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Abstract general and novel formulation. The physical properties

Physics-based modeling integrates dynamics and geoare associated with each vertex of the mesh, and the ver-
etry. The standard methods to solve the Lagrangian equies interact through (internal and external) forces and
tions use a direct approach in the spatial domain. Thoughrques. This duality of the solver allows it to be inde-
extremely powerful, it requires time consuming discretependent of the topology of the model. This approach can
time integration. In this paper, we propose to use an irbe extended to a finite element based model, where the
direct approach using the Transformation Theory. In painternal stretching and bending forces are replaced with
ticular, we use z-transform from the digital signal pro-normal and shear stresses. Our unified solver supports a
cessing theory, and formulate a general, novel, unifiedybrid model that seamlessly integrates the particle, elas-
solver that is applicable for various models and behaviotic, and near-rigid models, and supports curves, surfaces
The convergence and accuracy of the solver are guaraand solids. The core solver is independent of the topology
teed if the temporal sampling period is less than the critf the model, and can thus be used to model non-manifold
ical sampling period, which is a function of the physicalsurfaces, and models with arbitrary topology. We de-
properties of the model. Our solver can seamlessly hawelop a hybrid technique to generate continuous surfaces
dle curves, surfaces and solids, and supports a wide rarfgem the mesh topology. The model depends on New-
of dynamic behavior. The solver does not depend on then’s second law of motion to ensure that the total energy
topology of the model, and hence supports non-manifoland (linear and angular) momentum of the system is con-
and arbitrary topology. Our numerical techniques arserved throughout the simulation. This paper presents a
simple, easy to use, stable, and efficient. We develggnique way of computing the physical state of the system
an algorithm and a prototype software simulating variby transforming the state equations to a transform domain
ous models and behavior. Our solver preserves physicafrom the time domair using the z-transform. The sta-
properties such as energy, linear momentum, and angulkility of the solver thus depends only on tNgquist Rate
momentum. This approach will serve as a foundation fopf Samplingwhich can be optimally computed from the
many applications in many fields. physical properties of the model. We perform an inverse-

) _ z transform to get back to time domain after solving the
Key words: Physics-based deformable modeling, Numeggyations in z-domain. The state of the system at time
ical techniques, Heterogeneous models, Conceptual dgs st can be expressed as a linear function of the state at
sign techniques, z-Transforms timet. The coefficients of this function are called trans-

. formation matrices.
1 Introduction

Geometric modeling concerns with the computation and Semi-rigid motion is obtained by coupling the elastic

representation of various shapes of models. Physicg(_)lverwith the rigid body equations. The moment of iner-

based modeling allows geometric models to be govern&i1 of t_he_surfaf:e is assumed to be due to a th'.n she!l with
by differential equations. This approach offers unsurd van|§h|ng thicknessr. T_he moment of Inertia varies
passed advantages- it is natural to control, intuitive to mgynamlcally as the mo_del IS mamp_u!ated. This techmque
nipulate, and the end user does not need mathematical §‘HPW‘°.’ the solver to glmulataear—rlgld syrfaces. This
phistication. However, it requires numerical simulation,teChanue can be easily extended to solids.
which is time consuming, and is occasionally unstable. The system allows the user to interactively edit phys-
Also, the topology (geometry) of the model is not clearlyical properties such as mass, damping, stiffness and
separated from its physical attributes. length. The system fast-updates the transformation ma-

Our approach uses a mass-spring model to developtrices and allows the user to interactively play with the



model. erties govern the topology of the model. The physical

The rest of the paper is organized as follows. Sedroperties are used to precompute a setrafsforma-
tion 2 explores the background. SectiBrpresents the tion matricesthat compute the state of the model at time
contribution. Sectiom deals with the formulation of the t + 4t given the state at timé The state of the model
solver. Sectiors explains the internal/external forces ands uniquely defined by the position and the velocity state
torques. Sectio outlines the system and the prototypevectors. The precomputed transformation matrices allow
software. Sectiof? presents the results. SectiBrcon-  US to have an accurate, faster solver.

cludes the paper. The following describe the different contributions of
this paper.
2 Background Solver. We present a novel, fast, unified solver that

Various work has previously been done to genercan operate on a multitude of models. In particular, the
ate dynamic surfaces using physics-based modelingolver can simulate curves, surfaces and solids of arbi-
Terzopoulos[17] demonstrates simple interactive sculptrary topology and varying rigidity. The solver depends
ing using viscoelastic and plastic methods. Celniker[4)ipon the critical sampling rate of the model which is
uses finite-element optimization of energy functionalsprecomputed from its physical properties. The solver is
Bloor et al[3] use similar optimizations through numer-provably accurate, as the global properties such as the to-
ical methods. Dachille et al[5] use a finite differencedal energy and (linear and angular) momentum do not di-
method to solve the Lagrangian equation. Halstea¢erge for sampling periods less than the critical sampling
et al[8] implement smooth interpolation with Catmull-period. We compute the critical sampling time from the
Clark surfaces using a thin-plate energy functional. Raphysical properties of the model.
viv and Elber[15] perform three dimensional free-form Forces The solver handles both radial (stretching) and
sculpting using scalar trivariate functions. Qin andangular (bending) forces. The radial forces give rise to
Terzopoulos[14] develop a framework for D-NURBS forinternal stress, and the angular forces result in internal
physics-based design. torque. The internal stress depends upon the linear dis-

This paper attempts to merge Lagrangian mechanics iance of a vertex from its neighboring vertices. The inter-
a transform domain framework. This allows the physic#ial torque depends upon the angular distance of a vertex
and the geometry to get decoupled, and the invarianéem its neighboring vertices.
of energy and momentum is the only link between the Semi-rigid Behavior: The solver handles both purely
two. This has been a difficulty in previous works, whereelastic and purely rigid bodies and all shades in between.
a strong coupling between physics and geometry meatihis approach enables the solver to be fast in case the in-
that the solver is highly dependent upon the geometmgrnal stiffnesses are high, as it can increase the average
of the model. Our approach is isomorphic to the eigengidity of the model and reduce the internal stiffnesses.
value analysis. We refer to [16], [7], [13] and [12] for An infinite average stiffness implies a purely rigid model.
the eigenvalue decomposition algorithms and principleghis technique allows the solver to reduce the sampling
Kreyszig[9] discusses transformation theory and complepate when the average stiffness is high. This assumes
analysis, that has been used for the formulation of thigat the external forces on the model are relatively small
solver. Interested readers might refer to Defatta et al [§tompared to the internal forces), which is a fair assump-
for the digital signal processing principles used in this pation in most cases.
per. Dynamic Editing: The user can dynamically edit the

A number of people have worked on rigid-body mod-physical properties of the model. The user can paint
els. We refer to [11] for the details on moment of inermass, (radial and angular) stiffness, damping, rigidity and
tia calculations using Green'’s functions. David Baraff[1}est-length and rest-angle to the model. The transforma-
talks about dynamic simulation of rigid bodies throughion matrices are dynamically updated to generate the de-
analytical simulation. Baraff[2] demonstrates fast consired effect. The energy of the modelist conserved in
tact force computation for non-penetrating rigid bodiessome cases, as the user interaction changes its total en-
We refer to the classic book Vector and Tensor Analyergy. The matrices are updated ink®) time, where k
sis by Harry Lass[10] for the derivations of the volumeis the average valence of a vertex. For small k (as it nor-
integration functions and kinematic motion equations. mally is), this is not very expensive.

o Smoothing The final smooth model is generated us-

3 Contribution ing a modified Doo-Sabin technique. The subdivision
This paper attempts to separate the geometric and theights depend upon the physical properties of the sur-
physical properties of the model. The geometric propface. This ensures the invariance of energy, (linear and



angular) momentum and total mass after subdivisiotaw of motion.
The normal to the surface is computed through a best-

plane fit of the neighboring vertices in the limit case. Let G = DM~!/2 andQ = VKM~-1, where G is
the coefficient-of-damping matrix, and is the angu-
4 Solver lar frequency matrix. The eigen-value decomposition of

We begin with the Lagrangian equation, that defines th¢/Q2?2 — G2 gives us the different modes of oscillation.
motion of a point, or a set of points in three dimensionsThe z-transform of equation 2 transforms it from the tem-
Given a model which has been arbitrarily sampled, thporal domain to the digital z-domain. The various modes
motion of the set of sampled points can be simulated usf oscillation represent the various poles/roots in the z-
ing Lagrangian Dynamics (within a margin of error) todomain. Please refer to appendix A for further details on
determine the behavior of the model under external ardtransform.

internal forces. The input consists of a set of samplel the sampling time-period i, then we can compute
vertices and faces with associated physical properties. the Nth state from the (N-1h state, whereR™, V) is

the state of the system at sample number N. This result is
obtained after an inverse z-transform on the z-domain for-
mulation. Note that the trigonometric operations on the
Q) matrix are approximated using the Taylor series expan-
sions of the expressions.

4.1 Formulation
The Lagrangian equation of motion is expressed as:

pr” 4o’ + 3 k[0 = 1) + \Uj] = fuo
i

N-1
/ Rg (I H H \%,1
v=r'=dr/dt vi )7 \o X' X R,
Ftot
Uj = (r—ry)/I(r—rj)| 6y
. . . whereX = H' — GH,X' = H” — GH' and
for any vertexr, wherer; is a neighboring vertex.
The mass, Qamping and the directiongl stiffne;s for the H Q72(1 — cosQT)
vertex are given by:, p, andx; respectively. \; is the H _ O-1sinQT
rest-length between andr ;. The right side is the sum H" cosQOT
of the external and torsional forces at vertexU is the
. . . . 2 4 6
directional unit vector. The first two terms represent r =L 77;9 1
the kinetic and the damping components of the total ~ T *6T3 % 02
force. The third component represents the internal (radial 1 =T T_‘P 04
spring) force at vertex. 2 A
For a set ofN vertices, the Lagrangian equation may RY = M‘IRZ],V
be written in a matrix format, such th&t represents the v = M‘IVZ],V 3)

Nx3 dimensional positional state vector, adrepre-
sents the N3 dimensional velocity state vector. There-42  Sampling Rate

fore, we get Equation 3 depends upon the fourth power of the angu-

lar frequency matrix. This implies that the dynamics of
thei” vertex at timet+T depends upon the (position and
velocity) states of all the vertices that are a distance of
V =R = DR/Dt ) two units (along the mesh graph) fr_om_it. Therefore, the
convergence of the dynamic behavior is dependent upon
where theD/Dt operator is a matrix operator on thethe sampling rate. A lower sampling rate might resultin a
state vectoR. M and D are NN diagonal mass and divergent set of equations. The goal is to find the critical
damping matrices. K is a AN symmetric sparse matrix sampling rate, such that the state vectors do not diverge
such that K;; is the stiffness between thé" and the ast goes to infinity.
jt* vertices. Fi,; is the Nx3 force vector state.k;; If the eigen decomposition dR? is given by Q? =
equals the sum of all neighboring stiffnesses at vertex SAS—!, where S is the column eigen-vector matrix and
Therefore, elements of any row (or column)inhadd up A diagonal are the eigen-values, then we must satisfy the
to zero. This is a direct consequence of Newton'’s thirdbllowing:

MR"” + DR’ + KR = Fy



e Leto; =min(ko/k;, 1) for the vertex;.

lim (H" — GH')* =0 e Set rigidity coefficienty; =1 - o;.
k—oo

If the total force (external and internal) gtis F;, we
If v is the minimum diagonal element of G, we have: partition this force into elastic and rigid-body forces. Let

e FI = 0,F; be the elastic component.

0<p+ghi+rAi<l1 e FX = \;F; be the rigid-body component.
p=01- 7T2) The elastic component of the force is used in the solver
g=(1— E)T_ equation. The rigid-body component is used for the rigid-
3 24 body motion of the model using the rigid-body motion
r.T equations in [10].
r=(-12)5; (@ ©d [10]

5 Internal and External Forces

d ff(.)r'all elg((ajn—valuezxz: .SII’IC;/\l' = Qf(ﬁ |sbp05|t|ve The total force on the model is a vector sum of the in-
e 'nh'telzj' an p]; q’]; I' Itis su _|C|ent| It eall_ OVE elqua- ternal and the external forces. The internal forces can
tion holds true for the largest eigen-value. Let the largegfy 5 4jq) stresses (due to the radial springs) or torsional

elger—yalge_ beko. I;r.org Gerschgl;)n? Clrc;]le Thgorer? stresses (due to the angular springs). The external forces
(explained in appendix BRo must be less than twice o can be user-interactions, or body forces such as gravity

. X 5 )
:he)r\na;m;umlglagonf/lfntry ﬁl. L?t th'hs upper t|>ound and virtual forces (to maintain constraints). The internal
or Ag be Ay, If v < L/T, we solve for the critical sam- g o565 are depicted in Figure 1.

pling time T}, ., from Equation 4:

Ay = 2maz (K, t)

12 6
Tma:z: = 3 - 1\ (5)
A\ man(Kan )

Including v in the formulation increases T, singeis
a decaying factor which allows convergence at a higher
sampling time. Thereforel},, ., is an optimal value for
sampling time, irrespective of damping. The factor '2’ in
the expression foA, also appears in theyquist Theo-
rem, where the sampling rate must be at least twice the
maximum frequency of the systenil;,,,.. is inversely K,
proportional to the minimum sampling rate (Equation 5).

4.3 Semi-rigid Motion

We define the r|g|d|ty coefficient of avertexasy;, such Figure 1: The radial Spring between two vertices results

thaty; € [0,1]. A value of 0 indicates a pure local elas-in & restoring (radial) force. The angular spring at the

ticity, and a value of 1 indicates a pure local rigidity. ~ a@ngle between two edges results in a restoring torque.
The sampling rate of the solver is directly proportionand® stand for radial and angular respectively.

to the square root of the maximum stiffness of the model

in a purely elastic model. Therefore, the larger the stiff-

ness, the larger is the sampling rate, and lower is tiel Linear Stress

response time. However, notice that as we increase tide radial stress at a vertex is due to the variation in the

local stiffness at any vertex;, the local rigidity of the linear displacement from the rest-length along its connec-

model increases, provided that the external forces at thidns to its neighbors. The radial stress on a spring of

vertex are not large. Also, notice that the internal forcestiffnessx, and length\ connecting and itsjth neigh-

are directly proportional to the local stiffness. Thereforebor at sample N is defined as:

o Let ko be the maximum permissible stiffness. The N Nl N-1 N1
critical sampling time depends an. Fr=re((r =1y ) =AU



5.2 Torsional Stress

The torsional stress at vertexis due to the variation in
the angular displacement from the rest-angle along tt
angles formed with two neighboring verticesandry,.
The torque at; is proportional to the variation in the an-
gledsh=0N —6,. If k4 is the angular stiffness, amg is the
rest angle, we have the torque and the torsional stress
as:

Tév = HQ(HN — Ho)dijdikn
Fi}l = K@(QN — Ho)n * rij
FY = ko(0N — )N s 1y,
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5.3 External Force/Torque

The system allows the user to apply forces and torques
to the model. The external forces are added to the right
side of equation 1. The external torques are converted to
virtual forces on the neighboring vertices.

In case the local rigidity is not equal to zero, the total
force and torque as obtained above are partitioned into e Solver: The Solver evaluates the state vectors in a
the elastic and the rigid-body components. Refer to sub- tight loop. It updates the display structures on com-
section 4.3 for details. pletion of a cycle. The interactive forces by the user

are evaluated on a per-cycle basis.

Figure 2:Flow Diagram

cycle. The Display expects updated state vector data
from the Solver.

6 System Internals

We describe the flow diagram of the system in Figur%.
2. The system, on startup, initializes a number of strucl—_I
tures. The transformation matricés, H' and H"” and
frequency matriceQ? andQ* (section 4.1) are precom-
puted. The time taken for the precomputation process is
O(NEK?) whereN is the number of vertices, aridis the
average valence. The system operates two threads (Dis-
play and Solver) which are also initialized, and thread-
specific data structures are set up.

The two threads are tightly coupled, each receiving
some input from and feeding some output to the other
on a per-cycle basis.

We explain the timing details for the Solver and the
splay threads and their loads in the Results section.
he system supports the following tools:

e Dynamic Editing: The user can interactively change

the physical parameters of the model. The user
can manipulate mass, damping, stiffness (radial and
angular), rest-length, rest-angle and rigidity of the

model. The system dynamically updates the pre-
computed transformation matrices in constant time.
This allows the system to maintain the integrity of

the solver. However, editing physical properties may
increase the intrinsic stress of the model, which is
similar to the user adding energy to the environment.

o Display: The Display is responsible for running the The editing process can be local as well as global.

display and handling user inputs. The user interac-
tions are updated into the model structures so that e
the Solver can incorporate them into the next time

Constraints: The user can constrain the position and
the normal vector at any vertex of the model. The



solver generates virtual forces such that the apprt
priate result is obtained in the next time cycle.

7 Results

Table 1 presents a set of models used. The first colun
gives the number of vertices, edges and faces for the cc-
responding model. The second column gives the avera #
values for mass and (radial) stiffness. The third, fourtl® *
and fifth columns present the timing data for the pre%
computation, display and solver threads in seconds. T~
sixth column gives the sampling time in seconds. Th
load on the system is inversely proportional to the san
pling time. However, a higher sampling time also mean
a sluggish response time, and the two must be balanc
for better interactivity. The results were obtained on
Pentium-11 450MHz PC. The solver time (for one itera-

El

s

tion) exceeds (for the given mass and stiffness values) thggyre 3: Partial Energy - Time forT’ /Tmax = 0.500,

sampling time for number of vertices larger than approx; gpg, 1.050 and 1.082. The plot diverges for valiges
imately 1200. 1.080.

V,E,F W K Init Disp | Solv | STime
20, 30, 12 0.50,5.00| 0.097 | 0.016 | 0.013 | 0.448
100, 200, 100 | 0.10,5.00| 0.281 | 0.018 | 0.036 | 0.353 !
324,612,289 | 0.31,5.16| 0.842 | 0.046 | 0.085 | 0.323 niq

This will allow the system to use industry-standard tech-

ues to achieve a robust, unified, and versatile solver

1600,3200,1600| 0.01,9.50| 9.723 | 0.134 | 0.393 | 0.291 that can be applied to a variety of models to achieve real-

isti

Table 1: Timing information for the models used for the9

¢ animation and modeling.
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Appendices In our case, as shown in Figure 4, the circhust
pass through the center. Since the eigen-values must lie
A Z-Transforms inside the disks, the maximum value for the eigen-value
The z-transform of a (causal) digital signal = i is twice of the radius of theR;. However, the
(xg, 1,20, ..., Tp, ...) iS defined as radius is equal to theth diagonal element 0f2?, since

sum;iQ; = —Qy. Therefore, we hava; < 2€;;.
X(2)=ao+x2  Faoz 4+ . 2" 4.
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Figure 5:The dodecahedron: The original mesh, and thesigure 8:Editing: The local rest-length (red points) and
interpolating Doo-Sabin surface. The original verticeSocal rest-angle (blue point) for the torus are modified.
are interpolated by the surface. The control vertices arghe total internal stress is non-zero, since the restor-
in red. The subdivision weights are functions of the physng forces for the rest-length and rest-angle oppose each
ical properties of the surface. other. The third image presents the view from the side.

z;gure: 61 152}\?) d?ﬁ:iirczd{ggp;ﬂggratet);]t:rrr;l pztiﬁs?figure 9:C0nstra?nts:_The dodecahedron is un_d_er posi-

Thegtsecohd ima.ge shows the model recoiling after t.httlaon (red) constraints n '“.“age | and under position and

force is removed. The time difference between the noormal (blue) constraints in Image Il. The same force has
) tV\f)een applied in both cases. Note that the normals in the

images is three seconds. :
two cases are different.

AV

AvgEnergy [0.004) &vgLintdam (0.075)

Figure 7: The energy and the momentum plots for the

dodecahedron when the forces are applied. The dampiridgure 10:Torsional forces on a planar mesh under mul-
coefficient is 0.04. Application of multiple forces result irfiple constraints. The torquére,; = 1.3J/rad) is ap-
mu|tip|e Spikes in energy. This is a over-damped System”ed near the central region of the mesh. The first image
The energy is expressed M.m, and the momentum is shows the mesh for an anti-clockwise torque. The second

expressed itg.m.s~ . image is due to a clockwise torque.



