
Hierarchical D-NURBS Surfaces and Their Physics-based Sculpting

Meijing Zhang andHong Qin
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794–4400, USA

zmeijing| qin@cs.sunysb.edu

Abstract

In this paper, we present Hierarchical D-NURBS as a new
shape modeling representation that generalizes powerful, phy-
sics-based D-NURBS for interactive geometric design. Our
Hierarchical D-NURBS can be viewed as a collection of
standard D-NURBS finite elements, organized hierarchically
in a tree structure and subject to continuity constraints across
the shared boundaries of adjacent D-NURBS elements at
different levels. Hierarchical D-NURBS are amenable to the
flexible and powerful representation of curves, surfaces, as
well as higher dimensional geometric entities. The layered
and composite construction of Hierarchical D-NURBS af-
fords users the effective creation of local features and their
flexible, global/local control at different level of details. With-
in the framework of Hierarchical D-NURBS, users can inter-
actively sculpt NURBS geometry more intuitively and con-
veniently through both global and local toolkits. Based on
the data structure of Hierarchical D-NURBS, we have de-
veloped a prototype software equipped with various physics-
based toolkits in the form of geometric constraints and simu-
lated forces. Our modeling system allows users to undertake
the design tasks of point manipulation, normal editing, cur-
vature control, curve fitting, and area sculpting in interactive
graphics and CAD/CAM.

Keywords:
Physics-based Modeling and Sculpting, Shape Model-

ing, Computer Graphics, CAGD, NURBS, Deformable Mod-
els, Dynamics, Hierarchical Splines and Editing, Geometric
Constraint.

1 Introduction

Shape modeling is critical to a wide range of areas includ-
ing real-time interactive graphics, computer-aided geometric
design (CAGD), scientific visualization, medical imaging,
and virtual environments. NURBS have become ade facto

standard in commercial modeling systems because of their
power of representing both free-form shapes and commonly-
used analytic functions.

Conventional techniques for free-form surface modeling
is kinematic, and they are usually associated with the tedious
and indirect shape manipulation through time-consuming op-
erations on a large number of control variables such as con-
trol points and weights. In contrast, physics-based modeling
offers a superior approach to traditional free-form shape de-
sign that can overcome most of the limitations associated
with conventional geometric modeling techniques. Within
the physics-based framework, free-form geometric models
are equipped with mass contributions, internal deformation
energies, and other material properties. Users can interact
with the model geometry directly by exerting virtual forces.
The model responds to user interaction naturally subject to
physical laws and geometric constraints.

D-NURBS is a physics-based representation that aug-
ments NURBS geometry and its modeling techniques. Gov-
erned by Lagrangian mechanics, NURBS’ dynamic behav-
ior can produce physically meaningful, and hence intuitive
shape variation. This permits users to interactively manipu-
late the shape geometry not only through the traditional in-
direct fashion, such as adjusting control vertices and setting
weights, but also through direct physical manipulation, such
as exerting simulated force and enforcing local and global
shape constraints.

Despite many unsurpassed advantages of D-NURBS, cur-
rent state-of-the-art of D-NURBS techniques are yet to sup-
port the local control and the fine editing of localized regions
of interest on D-NURBS primarily because all the control
points and weights are organized only at one level. Although
local refinements based on the principle of knot-insertion
are possible, knot-insertion techniques oftentimes generate
more control points and weights than what designers actu-
ally need in order to maintain the tensor-product nature of
NURBS geometry. In addition, currently available point-

1



based sculpting toolkits for D-NURBS are essentially very
primitive. To further ameliorate D-NURBS potential in shape
modeling and geometric design, in this paper we develop
Hierarchical D-NURBS, which can enhance both the geo-
metric power and the dynamic flexibility of conventional D-
NURBS. In particular, our Hierarchical D-NURBS offer the
following advantages:

• It has a hierarchical structure, and each element within
this hierarchy is a NURBS patch (or a collection of
several NURBS patches).

• In a nutshell, it is a composite NURBS whose control
points and weights can be defined independently.

• It satisfies continuity criteria everywhere across the
NURBS parametric domain.

• Its parametric domain is the same as that of a tensor-
product NURBS.

• It permits the flexible creation of local features, and
facilitates both global and local control in a hierarchi-
cal way.

• It is applicable for the effective representation of both
curves and surfaces, and can be generalized to higher
dimensional primitives.

• At each level, extra new degrees of freedom (e.g., con-
trol points and weights) can be obtained through the
localizedknot-insertion algorithm applied to certain
sub-regions at the parent’s level. In contrast to knot-
insertion, however, control variables as well as new
NURBS patches arenot introduced outside the regions
of interest.

In this paper, we also develop interactive techniques and
implement a prototype software system to facilitate the di-
rect manipulation and interactive sculpting of D-NURBS sur-
faces. The key contribution of this paper is that we system-
atically formulate Hierarchical D-NURBS as a novel shape
modeling representation that generalizes well-established D-
NURBS substrate. Our software system and its associated
toolkits are all founded upon the novel formulation of Hier-
archical D-NURBS. Using our Hierarchical D-NURBS sculp-
ting system, users can intuitively apply various interactive
tools for NURBS editing, including directly manipulating
normal/curvature at arbitrary location, enforcing local and
global constraints at different levels, achieving feature-based
curve fitting, sculpting surface regions directly with tem-
plates, etc. With the formulation of Hierarchical D-NURBS,

users can easily edit the fine detail in a specified, local re-
gion of NURBS while maintaining other nearby regions un-
changed. The hierarchical structure provides users a more
intuitive and efficient way to undertake surface editing and
sculpting. For example, users can select an arbitrary point on
a surface of Hierarchical D-NURBS, and drag the point to
any desired location via mouse. The surface will deform ac-
cordingly subject to the point manipulation. Users can then
modify the normal/curvature of arbitrary point on the sur-
face, and the surface will converge to the shape with the de-
sired normal/curvature. Furthermore, users can choose vari-
ous curve tools and/or surface tools and apply them to sculpt
the surface directly.

The remainder of this paper is structured as follows. Sec-
tion 2 briefly reviews the prior work. In Section 3, we de-
tail the formulation of Hierarchical D-NURBS. Section 4
presents physics-based techniques of directly manipulating
D-NURBS surfaces with various forces and constraints. We
outline our system implementation and present our experi-
mental results in Section 5. Finally, Section 6 concludes the
paper.

2 Prior Work

Forsey and Bartels [6] proposed hierarchical B-splines and
pioneered the technique for local refinement of smooth sur-
faces in surface design. A geometric model of hierarchi-
cal B-splines can by defined by locally offsetting a stan-
dard tensor-product B-spline surface with a set of new, re-
fined B-spline basis functions. In hierarchical B-splines,
additional interior control points yield new degrees of free-
dom at the refined level within the surface hierarchy. Welch
and Witkin [19] developed the variational surface modeling
method. Gonzalez-Ochoa and Peters [8] formulated the lo-
calized hierarchical surface splines (LeSS), which can au-
tomatically maintain tangent continuity across the surface
and can be subsequently converted to either NURBS form
or a set of cubic triangular Bezier patches. Various methods
have been developed to generate fair surfaces which satisfy
multiple constraints and optimize an energy-based objective
function [19]. It is also possible to construct dynamic sur-
faces with natural behavior governed by physical laws [15].
Terzopoulos and Fleischer [16] demonstrated simple inter-
active sculpting using viscoelastic and plastic models. Cel-
niker and Gossard [3] developed an interesting prototype
system for interactive design based on the finite-element op-
timization of energy functionals. Bloor and Wilson [2] used
similar energies which can be optimized through numeri-
cal methods for B-splines. Celniker and Welch [4] inves-

2



tigated deformable B-splines subject to linear constraints.
Thingvold and Cohen [18] proposed to use elasto-plastic
mass-spring-hinge models on the B-spline control points.
Moreton and Sequin [11] interpolated a minimum energy
curve network with quintic Bezier patches by minimizing
the variation of curvature. Stewart and Beier [14] demon-
strated a direct curve manipulation technique which allows
the direct control of position, normal, and curvature. Hal-
stead et al. [9] implemented smooth interpolation with Cat-
mull-Clark surfaces using a thin-plate energy functional. Gri-
mm and Ayers [7] proposed a framework for curve editing
by maintaining multiple representations of the same curve.
Zheng et al. [20, 21] presented methods for users to modify a
free-form curve by using a curve sculpting tool and deform a
free-form surface to follow the shape of a predefined feature
surface.

3 Hierarchical D-NURBS System

This section formulates Hierarchical D-NURBS and presents
its dynamic equation.

3.1 D-NURBS Decomposition

(a)

(b)

Figure 1: A NURBS curve: (a) A NURBS curve consists of 4
curve segments; (b) We consider it as a collection of 4 finite ele-
ments.

Conventional geometric NURBS curve is defined as a
function of its parametric variable u:

c(u) =
∑m

i=0 piwiBi,k(u)∑m
i=0 wiBi,k(u)

, (1)

wherepi’s are control points, and thewi’s are associated
nonnegative weights, andBi,k(u)’s are basic functions. If
we examine the geometric structure of NURBS curves from
physics’ point of view, we can decompose the entire geomet-
ric NURBS curve into a number of physical finite elements
(or geometric spans). Each NURBS curve segment can be
considered as a physical element. Adjacent elements share
certain geometric information (such as some common con-
trol points and weights). These shared geometric informa-
tion determines geometric continuity across adjacent curve
segments.(see Fig. 1).

Figure 2: The NURBS surface, which consists of4 × 4
patches and controlled by7 × 7 control points (colored in
blue), can be decomposed into 4 sub-regions (highlighted in
green), each sub-region is controlled by5×5 control points.

We now generalize this concept to the surface case. A
conventional NURBS surface is defined as a function of para-
metric variables u and v:

s(u, v) =
∑m

i=0

∑n
j=0 pi,jwi,jBi,k(u)Bj,l(v)∑m

i=0

∑n
j=0 wi,jBi,k(u)Bj,l(v)

, (2)

in analogy,pi,j ’s are control points,wi,j ’s are associated
nonnegative weights, andBi,k(u) andBj,l(v) are basic func-
tions along two parametric directions, respectively. Again,
we can view a NURBS surface as a collection of several
physical elements, the accurate number of NURBS elements
depends on how users would decompose the surface geom-
etry. In general, the number of elements has no direct rela-
tionship with the number of NURBS patches. Fig. 2 demon-
strates that we can decompose a NURBS surface with4× 4
NURBS patches and7 × 7 control points into 4 elements.
Again, elements share geometric information, which deter-
mines the geometric continuity across the shared boundaries.

For the curve case, if we are interested in introducing lo-
cal details, we can resort to all kinds of geometric algorithms

3



such as knot-insertion. This way, we increase the degrees of
freedom and re-organize the curve span distribution. How-
ever, it is important to point out that knot insertion in prin-
ciple produces exactly the same geometric representation of
the original curve. In addition, knot insertion permits the
change of control vertices and the subsequent editing of fine
details in a more localized region of the curve while main-
taining other neighboring regions unaffected. After knot in-
sertion, more curve spans (physical elements) will be intro-
duced. Following the previous procedure, we can collect the
newly-generated elements and replace the old elements with
the new ones. Note that the control points for the adjacent
element must be updated accordingly due to knot insertion,
and the data structure must be modified significantly with
great care, as showed in Fig. 3.

Figure 3: The new NURBS curve and its span decomposi-
tion after the insertion of two additional knots.

For the surface case, unfortunately, when we undertake
the task of knot insertion in regions of interest, we must also
divide other regions. This process will significantly increase
the number of elements as shown in Fig. 4.

Figure 4: We insert one knot along u and v directions, re-
spectively, in the region of interest (colored blue). As a re-
sult, we introduce more patches than what we actually need
in the other neighboring regions (colored white).

To overcome the drawback associated with knot inser-

tion for NURBS, we shall formulate Hierarchical D-NURBS.
It increases the degrees of freedom of one region by intro-
ducing as many new patches as users want only in the speci-
fied region without modifying the geometric structure of ad-
jacent regions. The key is to apply knot-insertion algorithm
locally. As a result, it allows users to edit the fine details in
one region of the D-NURBS surface without deforming any
other regions, as shown in Fig. 5.

Figure 5: We subdivide the selected region (controlled by
5× 5 control points) into6× 6 patches (controlled by9× 9
control points) without introducing new patches in any other
regions.

3.2 Hierarchical Formulation

To arrive at a hierarchical structure for D-NURBS, let us
first examine the mathematics of knot-insertion. The ba-
sis functionsBi,k(u) andBj,l(v) should be refinable in the
sense that each one can be re-expressed as a linear combi-
nation of one or more new, and ”smaller” basis functions
Nr,k(u), Ns,l(v) defined over the new knot sequence:

Bi,k(u) =
∑
r

αi,k(r)Nr,k(u) (3)

Bj,l(v) =
∑
s

αj,l(s)Ns,l(v) (4)

whereα is defined as a recursive function:

αi,l(j) =

{
1 ui ≤ uj ≤ ui+1

0 otherwise

}
and

αi,l(j) =
uj+l−1 − ui

ui+l−1 − ui
αi,l−1(j)+

ui+l − uj+l−1

ui+l − ui+1
αi+1,l−1(j)

(5)

4



where,ui’s are the knot series before knot-insertion, andui’s
are the knot series after knot-insertion,l = 2, 3, ..., k, andk
is the order of the spline. In the interest of the space, we
refer readers to [1] for the details of knot-insertion process.
After knot-insertion, we can obtain a new formulation of the
same NURBS surface with thesmallerbasis functions and
a larger number of control points and weights, which will
introduce more degrees of freedom to the NURBS surface:

s(u, v) =
∑

r

∑
s pr,swr,sNr,k(u)Ns,l(v)∑

r

∑
s wr,sNr,k(u)Ns,l(v)

(6)

pr,s =
∑m

i=0

∑n
j=0 pi,jwi,jαi,k(r)αj,l(s)∑m

i=0

∑n
j=0 wi,jαi,k(r)αj,l(s)

(7)

wr,s =
m∑

i=0

n∑
j=0

wi,jαi,k(r)αj,l(s) (8)

wherepr,s andwr,s are the control points and weights be-
fore knot-insertion,pr,s andwr,s are the control points and
weights after knot-insertion. Above are the standard knot in-
sertion process for NURBS surface. The major shortcoming
of knot-insertion algorithm is that it generates more control
pointspr,s’s and weightswr,s’s than what users are actually
interested in. What are required are only thosepr,s’s and
wr,s’s that actually control the NURBS geometry in user-
specified local regions for editing purposes. Therefore, if
our goal is to only edit the local detail of a region, we shall
retain those relevantpr,s’s andwr,s’s and ignore the remain-
ing control points and weights which only define the nearby
regions. Towards this objective, we therefore resort to a tree
structure and formulate our Hierarchical D-NURBS. The root
of this D-NURBS tree (level 0) is the entire NURBS surface
with control pointspi,j ’s and weightswi,j ’s, the level 1 of
the tree only consists of all the subdivided regions of inter-
est from level 0, level 2 only collects all elements which are
further subdivided from the regions of interest at level 1, and
this hierarchical structure will continue recursively (if nec-
essary) to expand to leveln as illustrated in Fig. 6.

Now, it sets a stage for us to introduce another impor-
tant concept:layer. A layer is a physical element (consists
of one or several NURBS patches) at any level. Let us use
Fig. 6 as an example, the root of the D-NURBS tree (level
0) is the entire D-NURBS surface which consists of all the
initial geometric patches. At level 1, each of the two subdi-
vided regions of interest forms a layer. In essence, a layer
is a localized region which corresponds to a portion of its
parent-level substrate. With the tree structure, if users want
to edit the local detail on a specified region, they only need to
subdivide the region, which will generate a new layer at the
next consecutive level. Consequently, users can edit regions

Figure 6: The D-NURBS tree and its hierarchical structure.

of arbitrary layer. To maintain the requirement of geomet-
ric continuity across the shared boundary of different layers,
we shall be careful to manipulate only the central control
points and weights, and keep the peripheral control points
and weights constrained whenever we manipulate localized
regions of interest. In addition, when the editing takes place
at one layer, regions at all of its child layers should be modi-
fied correspondingly. Letpl

i,j andwl
i,j be the control points

and weights in a layer of levell. pl
i,j andwl

i,j are functions
of times, controlling the deformation of D-NURBS. When
we manipulate a layer which is a leaf node of this tree, it
does not result in any additional changes in neighboring re-
gions. However, if the current layer is a non-leaf node (i.e.,
its child layers do exist), then this manipulation must propa-
gate to all of its child layers, which means that the changes
of pl

i,j andwl
i,j will influence the value ofpl+1

r,s andwl+1
r,s ,

where the superscript stands for the level index. In essence,
the editing operation on parents’ levels will have aglobalef-
fect on their child layers, hence Hierarchical D-NURBS sup-
port both global and local deformation. Furthermore, the lo-
calized and detailed features defined bypl+1

r,s andwl+1
r,s must

be properly maintained. Our system achieves this goal by
employing a special data structure that records the localized
and detailed features as the time-varying displacements with
respect to its parent’s layer:

rp = pl+1
r,s (t1)− pl+1

r,s (t0), (9)

5



rw = wl+1
r,s (t1)− wl+1

r,s (t0), (10)

wherepl+1
r,s (t1), wl+1

r,s (t1) are the control points and weights
that determine the localized and detailed features;pl+1

r,s (t0),
wl+1

r,s (t0) are the control points and weights which are ini-
tially created frompl

i,j(t0), wl
i,j(t0) in terms of Equation

(7). We can express them aspl+1
r,s (t0) = fp(pl

i,j(t0)) and
wl+1

r,s (t0) = fw(wl
i,j(t0)), wherefp andfw are known func-

tions which are determined by thelocalizedknot-insertion.
Now, if pl

i,j(t0) andwl
i,j(t0) change topl

i,j(t) andwl
i,j(t)

because of the editing operations on the current layer, we
must recomputepl+1

r,s (t), wl+1
r,s (t) as:

pl+1
r,s (t) = fp(pl

i,j(t)) + rp (11)

wl+1
r,s (t) = fw(wl

i,j(t)) + rw (12)

The global update algorithm must proceed recursively in or-
der to traverse all of its child layers. In this way, when edit-
ing takes place at one layer, regions at all of its child layers
will be modified correspondingly without losing their cur-
rent localized and detailed features, facilitating both global
and local deformations.

Now we can analytically represent our Hierarchical D-
NURBS surface as:

s(u, v) = s0(u, v)+s1(u, v)+s2(u, v)+...+s∞(u, v) (13)

sl(u, v) =
∑

i

sl
i(u, v) (14)

wheresl(u, v) is the collection of all layers (physical ele-
ments) at levell, sl

i(u, v) is one of the layers in levell.
Besides major advantages previously mentioned at the be-
ginning of this paper, our Hierarchical D-NURBS are both
powerful and flexible because:

• It inherits a lot of nice properties from NURBS ge-
ometry, as each element within the tree hierarchy is a
single NURBS surface. Therefore, existing matured
algorithms and modeling techniques are amenable to
Hierarchical D-NURBS.

• Its geometry results from the localized operation of
knot-insertion algorithms on the specified layer. There-
fore, it can overcome typical drawbacks associated
with the standard process of knot-insertion, and it does
not introduce new degrees of freedom and new patches
in regions of non-interest. Each level is a collection of
NURBS patches, and each level introduces new de-
grees of freedom.

(a)

(b)

Figure 7:One example of a Hierarchical D-NURBS surface: (a)
Different colors represent different layers,x, y, z are world coor-
dinates; (b) The patch distribution of (a), and its subdivision pro-
cess are: (1) the entire NURBS surface consists of4× 4 patches,
(2) the top-left2 × 2 patches are subdivided into6 × 6 patches
which generates a new layers1

1(u, v), (3) the central3×3 patches
of s1

1(u, v) are further subdivided into6 × 6 patches which gen-
erates a new layers2

1(u, v), (4) we go back to layers0(u, v) and
subdivide one1× 2 patches into6× 6 patches which generates a
new layers1

2(u, v).

• More importantly, its hierarchical structure supports
both global and local editing toolkits.

The trade-off for this extra geometric flexibility is that Hier-
archical D-NURBS require rather complicated data structure
and extra book-keeping operations. We shall take advantage
of matured algorithms and latest advances in areas of Dis-
crete Mathematics (such as Graph Theory) and Data Struc-
ture.

3.3 Physical Sculpting of Hierarchical D-NURBS

Because our Hierarchical D-NURBS can be decomposed into
a linear combination of a set of layers at different levels, we
shall concentrate on one layer and derive its motion equa-
tion. Analogous to [5, 13], we represent one layer as a con-

6



tinuous NURBS surface:

s(u, v, t) =
∑m

i=0

∑n
j=0 pi,j(t)wi,j(t)Bi,k(u)Bj,l(v)∑m

i=0

∑n
j=0 wi,j(t)Bi,k(u)Bj,l(v)

,

(15)
where t denotes time, andpi,j(t) and wi,j(t) are control
points and weights which are time variables. The control
point and weight vectorp is the concatenation of all 3D con-
trol pointspi,j = [x, y, z]T and weightswi,j :

p =
[

pT
0,0 w0,0 · · · pT

i,j wi,j · · · pT
m,n wm,n

]T

(16)
whereT denotes matrix transposition. To facilitate the task
of real-time surface editing with various toolkits, we dis-
cretize the continuous dynamic surface to a set of parametri-
cally uniformedg×h pointsd, which forms(g−1)×(h−1)
quadrilateral grid. Therefore, our dynamic surface will have
a dual representation in mathematical domain (p, A) and
physical space (d). The two formulations are tightly cou-
pled through the non-linear equation:

d = Ap (17)

whereA is the transformation matrix whose entries are dis-
cretized Jacobian quantities (see [5, 13, 17] for the details)
evaluated at the sampled parametric values. The discretized
dynamic model has material quantities such as mass, damp-
ing, and stiffness distribution. To improve the modeling effi-
ciency, we consider the discretized surface as a mass-spring
model (i.e., grid-points are mass points connected by a net-
work of springs between their nearest neighbors). Alterna-
tively, the dynamic surface can be approximated using finite
element method based ond. The finite element formulation
derived fromd are mathematically equivalent to our current
implementation. We use a mass-spring model instead be-
cause of its simplicity for real-time manipulation. We for-
mulate the motion equation of all mass-points using a dis-
crete simulation of Lagrangian dynamics:

Md̈ +Dḋ +Kd = F (18)

The force at every mass-point in the discretized grid is the
sum of all possible external forces:F =

∑
fext. The in-

ternal forces are generated by the connected springs, where
each spring is modeled with force:f = kl. The rest length
of each spring is determined upon initialization, but it is free
to vary if plastic deformations or other nonlinear phenomena
are more desirable.

Because all discretized points and springs are constrained
by the D-NURBS surface, we shall formulate the motion
equation of physical behavior for all the control points:

ATMAp̈ + ATDḋ + ATKd = ATF (19)

ATMAp̈ = ATF −ATDḋ−ATKd (20)

Therefore, we can directly compute the acceleration of the
control point and weight vector based on the sculpting forces
on the discretized mesh.

Note that, in generalA is not constant due to the non-
linear nature of weights, and it changes every timestep. In
particular, if all the weights are fixed,A becomes constant,
then we can pre-compute its inverse and sculpt the surface
more efficiently. In our system, users can switch the weights
from fixed to unfixed or vice versa during sculpting. Our
system makes use of both Conjugate Gradient(CG) method
and QR decomposition method for the time integration of
the above equation. CG method offers a rather general so-
lution for solving theN × N linear system:A · x = b, it
is very attractive for a large, sparse system because it only
referencesA through its multiplication with a vector, or the
multiplication of its transpose with a vector. And these op-
erations can be very efficient for a properly stored sparse
matrix. In our system, however,A is large, sparse, but not
square in general. In addition,ATMA is large, symmet-
ric, but not sparse. Therefore, computingp̈ is less efficient
with CG method in most cases. On the other hand, QR de-
composition:A = Q · R, whereR is upper triangular and
Q is orthogonal, can also be used to solve a system of lin-
ear equations. To solveA · x = b is equivalent to solve
R · x = QT · b through back substitution. QR decompo-
sition can be applied to nonsquare matrix, so using QR, we
only need to solve

MAp̈ = F −Dḋ−Kd (21)

In our Hierarchical D-NURBS system, whenever we want
to manipulate the local detail of a region, we subdivide the
region, which generates a new layer and introduces new con-
trol points and weights. However, control points and weights
in the vicinity of boundary areas are constrained, in order to
satisfy the continuity across the region boundary. So we can
only modify all those free ones and keep the peripheral ones
unchanged. We explicitly decompose

d̈ = Ap̈ (22)

into [
d̈f

d̈s

]
=

[
Aff Afs

Asf Ass

] [
p̈f

p̈s

]
(23)

whered̈s andp̈s stand for the acceleration of static surface
point vector and control point and weight vector, respec-
tively, which should be 0;̈df andp̈f represent the accelera-
tion of free surface point vector and control point and weight

7



vector, respectively. SoAsf = 0 and

d̈f = Aff · p̈f (24)

At time t,

df (t) = Aff · pf (t) + Afs · ps (25)

Through iteration at timet + ∆t,

df (t + ∆t) = df (t) + Aff · (pf (t + ∆t)− pf (t)) (26)

Thus we only need to compute a very small portion of the
surface every timestep, it makes the sculpting more efficiently.

4 Constraints

Based on the formulation of our Hierarchical D-NURBS, we
develop useful physics-based toolkits and constraint tech-
niques to enable the efficient sculpting of Hierarchical NUR-
BS. Before we detail our system functionalities on toolkit
implementation, we shall first review the related work on ge-
ometric constraints. Many methods have been proposed to
implement constraints. Hsu et al. [10] solved a spline curve
for point constraints using the matrix pseudo-inverse. The
pseudo-inverse has the property of finding the least-squared
error when the system becomes over-constrained. Welch
and Witkin [19] utilized Lagrange multipliers to enforce a
least-square solution to a constraint matrix. Moreton and
Sequin [11] used a minimum-energy network to optimize
a system of linear and nonlinear constraints. Terzopoulos
et al. [15] used the penalty method to drive a dynamic de-
formation for animation. Qin and Terzopoulos [13] used
linear constraint techniques to deform physical models for
design purposes. Platt and Barr [12] discussed various con-
straint methods for deformable models including the penalty
method, reaction constraints, Lagrange constraints, and aug-
mented Lagrange constraints. Among various techniques to
handle constraints, penalty methods exhibit the property of
simplicity, but suffer from inexact solutions and the need for
small timesteps. Reaction constraints improve the penalty
method by enforcing constraints exactly in the presence of
external forces.

4.1 Normal Constraint

We can manipulate the surface normal at arbitrary point.
The normal of the surface point on a continuous surface can
be approximated by averaging all the normals from its sur-
rounding triangles:

nd =
1
n

n−1∑
i=0

Ni (27)

wherend is the normal of the surface point, andNi is the
normal of a surrounding triangle. When users modify the
point normal tond, our system will convert the normal con-
straint into additional external forces applied at the vicinity
of the surface point, then the surface will deform its shape
and gradually converge to its equilibrium with the new nor-
mal vector through the computation of the following non-
linear equation. We use the minimum-energy method, the
energy due to normal manipulation isE = kn

2 (nd − nd)2.
The forcef that arises from this energy and exerts on each
neighboring point isf(x) = −∂E

∂x , where the point vector
x = a, b, c, d, e, f . Fig. 8 illustrates a D-NURBS patch,
which can be considered as a layer at any level of the Hi-
erarchical D-NURBS structure, consisting of9 × 9 control
points. This layer is further discretized to19 × 19 surfaces
points. The peripheral6 × 6 control points are static in or-
der to ensure geometric continuity across the boundary, so
only the central3× 3 control points are free to move in this
example.

(a) (b)

(c) (d)

Figure 8: Normal constraint: (a) Changing the point normal
will exert additional forces at the vicinity of the surface point:
a,b,c,d,e,f; (b) The current normal (represented as the red arrow)
is (-0.04,0.07,-0.92); (c) The blue arrow represents the desired
normal which is (0.45,-0.73,-0.52), the red arrow represents the
current normal; (d) The actual normal (red arrow) after surface
deformation is (0.36,-0.64,-0.63).

4.2 Curvature Constraint

Users can also intuitively change the shape of the D-NURBS
by modifying the mean curvature at arbitrary point. We ap-
proximate the mean curvature at arbitrary point by comput-
ing

cd =
1
2
(κ1 + κ2) =

NE − 2MF + LG

EG− F 2
(28)

8



(a)

(b)

Figure 9:Curvature constraint: (a) Curvature map, green repre-
sents high curvature, red represents low curvature; the blue point
is the selected point with which users want to modify its curvature,
the accompanying table lists the current and target curvatures of
the blue point; (b) The curvature map after users modify the blue
point’s curvature; the accompanying table shows that the current
curvature equals to the target curvature after surface deformation.

whereL = nxuu,M = nxuv, N = nxvv, E = xuxu,
F = xuxv, andG = xvxv; n is the surface normal at the
point. When users change the curvature tocd, our system
will convert the curvature constraint into additional external
forces applied on the neighborhood of the surface point. We
use the minimum-energy method in our system, the energy
due to curvature deformation isE = kc

2 (cd−cd)2. The force
f that arises from this energy and exerts on every neighbor-
ing point isf(x) = −∂E

∂x , wherex is the neighboring point
vector.

Note that the neighboring points are connected by springs
in our mass-spring system, therefore, it is almost impossible
to enforce the exact curvature constraint unless we temporar-
ily disable the forces resulted from all connected springs.
For sculpting purpose, we can first set the curvature to what
we want and disable spring forces temporarily. Then when
the curvature reaches the desired value, we can re-enforce
the spring forces exerted from the neighboring points. Fig. 9
shows a D-NURBS surface, which can be considered as a
layer at any level of the Hierarchical D-NURBS. This sur-
face consists of11×11 control points and is discretized into
25× 25 surfaces points. The peripheral6× 6 control points

become static to ensure geometric continuity across the sur-
face boundary, only the central5× 5 control points are free
to move.

4.3 Curve Constraint

(a)

(b)

(c)

Figure 10:Curve constraint: (a) Select a spline curve tool col-
ored in red; (b) The surface deforms in terms of the shape of the
curve tool, the curve colored in blue is the corresponding curve on
the D-NURBS surface; (c) The new, deformed NURBS surface
satisfying the constraint of the curve feature.

Although the aforementioned point-based sculpting pro-
vides designers useful manipulation tools, point editing is
less effective, hence less appealing, especially when users
are faced with complicate design requirements. To ame-
liorate, we develop sculpting tools that afford the intuitive
specification of curve-based constraints. First of all, users
can pick a curve tool from the system menu (or define their
own curve tool by specifying a set of line segments). Sec-
ond, users can apply the curve tool to deform the surface, the

9



(a) (b) (c) (d)

Figure 11:Surface constraint: (a) Pick a spline surface tool as a sculpting template; (b) The surface deforms in terms of the shape of
the surface tool, the sculpting template is colored in red; (c) The new, smooth surface subject to the surface constraint; (d) The error
map: the area colored in green represents small error distribution, and the area colored in yellow represents large error distribution.
The error shown in (d) is characterized by the distance between the tool template and the deformed D-NURBS surface. The maximum
error in this example is 1.88, and the average error is 0.60.

contacting region on the surface will be sculpted in terms of
the tool shape, and the rest region of the surface will deform
accordingly subject to physical laws and material properties.
Our sculpting algorithm is:

• Discretize a continuous curve tool into a number of
sample points,

• Raycast a line from every curve point along the sculpt-
ing direction (similar to parallel projection),

• Compute the intersection point of the line with the
NURBS surface and also retrieve the corresponding
triangle from the D-NURBS discretized grid,

• If the distance between a point on the curve tool and its
corresponding triangle on the D-NURBS is less than
a user-defined threshold, our system will connect the
two points with a spring (whose rest length is zero and
whose stiff constant can be set up interactively), which
will attract the triangle along the raycasting direction
of the curve tool towards the destination curve point.

• Repeat this process for every curve point, therefore, a
feature-based force distribution will be applied to the
D-NURBS surface at the corresponding region through
the spring attachment between every curve point and
the corresponding intersection point.

In our dynamic framework, a curve feature is converted into
the external force distribution applied on the D-NURBS sur-
face, the surface will then deform subject to the curve con-
straint. At the equilibrium, the D-NURBS surface exhibits
the same feature as that of the curve sculpting tool.

4.4 Surface Constraint

Certain surface models may exhibit special features in spe-
cific regions, hence sometimes it is more desirable to make

region-based editing tools available to designers towards the
ultimate goal of feature-based design. Analogous to the afore-
mentioned curve tool, our system can map a user-specified
area onto a region of interest within the D-NURBS surface.
Similar to our previous discussion about the curve sculpting
tool, users can select a surface tool from our system menu
(or interactively define a surface tool as a collection of con-
nected polygons). Then, users can interactively move the
designated surface tool to deform the corresponding region
of the D-NURBS surface. The attached region in the D-
NURBS surface will be sculpted intuitively in terms of the
geometric shape of the tool template, and the other region of
the D-NURBS will be deformed accordingly in the phys-
ically realistic fashion subject to other relevant geometric
constraints. Throughout the enforcement of the surface con-
straint, our sculpting algorithm functions in a similar way
as that of the curve tool. we use the similar sculpting algo-
rithms explained above.

5 System Implementation

We have developed a prototype software environment that
permits users to intuitively and interactively manipulate Hi-
erarchical D-NURBS surfaces (either locally or globally) via
various force-based sculpting tools and constraints. Our sys-
tem is written in C++ and can run in both MS Windows and
Unix operating systems.

With our Hierarchical D-NURBS, designers can interac-
tively undertake local/global modifications on a D-NURBS
surface by specifying a region of any level within the D-
NURBS hierarchy and selecting an appropriate tool from
the menu of various toolkits. Within physics-based mod-
eling framework, users do not need to work with the mathe-
matical parameters such as control points, weights and knot
sequence directly because they are less intuitive and require

10



Figure 12:Examples of dynamic sculpting with Hierarchical D-NURBS.

strong mathematical sophistication. Instead, the desired shape
features can be automatically achieved through the direct
manipulation using force-based tools and constraints. The
appropriate value of both control points and weights is evolved
continuously subject to the time integration of D-NURBS
dynamics.

Currently, we only employ the forward Euler method to
solve the Lagrangian dynamics, and this computing scheme
is inevitable to introduce errors (and sometimes instability)
into our numerical simulation. Numerical errors are due to
either a coarse timestep or a low-resolution discretization.
The timestep is normally very small. If the model is very
complicated, the timestep may become large in order to off-
set the large amount of numerical computation, and in this
case, errors can easily creep into the simulation unless an
adaptive timestep is used. However, these errors do not nec-
essarily deteriorate the task of surface design since the sys-
tem is continuously evolving towards an equilibrium of en-
ergy minimization. Temporary inconsistencies in dynamics
do not appear to have a negative effect in our system towards
the final stable shape. Meanwhile, coarse discretization also
leads to potential errors, so an accurate bound for surface
sampling rates is necessary in order to quantify the error ef-
fect on the surface quality.

Currently, our sculpting system based on Hierarchical
D-NURBS only focuses on a single D-NURBS surface el-
ement at arbitrary level within the D-NURBS hierarchy. In
the future, we will generalize our system and extend its func-
tionalities to support the simultaneous sculpting of multiple
NURBS surface elements (possibly from different layers).
These more advanced and complex tasks are extremely use-
ful and are far from trivial. Another challenging aspect is to
effectively handle the detection/avoidance of self-collision
during the sculpting session. This functionality will provide
more realistic effects for D-NURBS and may facilitate our

system to support the realistic cloth simulation and mechan-
ical part assembly using Hierarchical D-NURBS.

6 Conclusion

We have proposed and formulated a new shape modeling
representation—Hierarchical D-NURBS, and have developed
a prototype software environment that supports the direct
manipulation and interactive sculpting of Hierarchical D-
NURBS via real-time physical interaction. Our novel for-
mulation applies the knot-insertion algorithm only on the lo-
calized region of NURBS parameterization, producing new
degrees of freedom whenever necessary and ameliorating
the limitation of standard knot-insertion techniques. Through
the hierarchical structure and physics-based modeling, we
have further extended the geometric coverage of standard
NURBS, making them more flexible and powerful in shape
modeling, geometric design, and interactive graphics.

Our experimental software provides users a hierarchical
sculpting interface for D-NURBS editing and a wide range
of powerful toolkits such as point manipulation, normal edit-
ing, curvature control, feature-based curve constraint, as well
as feature-based surface constraint. These new, physics-based
capabilities permit users to model and manipulate D-NURBS
surfaces intuitively. Our experiments have shown that the
hierarchical structure of D-NURBS and the novel physics-
based force tools and constraints offer users more freedom
and a more natural interface to effectively manipulate D-
NURBS surfaces in order to satisfy a set of design criteria
and functional requirements.

11



Acknowledgments

This research is supported in part by the NSF CAREER
award CCR-9896123, the NSF grant DMI-9896170, and a
research grant from Ford Motor Company.

References

[1] R.H. Bartels, J.C. Beatty, and B.A. Barsky, “An Intro-
duction to Splines for Use in Computer Graphics and
Geometric Modeling,”Morgan Kaufmann Publishers,
Inc, 1987.

[2] M.I.G. Bloor and M.J. Wilson, “Representing PDE
Surfaces in Terms of B-splines,”Computer-Aided De-
sign, Vol.22, no.6, 324-331, 1990.

[3] G. Celniker and D. Gossard, “Deformable Curve and
Surface Finite Elements for Free-Form Shape Design,”
Computer Graphics, Vol.25, 257-266, 1991.

[4] G. Celniker and W. Welch, “Linear Constraints for
Deformable B-spline Surface,”Computer Graphics
(Proceedings of the 1992 Symposium on Interactive 3D
Graphics, Vol.26, no.2, 165-170, 1992.

[5] F. Dachille, H. Qin, A. Kaufman and J. El-Sana “Hap-
tic Sculpting of Dynamic Surfaces,”Proceedings of
the 1999 Symposium on Interactive 3D Graphics, 103-
110, 1999.

[6] D.R. Forsey and R.H. Bartels, “Hierarchical B-Spline
Refinement,” Computer Graphics, Vol.22, no.4, 205-
212, 1988.

[7] C. Grimm and M. Ayers, “A Framework for Syn-
chronized Editing of Multiple Curve Representation,”
Computer Graphics Forum (Proceedings of EURO-
GRAPHICS’98), Vol.17, no.3, 1998.

[8] C. Gonzalez-Ochoa and J. Peters, “Localized-
Hierarchy Surface Splines(LeSS),”Proceedings of the
1999 Symposium on Interactive 3D Graphics, 7-16,
1999.

[9] M. Halstead, M. Kass, and T. DeRose, “Efficient, Fair
Interpolation Using Catmull-Clark Surfaces,”Com-
puter Graphics, Vol.27, 35-44, 1993.

[10] W.M. Hsu, J.F. Hughes, and H. Kaufman, “Direct
Manipulation of Free-Form Deformations,”Computer
Graphics, Vol.26, 177-184, 1992.

[11] H.P. Moreton and C.H. Sequin, “Functional Optimiza-
tion for Fair Surface Design,” Computer Graphics,
Vol.26, 167-176, 1992.

[12] J.C. Platt and A.H. Barr, “Constraint Methods for Flex-
ible Models,” Computer Graphics, Vol.22, 279-288,
1988.

[13] H. Qin and D. Terzopoulos, “D-NURBS: A Physics-
Based Framework for Geometric Design,” IEEE
Transactions on Visualization and Computer Graphics,
Vol.2, no.1, 85-96, 1996.

[14] P.J. Stewart and K.P. Beier, “Direct Manipulation of
Free-Form Curves with Generalized Parametric Basis
Functions,” Technical report, Personal Communica-
tion, 1998.

[15] D. Terzopoulos, J. Platt, A. Barr and K. Fleischer,
“Elastically Deformable Models,”Computer Graph-
ics, Vol.21, 205-214, 1987.

[16] D. Terzopoulos and K. Fleischer, “Deformable Mod-
els,” The Visual Computer, Vol.4, no.6, 306-331, 1988.

[17] D. Terzopoulos and H. Qin, “Dynamic NURBS
with Geometric Constraint for Interactive Sculpting,”
ACM Transactions on Graphics, Vol.13, no.2, 103-
136, 1994.

[18] J.A. Thingvold and E. Cohen, “Physical Modeling
with B-spline Surfaces for Interactive Design and An-
imation,” Computer Graphhics (Proceedings of the
1990 Symposium on Interactive 3D Graphics, Vol.24,
no.2, 129-137, 1990.

[19] W. Welch and A. Witkin, “Variational Surface Mod-
eling,” Computer Graphics, Vol.26, no.2, 157-166,
1992.

[20] J.M. Zheng, K.W. Chan and I. Gibson, “A New Ap-
proach for Direct Manipulation of Free-Form Curve,”
Computer Graphics Forum (Proceedings of EURO-
GRAPHICS’98), Vol.17, no.3, 327-334, 1998.

[21] J.M. Zheng, K.W. Chan and I. Gibson, “Surface Fea-
ture Constraint Deformation for Free-form Surface and
Interactive Design,”Proceedings of Fifth Symposium
on Solid Modeling and Applications, 223-233, 1999.

12


