be illustrated on the solid model showing the stretching
and bending of the deformation. Note that this procedure can be
measured efficiently by reusing the decomposition results directly
(see Section 4.6).

The deformation energies of the horse gallop sequence are shown
in the Figure 10. We can easily see from the energy chart that there
are four running cycles in the data-set of the deformation sequence.

And with the deformation energy, we naturally measure how dif-
ferent each model is from the reference model. The distributions
of the deformation energy required from the reference model to the
deformed model can be color-coded and illustrated. Given a sam-
pled model in the deformation sequence, which regions have high
deformation energy concentration can be easily visualized from the
color-coded distribution of the deformation energy, as we depicted
on the original model with cross-sections.

5.3 Tetrahedral Remeshing

The tetrahedralization of an object can be transferred to another ob-
ject under the volumetric mapping. We call it tetrahedral remesh-
ing. As shown in Figure 1(e)-(h), we use the regular tetrahedral
mesh of a solid polycube model to remesh the solid Buddha model.
(e) and (g) show the tetrahedral mesh on the polycube; (f) and (h)
show the remeshed solid Buddha model. Tetrahedralization for reg-
ular shapes like polycubes can be easily provided. Such highly
regular connections offer great efficiency for geometry process-
ing and computation for physically-based deformations or simula-
tions [Bridson et al. 2005]. In addition, in order to take advantage
of graphics hardware acceleration, such as modern GPUs, regular
representation structure is always highly desirable.

5.4 Volume Texture Synthesis

Our method can also be used for volumetric texture synthesis. As
shown in Figure 11, given a 2D texture image, we get the sur-
face texture mapping, then the texture applied on the surface can
be smoothly propagated to the interior regions of solid objects. To
synthesize the interior texture, we only need to make a change on



Figure 10: Energy analysis of deformation sequences. The horse model is sequentially deformed. The deformation energies are calculated(red
circles). The distribution of the deformation energy required for each sequential model can be illustrated on the reference model.

(a) (b) (c)

Figure 11: Solid texture synthesis. The solid Pensatore model and
the image texture are shown in (a). The surface texture is firstly
mapped to the Pensatore model as illustrated in (b). We synthesize
the interior solid texture and illustrate a cross-section view in (c).

the boundary condition; instead of using the target boundary points
positions, we use the texture (u, v) coordinates. Figure 11(a) shows
an solid Pensatore model; and we map a 2D image texture onto its
surface as shown in (b). This texture is smoothly extrapolated into
the interior region using our method. (c) illustrates the synthesized
solid texture that can be used for decorating the solid interior.

6 Conclusion

We have presented a simple, robust, and fully automatic method
to compute harmonic volumetric maps based on a true meshless
boundary method called the fundamental solution method (MFS).
This appears to be the first attempt to bring this method into our
graphics and modeling community. We conduct experiments to
evaluate the performance of the fundamental solution method on the
harmonic volumetric mapping problem in this paper; also we sug-
gest the practical rules and develop the effective algorithm on the
MFS settings. Then we demonstrate our mapping results in several
applications, such as information reuse, deformation sequence anal-
ysis, tetrahedral remeshing and solid texture synthesis, all of which
in turn show the strong potential of harmonic volumetric mapping
in graphics and solid modeling fields.

Building correspondence between solid models and canoni-



cal/regular objects provides a natural mechanism to facilitate sci-
entific computations and graphical simulations. If we exploit the
regular structure of mapped volumetric domains(such as polycubes)
and utilize graphics hardware acceleration, physically-based simu-
lations (such as simulating volumetric solid deformations or fluids
in deformable bodies) can be efficiently performed.

As discussed in Section 4.4, our current volumetric harmonic map
depends on the initial boundary surface mapping. In Figure 3, we
show that the volumetric mapping and its boundary surface map-
ping are closely related to each other. The harmonic energy of the
volumetric map keeps decreasing with boundary surface mapping
getting smoother. In the near future, we will use the harmonic volu-
metric mapping to guide the variational process of surface mapping
towards the global energy optimization (both for boundaries and
solid interiors). Another possible extension is not to fix the posi-
tions of source points and collocation points. We can treat them as
unknown variables in the MFS procedure. Although this results in a
nonlinear optimization process, it may also lead to a free-boundary
volumetric mapping procedure for better mapping results.
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MÜLLER, M., KEISER, R., NEALEN, A., PAULY, M., GROSS,
M., AND ALEXA, M. 2004. Point based animation of elas-
tic, plastic and melting objects. In Proc. ACM SIGGRAPH/EG
Symp. Computer Animation, 141–151.
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