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Abstract standard in commercial modeling systems because of their
power of representing both free-form shapes and commonly-
In this paper, we present Hierarchical D-NURBS as a ngysed analytic functions.
shape modeling representation that generalizes powerful, phy=onventional techniques for free-form surface modeling
sics-based D-NURBS for interactive geometric design. Q&lkinematic, and they are usually associated with the tedious
Hierarchical D-NURBS can be viewed as a collection ghd indirect shape manipulation through time-consuming op-
standard D-NURBS finite elements, organized hierarchicadlyations on a large number of control variables such as con-
in a tree structure and subject to continuity constraints acressi points and weights. In contrast, physics-based modeling
the shared boundaries of adjacent D-NURBS elementsoflérs a superior approach to traditional free-form shape de-
different levels. Hierarchical D-NURBS are amenable to ﬂéﬂgn that can overcome most of the limitations associated
flexible and powerful representation of curves, surfaces,\@gh conventional geometric modeling techniques. Within
well as higher dimensional geometric entities. The Iayergmg physics-based framework, free-form geometric models
and composite construction of Hierarchical D-NURBS afre equipped with mass contributions, internal deformation
fords users the effective creation of local features and thgjiergies, and other material properties. Users can interact
flexible, global/local control at different level of details. Withyith the model geometry directly by exerting virtual forces.
in the framework of Hierarchical D-NURBS, users can intethe model responds to user interaction naturally subject to
actively sculpt NURBS geometry more intuitively and C%hysica] laws and geometric constraints.
veniently through both global and local toolkits. Based on D-NURBS is a physics-based representation that aug-
the data structure of Hierarchical D-NURBS, we have dﬁTents NURBS geometry and its mode”ng techniquesl Gov-
veloped a prototype software equipped with various physiggned by Lagrangian mechanics, NURBS' dynamic behav-
based toolkits in the form of geometric constraints and Simgr can produce phys|ca||y meaningfuL and hence intuitive
lated forces. Our modeling system allows users to undertgi@pe variation. This permits users to interactively manipu-
the design tasks of point manipulation, normal editing, cUgte the shape geometry not only through the traditional in-
vature control, curve fitting, and area sculpting in interactivgirect fashion, such as adjusting control vertices and setting
graphics and CAD/CAM. weights, but also through direct physical manipulation, such
Keywords: as exerting simulated force and enforcing local and global
Physics-based Modeling and Sculpting, Shape Modgfape constraints.
ing, Computer Graphics, CAGD, NURBS, Deformable Mod- Despite many unsurpassed advantages of D-NURBS, cur-
els, Dynamics, Hierarchical Splines and Editing, Geometfignt state-of-the-art of D-NURBS techniques are yet to sup-
Constraint. port the local control and the fine editing of localized regions
of interest on D-NURBS primarily because all the control
points and weights are organized only at one level. Although
local refinements based on the principle of knot-insertion

Shape modeling is critical to a wide range of areas incl@f€ Possible, knot-insertion techniques oftentimes generate
ing real-time interactive graphics, computer-aided geomeffi@re control points and weights than what designers actu-
design (CAGD), scientific visualization, medical imaging’",”y need in order to maintain the tensor-product nature of

and virtual environments. NURBS have becomaeafacto NURBS geometry. In addition, currently available point-

1 Introduction



based sculpting toolkits for D-NURBS are essentially veagers can easily edit the fine detail in a specified, local re-
primitive. To further ameliorate D-NURBS potential in shapgén of NURBS while maintaining other nearby regions un-
modeling and geometric design, in this paper we develdpanged. The hierarchical structure provides users a more
Hierarchical D-NURBS, which can enhance both the geatuitive and efficient way to undertake surface editing and
metric power and the dynamic flexibility of conventional Dsculpting. For example, users can select an arbitrary point on
NURBS. In particular, our Hierarchical D-NURBS offer tha surface of Hierarchical D-NURBS, and drag the point to
following advantages: any desired location via mouse. The surface will deform ac-
) ) _cordingly subject to the point manipulation. Users can then
e Ithas ahierarchical structure, and each element withify, ity the normal/curvature of arbitrary point on the sur-
this hierarchy is a NURBS patch (or a collection gf,ce and the surface will converge to the shape with the de-
several NURBS patches). sired normal/curvature. Furthermore, users can choose vari-
it is a composite NURBS whose contrHS curve toqls and/or surface tools and apply them to sculpt
the surface directly.
The remainder of this paper is structured as follows. Sec-
e |t satisfies continuity criteria everywhere across tlien 2 briefly reviews the prior work. In Section 3, we de-
NURBS parametric domain. tail the formulation of Hierarchical D-NURBS. Section 4
i o presents physics-based techniques of directly manipulating
e lts parametric domain is the same as that of a tensgryyRgs surfaces with various forces and constraints. We
product NURBS. outline our system implementation and present our experi-

« It permits the flexible creation of local features arfgental results in Section 5. Finally, Section 6 concludes the

facilitates both global and local control in a hierarchRaPer-
cal way.

e In a nutshell,
points and weights can be defined independently.

e Itis applicable for the effective representation of bol% Prior Work

CUrves gnd sur_fat_:gs, and can be generalized to hlgI{J(()errsey and Bartels [6] proposed hierarchical B-splines and
dimensional primitives.

pioneered the technique for local refinement of smooth sur-

e Ateach level, extra new degrees of freedom (e.g., cdaces in surface design. A geometric model of hierarchi-
trol points and weights) can be obtained through t@l B-splines can by defined by locally offsetting a stan-
localized knot-insertion algorithm applied to certairflard tensor-product B-spline surface with a set of new, re-
Sub_regions at the parent’s |eve|_ In contrast to knétned B-Spline baSiS funCtionS. In hierarChicaI B-SplineS,
insertion, however, control variables as well as nedglditional interior control points yield new degrees of free-

NURBS patches amotintroduced outside the region§lom at the refined level within the surface hierarchy. Welch
of interest. and Witkin [19] developed the variational surface modeling

method. Gonzalez-Ochoa and Peters [8] formulated the lo-
In this paper, we also develop interactive techniques afilized hierarchical surface splines (LeSS), which can au-
implement a prototype software system to facilitate the @hmatically maintain tangent continuity across the surface
rect manipulation and interactive sculpting of D-NURBS suihd can be subsequently converted to either NURBS form
faces. The key contribution of this paper is that we systesi-a set of cubic triangular Bezier patches. Various methods
atically formulate Hierarchical D-NURBS as a novel shapgive been developed to generate fair surfaces which satisfy
modeling representation that generalizes WeII-estainshethime constraints and optimize an energy-based objective
NURBS substrate. Our software system and its associgt@tttion [19]. It is also possible to construct dynamic sur-
toolkits are all founded upon the novel formulation of Hiefaces with natural behavior governed by physical laws [15].
archical D-NURBS. Using our Hierarchical D-NURBS sculperzopoulos and Fleischer [16] demonstrated simple inter-
ting system, users can intuitively apply various interactiggtive sculpting using viscoelastic and plastic models. Cel-
tools for NURBS editing, including directly manipulatinghiker and Gossard [3] developed an interesting prototype
normal/curvature at arbitrary location, enforcing local argstem for interactive design based on the finite-element op-
global constraints at different levels, achieving feature-basgfization of energy functionals. Bloor and Wilson [2] used
curve fitting, sculpting surface regions directly with tensimilar energies which can be optimized through numeri-
plates, etc. With the formulation of Hierarchical D-NURBSal methods for B-splines. Celniker and Welch [4] inves-



tigated deformable B-splines subject to linear constraintierep;’s are control points, and the;’s are associated
Thingvold and Cohen [18] proposed to use elasto-plasticnnegative weights, anB; (u)’s are basic functions. If
mass-spring-hinge models on the B-spline control pointge examine the geometric structure of NURBS curves from
Moreton and Sequin [11] interpolated a minimum energyysics’ point of view, we can decompose the entire geomet-
curve network with quintic Bezier patches by minimizingc NURBS curve into a number of physical finite elements
the variation of curvature. Stewart and Beier [14] demofor geometric spans). Each NURBS curve segment can be
strated a direct curve manipulation technique which alloesnsidered as a physical element. Adjacent elements share
the direct control of position, normal, and curvature. Halertain geometric information (such as some common con-
stead et al. [9] implemented smooth interpolation with Catel points and weights). These shared geometric informa-
mull-Clark surfaces using a thin-plate energy functional. Gién determines geometric continuity across adjacent curve
mm and Ayers [7] proposed a framework for curve editirgpgments.(see Fig. 1).

by maintaining multiple representations of the same curve.
Zheng et al. [20, 21] presented methods for users to modify a
free-form curve by using a curve sculpting tool and deform a
free-form surface to follow the shape of a predefined feature
surface.

3 Hierarchical D-NURBS System

This section formulates Hierarchical D-NURBS and presents 1 = =
its dynamic equation.

3.1 D-NURBS Decomposition
Figure 2: The NURBS surface, which consists4ofk 4

patches and controlled by x 7 control points (colored in
blue), can be decomposed into 4 sub-regions (highlighted in
green), each sub-region is controlleddy 5 control points.

Py 5 Ps

P bs
We now generalize this concept to the surface case. A
conventional NURBS surface is defined as a function of para-

metric variables u and v;

UZ] 0 PijwijBik(u )B],l( v)
s(u,v) = )
| NURBS Curve | OZ_] 0 Wi,j Bik(u)Bjui(v)

in analogy, p; ;'s are control pointsw; ;'s are associated
] nonnegative weights, an () andB;;(v) are basic func-
Curve Curve Cure Curve tions along two parametric directions, respectively. Again,
Segment 1 Segment 2 Seqment 3 Segment 4 . .
b we can view a NURBS surface as a collection of several
(b) physical elements, the accurate number of NURBS elements
Figure 1: A NURBS curve: (a) A NURBS curve consists of 4lepends on how users would decompose the surface geom:
curve segments; (b) We consider it as a collection of 4 finite e@ry. In general, the number of elements has no direct rela-
ments. tionship with the number of NURBS patches. Fig. 2 demon-
strates that we can decompose a NURBS surface4withl
RBS patches and x 7 control points into 4 elements.
Again, elements share geometric information, which deter-
S pawi B g () mines the geometric continuity across the shared boundaries.
c(u) = m B : ) 1) For the curve case, if we are interested in introducing lo-
Zi o WibD; k( ) . . . .
cal details, we can resort to all kinds of geometric algorithms

(@)

(@)

Conventional geometric NURBS curve is defined a
function of its parametric variable u:




such as knot-insertion. This way, we increase the degreesaf for NURBS, we shall formulate Hierarchical D-NURBS.
freedom and re-organize the curve span distribution. Holvincreases the degrees of freedom of one region by intro-
ever, it is important to point out that knot insertion in prirducing as many new patches as users want only in the speci-
ciple produces exactly the same geometric representatiofiexf region without modifying the geometric structure of ad-
the original curve. In addition, knot insertion permits thjacent regions. The key is to apply knot-insertion algorithm
change of control vertices and the subsequent editing of fioeally. As a result, it allows users to edit the fine details in
details in a more localized region of the curve while mainne region of the D-NURBS surface without deforming any
taining other neighboring regions unaffected. After knot imther regions, as shown in Fig. 5.

sertion, more curve spans (physical elements) will be intro-
duced. Following the previous procedure, we can collect the
newly-generated elements and replace the old elements with & &
the new ones. Note that the control points for the adjacent e
element must be updated accordingly due to knot insertion, wl
and the data structure must be modified significantly with

great care, as showed in Fig. 3.

- -

. ) Figure 5: We subdivide the selected region (controlled by
Py = Ps = 5 x 5 control points) intd x 6 patches (controlled b§ x 9
control points) without introducing new patches in any other
p=q, regions.
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0,000 025% o5 T o7s 1110 3.2 Hierarchical Formulation
he B To arrive at a hierarchical structure for D-NURBS, let us

) ] first examine the mathematics of knot-insertion. The ba-
Figure 3: The new NURBS curve and its span decompogk functionsB; ,(«) and B;,(v) should be refinable in the
tion after the insertion of two additional knots. sense that each one can be re-expressed as a linear combi

nation of one or more new, and "smaller” basis functions
For the surface case, unfortunately, when we undertdket(©), Vs, (v) defined over the new knot sequence:
the task of knot insertion in regions of interest, we must also

divide other regions. This process will significantly increase % - %x1 W . %5 o Unin Bagn By
the number of elements as shown in Fig. 4. v o+ l l l + 4
. . g
L1,1.1 uU uk—l I']':l:'|:].+1 um+k
0.5
0,0,0,0 Blvk(u) = Z O(Lk(T)Nrp,k(U) (3)
T
0000 05 i KK Bj(v) = Zaj,l(S)Ns,l(U) 4)
i S
Figure 4: We insert one knot along u and v directions, rvé/_herea IS defm(lad 2??;?23\’8 function:
spectively, in the region of interest (colored blue). As are- «;,;(j) = 1 =" =T+l 4 and
. ’ 0 otherwise
sult, we introduce more patches than what we actually need
in the other neighboring regions (colored white). s s T
. -1~ U o Wikl — Ugj41—1 .
@ii(j) = T ———ai 1 ()11 ())
Ui1—1 — U Uit — Uit+1 5)

To overcome the drawback associated with knot inser-



where,u;'s are the knot series before knot-insertion,agd 8
are the knot series after knot-insertiéns 2, 3, ..., k, andk Root of the tree (Level0),  w g W FE,
. . . the entire NURBS surface with

is the order of the spline. In the interest of the space, We control points colored inbme. " Jgg iy
refer readers to [1] for the details of knot-insertion process. &4, 2. ..
After knot-insertion, we can obtain a new formulation ofthe 7~ T oF T
same NURBS surface with themallerbasis functions and  electan

interest

a larger number of control points and weights, which will region

introduce more degrees of freedom to the NURBS surface: aigﬁegfrf)
S(U ’U) _ ET‘ ZS ﬁT,SET’sNTyk(u)Nsyl ('U) (6) Lewvel 1,
’ Z Z @rs Tk( )NS,l(v) isx]llt:?::tdr:;sn,
_ i0 ZJ 0 Pi,j Wik (r)o(s) ol peiis
prys - ) (7) {colored in red)

ZZO Z]:O wly]az7k( )aj IS that control the

region increases

m n
from 5*5 to 9*9
Wrs = > wijaik(r)ag(s) (8)

/N l
wherep, s andw, s are the control points and weights be-

fore knot-insertionp, ; andw, s are the control points and ~ tev!? -

weights after knot-insertion. Above are the standard knot in-

sertion process for NURBS surface. The major shortcomihiglure 6: The D-NURBS tree and its hierarchical structure.
of knot-insertion algorithm is that it generates more control

pointsp, ,'s and weightso,. s's than what users are actually

interested in. What are required are only th@se’s and of arbitrary layer. To maintain the requirement of geomet-
wy,s'S that actually control the NURBS geometry in useric continuity across the shared boundary of different layers,
specified local regions for editing purposes. Thereforewt shall be careful to manipulate only the central control
our goal is to only edit the local detail of a region, we shalbints and weights, and keep the peripheral control points
retain those relevai, ,'s andw,. s's and ignore the remain-and weights constrained whenever we manipulate localized
ing control points and weights which only define the nearbygions of interest. In addition, when the editing takes place
regions. Towards this objective, we therefore resort to a teg@ne layer, regions at all of its child layers should be modi-
structure and formulate our Hierarchical D-NURBS. The rdiefd correspondingly. qu andw ; be the control points

of this D-NURBS tree (level 0) is the entire NURBS surfagghg weights in a layer of |eVé] Pz andw ; are functions

with control pointsp; ;'s and weightsw; ;'s, the level 1 of of times, controlling the deformation of D-NURBS. When
the tree only consists of all the subdivided regions of inte{e manipulate a layer which is a leaf node of this tree, it
est from level 0, level 2 Only collects all elements which agdes not result in any additional Changes in neighboring re-
further subdivided from the regions of interest at level 1, agfbnsl However, if the current |ayer is a non-leaf node (i_e_,
this hierarchical structure WiI_I continue_rec_ursively (if negts child layers do exist), then this manipulation must propa-
essary) to expand to levelas illustrated in Fig. 6. gate to all of its child layers, which means that the changes
Now, it sets a stage for us to introduce another i impeft p! L andw! ; ; will influence the value 0bl+1 andwi+1
tant conceptiayer. A layer is a physical element (consistghere the superscrlpt stands for the level index. In essence,
of one or several NURBS patches) at any level. Let us 4@ editing operation on parents’ levels will havglabal ef-
Fig. 6 as an example, the root of the D-NURBS tree (levglt on their child layers, hence Hierarchical D-NURBS sup-
0) is the entire D-NURBS surface which consists of all thrt both global and local deformation. Furthermore, the lo-
initial geometric patches. At level 1, each of the two subdizlized and detailed features defmeqﬁyl andwl“ must
vided reglons of interest forms a Iayer In essence, a Iahérproperly maintained. Our System achieves th|s goal by
is a localized region which corresponds to a portion of gsnploying a special data structure that records the localized

parent-level substrate. With the tree structure, if users waRH detailed features as the time-varying displacements with
to edit the local detail on a specified region, they only needtpect to its parent's layer:

subdivide the region, which will generate a new layer at the
next consecutive level. Consequently, users can edit regions r, = Plﬁsl (t1) — pff;l (to), 9
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rw = w5 (t) — wf (to), (10)
whereplt! (1), wi! (t1) are the control points and weights
that determine the localized and detailed featupég} (to),
w,’j;l(to) are the control points and weights which are ini-
tially created fromp!, ;(to), w} ;(to) in terms of Equation
(7). We can express them @§'! (to) = f,(p} ;(t0)) and
witt(to) = fuw(wl;(to)), wheref, and f,, are known func-
tions which are determined by thecalizedknot-insertion.
Now, if p! ;(to) andw} ;(to) change top! ;(¢) andw} ;(t)
because of the editing operations on the current layer, we

(‘“‘“‘“‘-‘" W,

Z

o]

(@)

must recompute! ! (t), w'tl(t) as: ¥
b b &
P (1) = fp(Pl (1) + 1 (11)
whi (t) = fulw) ;(8) + 1w (12)
The global update algorithm must proceed recursively in or-
der to traverse all of its child layers. In this way, when edit-
ing takes place at one layer, regions at all of its child layers
will be modified correspondingly without losing their cur-
rent localized and detailed features, facilitating both global . u
and local deformations.
: . . (b)
Now we can analytically represent our Hierarchical D-
NURBS surface as: Figure 7:0ne example of a Hierarchical D-NURBS surface: (a)

Different colors represent different layets,y, z are world coor-

s(u,v) = So(u’ v)—i—sl(u,v)+52(u, 0)+..45°(u,v) (13) dinates; (b) The patc_h distribution of (a), and_its subdivision pro-
cess are: (1) the entire NURBS surface consists »f4 patches,
sl(u,v) _ Zsl(u,v) (14) (2) the top-left2 x 2 patches are subdivided intox 6 patches

7
7

which generates a new layelr(u, v), (3) the centra x 3 patches

l _ ) _ of si(u,v) are further subdivided inté x 6 patches which gen-
wheres'(u, v) is the collection of all layers (physical eleerates a new layes?(u, v), (4) we go back to layes®(u,v) and
ments) at level, s!(u,v) is one of the layers in level. subdivide ond x 2 patches int@ x 6 patches which generates a

Besides major advantages previously mentioned at the hgw layers (u, v).

ginning of this paper, our Hierarchical D-NURBS are both
powerful and flexible because:

e It inherits a lot of nice properties from NURBS ge-

e More importantly, its hierarchical structure supports
both global and local editing toolkits.

ometry, as each element within the tree hierarchy i ge trade-off for this extra geometric flexibility is that Hier-

single NURBS surface. Therefore, existing matureg

chical D-NURBS require rather complicated data structure

algorithms and modeling techniques are amenable;ity eyira hook-keeping operations. We shall take advantage

Hierarchical D-NURBS.

e Its geometry results from the localized operation &

knot-insertion algorithms on the specified layer. Thelge-

fore, it can overcome typical drawbacks associated

of matured algorithms and latest advances in areas of Dis-
fete Mathematics (such as Graph Theory) and Data Struc-

with the standard process of knot-insertion, and it dods3  Physical Sculpting of Hierarchical D-NURBS

notintroduce new degrees of freedom and new patc%%%ause our Hierarchical D-NURBS can be decomposed into

in regions of non-interest. Each level is a collection Qf
NURBS patches, and each level introduces new
grees of freedom.

linear combination of a set of layers at different levels, we
$all concentrate on one layer and derive its motion equa-
tion. Analogous to [5, 13], we represent one layer as a con-



tinuous NURBS surface: AT MAp = ATF — ATDd — ATKd (20)

s(u,v,t) = 202 j=0 piJ(t)wivj(t)B@k(“)Bﬂ(”)7 Therefore, we can directly compute the acceleration of the
i=0 2 j—0 Wi,j(t) Bik(u)Bji(v) control point and weight vector based on the sculpting forces
(15) on the discretized mesh.
wheret denotes time, ang;,;(¢) andw;;(t) are control  Note that, in generall is not constant due to the non-

points and weights which are time variables. The contfplear nature of weights, and it changes every timestep. In
point and weight vectop is the concatenation of all 3D conparticular, if all the weights are fixed} becomes constant,

trol pointsp; ; = [z,y, z]" and weightsw; ;: then we can pre-compute its inverse and sculpt the surface
T more efficiently. In our system, users can switch the weights
0,0 ’ bjo I mn TR from fixed to unfixed or vice versa during sculpting. Our

system makes use of both Conjugate Gradient(CG) method

where” denotes matrix transposition. To facilitate the tasf, 4 QR decomposition method for the time integration of
of real-time surface editing with various toolkits, we digpe apove equation. CG method offers a rather general so-
cretize the continuous dynamic surface to a set of paramstfiron for solving theN x N linear system:A - x = b, it

cally uniformedy x h pointsd, which forms(g—1) x (h—1) s very attractive for a large, sparse system because it only

quadrilateral grid. Therefore, our dynamic surface will haygterencesa through its multiplication with a vector, or the
a dual representation in mathematical domanA) and p,iplication of its transpose with a vector. And these op-

physical spaced). The two formulations are tightly COU-grations can be very efficient for a properly stored sparse

pled through the non-linear equation: matrix. In our system, howeved is large, sparse, but not
d = Ap (17) square in general. In additiomd” M A is large, symmet-

hereA is th ‘ . i wh . d_ric, but not sparse. Therefore, computifids less efficient
whereA is the transformation matrix whose entries are digz.. ~5 method in most cases. On the other hand, OR de-

cretized Jacobian quantities (see [5, 13, 17] for the detag position:A — Q - R, whereR is upper triangular and

evaluated at the sampled parametric values. The discretiéeg orthogonal, can also be used to solve a system of lin-
dynamic model has material quantities such as mass, da “equations. To solve - x — b is equivalent to solve

ing, and stiffness distribution. To improve the modeling effjy QT - b through back substitution. QR decompo-

ciency, we consider the discretized surface as a mass-spUNg, can be applied to nonsquare matrix, so using QR, we
model (i.e., grid-points are mass points connected by a Qﬁjﬂy need to solve

work of springs between their nearest neighbors). Alterna-

tively, the dynamic surface can be approximated using finite MAp = F —Dd — kKd (21)

element method based dn The finite element formulation

derived fromd are mathematically equivalent to our curremt our Hierarchical D-NURBS system, whenever we want

implementation. We use a mass-spring model instead teemanipulate the local detail of a region, we subdivide the

cause of its simplicity for real-time manipulation. We foregion, which generates a new layer and introduces new con-

mulate the motion equation of all mass-points using a dissl points and weights. However, control points and weights

crete simulation of Lagrangian dynamics: in the vicinity of boundary areas are constrained, in order to
Md+Dd+Kd=F (18) satisfy th«_a continuity across the region boundary. So we can

only modify all those free ones and keep the peripheral ones
The force at every mass-point in the discretized grid is thechanged. We explicitly decompose
sum of all possible external forces? = > fe.:. The in-

ternal forces are generated by the connected springs, where d=Ap (22)
each spring is modeled with forcg: = kl. The rest length

of each spring is determined upon initialization, but it is frd&t0 , )

to vary if plastic deformations or other nonlinear phenomena l dy ] — [ Arp A Py ] (23)
are more desirable. ds Asp Ass Ps

Because all discretized points and springs are constrajjtred, andj, stand for the acceleration of static surface
by the D-NURBS surface, we shall formulate the motiqfint vector and control point and weight vector, respec-
equation of physical behavior for all the control points: tively, which should be Oaf andp; represent the accelera-

ATMAp + ATDd + ATKd = ATF (19) tion of free surface point vector and control point and weight
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vector, respectively. Sd,; = 0 and whereny is the normal of the surface point, aid is the
normal of a surrounding triangle. When users modify the

dy = Asf-p 24y .

f 11 Pf (24) point normal ton,, our system will convert the normal con-

Attimet, straint into additional external forces applied at the vicinity
f the surface point, then the surface will deform its shape

dp(t)=Asp pr(t) + Ayy - 25) © ’ ) o o= W E

_ fc( ) _ sr-Ps(t) fs " Ps (25) and gradually converge to its equilibrium with the new nor-

Through iteration at time + At, mal vector through the computation of the following non-
ds(t+ At) =dg(t) + Ass - (ps(t+ At) — ps(t)) (26) linear equation. We use the minimum-energy method, the

energy due to normal manipulation £ = %n(nd ~ )2

Thus we only need to compute a very small portion of th§ye forcef that arises from this energy and exerts on each

surface every timestep, it makes the sculpting more efficieqf)yhporing point isf(x) = —9E \yhere the point vector
x = a,b,c,d, e, f. Fig. 8 illustrates a D-NURBS patch,
4 Constraints which can be considered as a layer at any level of the Hi-

erarchical D-NURBS structure, consisting®# 9 control
Based on the formulation of our Hierarchical D-NURBS, weoints. This layer is further discretized 10 x 19 surfaces
develop useful physics-based toolkits and constraint tephints. The peripherd x 6 control points are static in or-
niques to enable the efficient sculpting of Hierarchical NURer to ensure geometric continuity across the boundary, so
BS. Before we detail our system functionalities on toolkinly the centraB x 3 control points are free to move in this
implementation, we shall first review the related work on gexample.
ometric constraints. Many methods have been proposed to a
implement constraints. Hsu et al. [10] solved a spline curve
for point constraints using the matrix pseudo-inverse. The
pseudo-inverse has the property of finding the least-squared
error when the system becomes over-constrained. Welch
and Witkin [19] utilized Lagrange multipliers to enforce a
least-square solution to a constraint matrix. Moreton and
Sequin [11] used a minimum-energy network to optimize
a system of linear and nonlinear constraints. Terzopoulos
et al. [15] used the penalty method to drive a dynamic de-
formation for animation. Qin and Terzopoulos [13] used
linear constraint techniques to deform physical models for
design purposes. Platt and Barr [12] discussed various con
straint methods for deformable models including the penalty
method, reaction constraints, Lagrange constraints, and aug- ) (@)
mented Lagrange constraints. Among various techniquesigure 8: Normal constraint: (a) Changing the point normal
handle constraints, penalty methods exhibit the propertywatf exert additional forces at the vicinity of the surface point:
simplicity, but suffer from inexact solutions and the need fa.c.d.e.f; (b) The current normal (represented as the red arrow)
small timesteps. Reaction constraints improve the pendfty0-04,0.07,-0.92); (c) The blue arrow represents the desired

method by enforcing constraints exactly in the presence"gfmal which is (0.45,-0.73,-0.52), the red arrow represents the
external forces. current normal; (d) The actual normal (red arrow) after surface

deformation is (0.36,-0.64,-0.63).

(b)

4.1 Normal Constraint

We can manipulate the surface normal at arbitrary poiﬁt.2 Curvature Constraint

The normal of the surface point on a continuous surface ¢dgers can also intuitively change the shape of the D-NURBS
be approximated by averaging all the normals from its s modifying the mean curvature at arbitrary point. We ap-

rounding triangles: proximate the mean curvature at arbitrary point by comput-
1 n—1 Ing
ndZ*ZNi (27) :1 :NE—2MF—|—LG o8
n = Cd 2(/41 + K2) EC — F? (28)



become static to ensure geometric continuity across the sur-
face boundary, only the centralx 5 control points are free
to move.

|D.|3593m4 4.3 Curve Constraint
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Figure 9: Curvature constraint: (a) Curvature map, green repre-
sents high curvature, red represents low curvature; the blue point
is the selected point with which users want to modify its curvature,
the accompanying table lists the current and target curvatures of
the blue point; (b) The curvature map after users modify the blue
point's curvature; the accompanying table shows that the current
curvature equals to the target curvature after surface deformation. (b)

where L = nxy,, M = nx,,, N = nXy, £ = X,Xy,

F = x,x,, andG = z,x,; n is the surface normal at the
point. When users change the curvatur&jpour system

will convert the curvature constraint into additional external
forces applied on the neighborhood of the surface point. We
use the minimum-energy method in our system, the energy
due to curvature deformationis = %(cd—éd)z. The force

f that arises from this energy and exerts on every neighbor- ©
ing point isf(x) = —2E, wherex is the neighboring point Figure 10: Curve constraint: (a) Select a spline curve tool col-
vector. ored in red; (b) The surface deforms in terms of the shape of the

Note that the neighboring points are connected by sprifigige tool, the curve colored in blue is the corresponding curve on
in our mass-spring system, therefore, it is almost impossiklg D-NURBS surface; (c) The new, deformed NURBS surface
to enforce the exact curvature constraint unless we temp0§§p§fy|ng the constraint of the curve feature.
ily disable the forces resulted from all connected springs. ] ) )
For sculpting purpose, we can first set the curvature to what AIthough the aforementpned pomt—based S_C“'Pt".‘g pro-
we want and disable spring forces temporarily. Then Whglﬁies deS|gners useful manlpulat_lon tools, pomt editing is
the curvature reaches the desired value, we can re-enf(!)‘?éé effect|ve_, hence !ess appe_almg, es_pemally when users
the spring forces exerted from the neighboring points. Fig‘f"@a faced with complicate design requirements. To ame-

shows a D-NURBS surface, which can be considered aI'éo(rjlate, we develop sculpting tools that afford the intuitive

layer at any level of the Hierarchical D-NURBS. This syppecification of curve-based constraints. First of all, users

face consists af1 x 11 control points and is discretized intd"a" pick a curve tool from the system menu (or define their

25 x 25 surfaces points. The periphefiak 6 control points own curve tool by specifying a set of line segments). Sec-
ond, users can apply the curve tool to deform the surface, the



Mo

(@) (b) (c) (d)

Figure 11:Surface constraint: (a) Pick a spline surface tool as a sculpting template; (b) The surface deforms in terms of the shar
the surface tool, the sculpting template is colored in red; (c) The new, smooth surface subject to the surface constraint; (d) The
map: the area colored in green represents small error distribution, and the area colored in yellow represents large error distribt
The error shown in (d) is characterized by the distance between the tool template and the deformed D-NURBS surface. The maxil
error in this example is 1.88, and the average error is 0.60.

contacting region on the surface will be sculpted in termsrefyion-based editing tools available to designers towards the
the tool shape, and the rest region of the surface will defouftimate goal of feature-based design. Analogous to the afore:
accordingly subject to physical laws and material propertiesentioned curve tool, our system can map a user-specified
Our sculpting algorithm is: area onto a region of interest within the D-NURBS surface.
. , : . Similar to our previous discussion about the curve sculpting
* Discretize a continuous curve tool into a number G ol, users can select a surface tool from our system menu
sample points, : . . .
(or interactively define a surface tool as a collection of con-
e Raycast a line from every curve point along the sculgtected polygons). Then, users can interactively move the
ing direction (similar to parallel projection), designated surface tool to deform the corresponding region
of the D-NURBS surface. The attached region in the D-
e Compute the intersection point of the line with thgURBS surface will be sculpted intuitively in terms of the
NURBS surface and also retrieve the correspondiggometric shape of the tool template, and the other region of
triangle from the D-NURBS discretized grid, the D-NURBS will be deformed accordingly in the phys-
ilxl:glly realistic fashion subject to other relevant geometric
gﬁnstraints. Throughout the enforcement of the surface con-

a user-defined threshold, our system will connect tﬁtéaint, our sculpting algorithm functio_ns' in a simi.Iar way
two points with a spring (whose rest length is zero afi that of the curve tool. we use the similar sculpting algo-

whose stiff constant can be set up interactively), whith'™Ms explained above.
will attract the triangle along the raycasting direction
of the curve tool towards the destination curve point System |mp|ementation

* Repeat this process f‘?f Every curve point, thereforev\% have developed a prototype software environment that
feature-based force distribution will pe app_lled o t[gﬁzgrmits users to intuitively and interactively manipulate Hi-
D'NUR_BS surface atthe corresponding region thro rchical D-NURBS surfaces (either locally or globally) via
the spring attachment between every curve point afig s force-based sculpting tools and constraints. Our sys-
the corresponding intersection point. tem is written in C++ and can run in both MS Windows and

In our dynamic framework, a curve feature is converted ifflix operating systems.

the external force distribution applied on the D-NURBS sur- With our Hierarchical D-NURBS, designers can interac-
face, the surface will then deform subject to the curve cdiyely undertake local/global modifications on a D-NURBS
straint. At the equilibrium, the D-NURBS surface exhibitgurface by specifying a region of any level within the D-

the same feature as that of the curve sculpting tool. NURBS hierarchy and selecting an appropriate tool from
the menu of various toolkits. Within physics-based mod-

eling framework, users do not need to work with the mathe-
matical parameters such as control points, weights and knot
Certain surface models may exhibit special features in spequence directly because they are less intuitive and require
cific regions, hence sometimes it is more desirable to make

¢ Ifthe distance between a point on the curve tool and
corresponding triangle on the D-NURBS is less th

4.4 Surface Constraint

10



Figure 12:Examples of dynamic sculpting with Hierarchical D-NURBS.

strong mathematical sophistication. Instead, the desired sygtem to support the realistic cloth simulation and mechan-
features can be automatically achieved through the dirieet part assembly using Hierarchical D-NURBS.
manipulation using force-based tools and constraints. The
appropriate value of both control points and weights is evojved
continuously subject to the time integration of D-NURB
dynamics.

Conclusion

c " | lov the f 4 Eul thod We have proposed and formulated a new shape modeling
urréntly, we only émploy the forward euler metho tF’epresentation—Hierarchical D-NURBS, and have developed

_so!ve t.h c Lagrgnglan dynamics, and this co_mputl'ng schggq srototype software environment that supports the direct
is inevitable to introduce errors (and sometimes 'nStab”"iWanipulation and interactive sculpting of Hierarchical D-
into our numerical simulation. Numerical errors are due RBS via real-time physical interaction. Our novel for-

either a coarse timestep or a low-resolution d'scret'zat'%laﬂon applies the knot-insertion algorithm only on the lo-

The timestep is normally very small. If the model is VelXalized region of NURBS parameterization, producing new

complicated, the timestep may become large in order to %ﬁ’grees of freedom whenever necessary and ameliorating

set the large amount.of numer!cal comp_utat|or_1, and in tm% limitation of standard knot-insertion techniques. Through
case, errors can e;asﬂy creep into the simulation unles§ﬁ:\é1 hierarchical structure and physics-based modeling, we
adapt_lve tlme_step is used. However, these errors do not ¥ave further extended the geometric coverage of standard
essarily deteriorate the task of surface design since the VSRBS making them more flexible and powerful in shape
tem is continuously evolving towards an equilibrium of e'flﬁodelin’g geometric design, and interactive graphics.

ergy minimization. Temporary inconsistencies in dynamics Our e;<perimental softwa’re provides users a hierarchical

do npt appear to have a negatlvg effectin our systgm T[OW%gﬁlpting interface for D-NURBS editing and a wide range
the final stable §hape. Meanwhile, coarse discretization ?Bowerful toolkits such as point manipulation, normal edit-

leads t 0 potent!al errors, so_an accurate bognd for surfﬁ,]c , curvature control, feature-based curve constraint, as well
sampling rates is necessary in order to quantify the error & feature-based surface constraint. These new, physics-bast

fecté)n thetlsurface qu?ll;[y. tem based Hi hi capabilities permit users to model and manipulate D-NURBS
D NUuRrEQ Y. Iom:r sculpting sys erln DaSNeUROE?S |er]:51rc '@irfaces intuitively. Our experiments have shown that the
i only focuses on a single L- SUMace Gfararchical structure of D-NURBS and the novel physics-

ement at arbltrgry level vv_|th|n the D-NURBS h|erarghy. IBased force tools and constraints offer users more freedom
the future, we will generalize our system and extend its fu %d a more natural interface to effectively manipulate D-

tionalities to support the simultaneous sculpting of multip RBS surfaces in order to satisfy a set of design criteria
NURBS surface elements (possibly from different Iayer%?nd functional requirements

These more advanced and complex tasks are extremely use-
ful and are far from trivial. Another challenging aspect is to
effectively handle the detection/avoidance of self-collision
during the sculpting session. This functionality will provide
more realistic effects for D-NURBS and may facilitate our

11
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