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A b s t r a c t  

Triangular B-splines are a new tool for modeling a broad class of objects defined over arbi- 
trary, nonrectangular domains. They provide an elegant and unified representation scheme for all 
piecewise continuous polynomial surfaces over planar triangulations. To enhance the power of 
this model, we propose triangular NURBS, the rational generalization of triangular B-splines, with 
weights as additional degrees of freedom. Fixing the weights to unity reduces triangular NURBS 
to triangular B-splines. Conventional geometric design with triangular NURBS can be laborious, 
since the user must manually adjust the many control points and weights. To ameliorate the design 
process, we develop a new model based on the elegant triangular NURBS geometry and principles 
of physical dynamics. Our model combines the geometric features of triangular NURBS with the 
demonstrated conveniences of interaction within a physics-based framework. The dynamic behav- 
ior of the model results from the numerical integration of differential equations of motion that 
govern the temporal evolution of control points and weights in response to applied forces and 
constraints. This results in physically meaningful hence highly intuitive shape variation. We apply 
Lagrangian mechanics to formulate the equations of motion of dynamic triangular NURBS and 
finite element analysis to reduce these equations to efficient numerical algorithms. We demonstrate 
several applications, including direct manipulation and interactive sculpting through force-based 
tools, the fitting of unorganized data, and solid rounding with geometric and physical constraints. 
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1. Introduction 

Nonuniform rational B-splines, or NURBS, have become an industry standard by virtue 
of their many nice properties, such as their ability to represent free-form shapes as well 
as standard analytic shapes. However, the main drawback of tensor product NURBS 
surfaces in solid modeling is that they are "topologically" rectangular. Consequently, 
the designer is forced to model multi-sided irregular shapes using degenerate patches 
with deteriorated inter-patch continuity. To compensate, explicit linear and/or nonlinear 
smoothness constraints must be enforced on the patches, thus complicating the design 
task. 

Triangular B-splines are emerging as a powerful new tool for solid modeling because 
they can represent, without degeneracy, complex objects defined on irregular parametric 
domains (Dahmen et al., 1992). Using triangular B-splines, designers can represent shapes 
over triangulated planar domains with low degree piecewise polynomials that nonetheless 
maintain high-order continuity. J In addition, triangular B-splines offer a considerable 
breadth of geometric coverage. They subsume Bernstein-B6zier triangles with n-fold 
knots. Moreover, any piecewise polynomial surface over a planar triangulation may be 
represented as a linear combination of triangular B-splines (Seidel, 1992). Thus, triangular 
B-splines can also serve as a common representation for product data exchange and 
representation conversion. 

In this paper we enhance the power of triangular spline models by proposing triangular 
NURBS, the rational generalization of triangular B-splines, with weights as additional 
degrees of freedom. As in conventional NURBS, fixing the weights to unity reduces 
triangular NURBS to triangular B-splines. Although triangular NURBS enable designers 
to overcome the limitations of tensor product NURBS, conventional geometric design 
with NURBS models can be problematic for the following reasons (Terzopoulos and 
Qin, 1994): 

• Normally the designer controls the geometry by assigning knots, positioning control 
points, and adjusting weights. Despite modern interaction technology, this "indirect," 
geometric degree of freedom oriented design process can be especially laborious for 
triangular splines because of the irregularity of control points and knot vectors. 

• Design requirements are usually specified in terms of shape, not in terms of the 
geometric degrees of freedom of any particular shape representation. Because of the 
geometric "redundancy" of rational models,2 indirect shape refinement can be a d  

hoc  and ambiguous. 
• Typical design requirements may be posed in both quantitative and qualitative terms. 

Therefore, it can be very frustrating to design via the indirect approach, say, a "fair" 
surface that approximates unorganized 3D data. 

To ameliorate the design process for triangular NURBS, we develop a physics-based 
generalization of the model using Lagrangian mechanics and finite element techniques. 

I For example, quadratic triangular B-splines can yield C 1 continuous surfaces, whereas biquadratic tensor 
product B-splines are necessary to achieve the same continuity. 
2 A particular shape can often be represented nonuniquely, with different values of knots, control points, and 
weights. 
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Our new surface model, dynamic triangular NURBS, combines the elegant geometric 
features of triangular NURBS with the demonstrated conveniences of interaction within 
a physical dynamics framework. The following are some advantages of physics-based 
shape design (Terzopoulos and Qin, 1994): 

• Shape design is generally a time-varying process--the designer is often interested 
not only in the final shape but also in the intermediate shape variation. The behavior 
of our physics-based models result from the numerical integration of differential 
equations of (nonrigid) motion which automatically govern the temporal evolution 
of control points and weights in response to applied forces and constraints. This 
results in physically meaningful hence highly intuitive shape variation. 

• Shapes can be sculpted in a direct manner using a variety of force-based "tools". 
Furthermore, functional design requirements can be readily implemented as defor- 
mation (fairness) energies and geometric constraints. In particular, as a dynamic 
model reaches equilibrium, it can serve as a nonlinear shape optimizer subject to 
the imposed constraints. 3 

• The physical model is built upon a standard geometric foundation. While shape 
design may proceed interactively or automatically at the physical level, existing 
geometric toolkits are concurrently applicable at the underlying geometric level. 

Like their tensor product dynamic NURBS (D-NURBS) progenitors (Terzopoulos and 
Qin, 1994), dynamic triangular NURBS (or triangular D-NURBS) are a free-form, ra- 
tional model that provides a systematic and unified technique for a variety of modeling 
tasks. We demonstrate several applications, including direct manipulation and interactive 
sculpting through forces and physical parameters, the fitting of unorganized 3D data, and 
solid rounding with geometric and physical constraints. 

1.1. Background 

The theoretical foundation of triangular B-splines lies in the multivariate simplex spline 
of approximation theory. Motivated by an idea of Curry and Schoenberg for a geometric 
interpretation of univariate B-splines, de Boor (1976)first presented a brief description 
of multivariate simplex splines. Since then, their theory has been explored extensively 
(Micchelli, 1979; Dahmen and Micchelli, 1982, 1983: Hollig, 1982). The well-known 
recurrence relation of multivariate simplex splines was introduced in (Micchelli, 1979). 
Subsequently, Grandine (1988) devised a stable evaluation algorithm. Dahmen and Mic- 
chelli (1983) presented a thorough review of multivariate B-splines. From the point of 
view of blossoming, Dahmen et al. (1992) proposed triangular B-splines which are es- 
sentially normalized simplex splines. 

In contrast to the theory, the application of multivariate simplex splines has not been ex- 
plored extensively, because of the complicated domain partitionings that may be required 
and the time-consuming evaluation and derivative computation algorithms, especially for 
high dimensional and high order cases. Fortunately~ it is possible to derive efficient algo- 
rithms for a low dimensional domain such as a plane and/or a low order polynomial such 
as a quadratic or a cubic. Traas (1990) discussed the applicability of bivariate quadratic 

For example, appropriate NURBS weight values may be determined automatically subject to the constraints. 
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simplex splines as finite elements and derived differentiation and inner product formulas. 
Auerbach et al. (1991) use bivariate simplex B-splines to fit geological surfaces to scat- 
tered data by adjusting the triangulation of the parametric domain in accordance with the 
data distribution. In 1993, the first experimental CAGD software based on the triangular 
B-spline was developed, demonstrating the practical feasibility of multivariate B-spline 
algorithms (Fong and Seidel, 1993). Recently, Pfeifle and Seidel (1995) demonstrate the 
fitting of triangular B-spline surfaces to scattered data through the use of least squares 
and optimization techniques. 

A different area of research that provides background for our work in this paper is 
physics-based shape modeling. Terzopoulos and Fleischer (1988) constructed free-form 
surfaces with natural dynamic behavior governed by the physical laws of elasticity and 
demonstrated simple interactive sculpting using viscoelastic and plastic models. Bloor 
and Wilson (1990) demonstrated free-form design using tensor product B-splines and the 
optimization of energy functionals. Celniker and Gossard (1991 ) developed an interesting 
prototype system for interactive design based on surface finite elements. Welch and 
Witkin (1992) made similar use of trimmed hierarchical B-splines. Moreton and Sequin 
(1992) interpolated a minimum energy curve network with quintic Bezier patches by 
minimizing the variation of curvature. In our earlier work, we developed dynamic NURBS 
(D-NURBS) (Terzopoulos and Qin, 1994; Qin and Terzopoulos, 1995a, b), a physics- 
based generalization of standard geometric NURBS with full second-order dynamics. 
We demonstrated that D-NURBS allow a designer to interactively sculpt and directly 
manipulate shapes in a natural and predictable way using a variety of force-based tools 
and constraints. 

1.2. Overview 

Section 2 reviews both multivariate simplex splines and triangular B-splines and pro- 
poses triangular NURBS. In Section 3, we formulate dynamic triangular NURBS and 
derive their equations of motion. Section 4 applies finite element analysis towards the 
numerical simulation of these equations. We discuss the physics-based design paradigm 
involving the use of forces and constraints in Section 5. Section 6 presents applications 
of dynamic triangular splines to interactive sculpting, scattered data fitting, and shape 
rounding. Section 7 concludes the paper. 

2. Triangular NURBS geometry 

In this section we review the formulation of multivariate simplex splines and triangu- 
lar B-splines, summarize their analytic and geometric properties, and straightforwardly 
generalize to the rational case--triangular NURBS. 

2.1. Multivariate simplex splines 

The basis functions of multivariate simplex splines may be defined either analyti- 
cally or recursively (Dahmen et al., 1992; Micchelli, 1979). An s-variate simplex spline 
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M(xl{xo , . . .  ,xm}) can be defined as a function of  x C R s over the convex hull of  a 
point set { x 0 , . . . ,  x,~}, depending on the m + 1 knots xi E R s, i = 0 . . . . .  m (m ~> s). 
It is a piecewise polynomial with degree d = m - s satisfying 

/ f ( x ) M ( x l { x 0 , . . . ,  x,,~ }) dx 
R~ 

--- ( m -  s)! f l  f(t0x0 + ' "  + t m x , , , ) d t l . . -  dtm, (1) 
t /  

S m 

where f is an arbitrary integrable function defined over the region which covers the 
convex hull spanned by the knot sequences x~. The region S m is the standard m-simplex: 

S m = t l , . . . , t m )  t i  = 1, t i  > / 0  . 

i = 0  

M ( x l { x o , . . . , x m } )  has a very simple geometric interpretation: It is the projection of 
a higher dimensional simplex on a lower dimensional space. Let A be a m-simplex 
extended by m + l vertices [Vo,. . . ,  vm], vi E R "~, such that the projection of  vi on 
subspace R s is xi, and for arbitrary x define a point set 

A x = { V t v E A ,  v l ~ = x } .  

Then, we can explicitly formulate the basis function of  s-variate simplex splines as 

M ( x l { x o , . . . , x m } )  : ( r a - s ) !  volm_~(Ax) 
m! vol.~ (A) ' (2) 

where volk denotes the k-dimensional volume of  certain sets. 
The basis function of  multivariate simplex splines may also be formulated recursively, 

which facilitates evaluation and derivative computation: When m = s, 

~vol~(E,~, ..... xml)' z ~ [xo, . . .  xm], 
M(x l{x° '  ' " ' ' xm})  = O, otherwise, 

and when m > s, 
77~ 

: Z 
i : 0  

where 

i = 0  

77Z 

---- 1; Z A i x ~  ----x. 
i = 0  

Note that when m ---- s the basis function is discontinuous along the boundary of  the 
convex hull [Xo,. . . ,  xm]; thus, the function value is not unique. Extra effort is therefore 
needed to deal with the boundary evaluation (see (Fong and Seidel, 1993) for the concept 
of  semi-open convex hull in the context of  bivariate B-splines). Second, when m > 
s the barycentric coefficients are not unique. An efficient method frequently used in 
applications is to make at least m - s of  the A~ vanish, while the remaining ones are 
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taken as positive barycentric coordinates to obtain stable and fast evaluation. Similarly, the 
directional derivative Dw of multivariate simplex splines may be recursively formulated 
as 

DwM(xl{xo,..., x.~}) = w--VM 

= ( r n -  s ) Z / t ~ M ( x [ { x 0 , . . .  , x i - ,  , x i + , , . . . ,  x , ,} ) ,  (4) 
i=0 

where #i are coefficients satisfying 
)'~Z 77l 

i=0 i=0 

Again, these scalar coefficients are not unique. An efficient algorithm to evaluate deriva- 
tives is obtained by setting #i = DwAi, i = 0 . . . . .  m ,  where Ai is defined in (3). 

2.2. Triangular NURBS 

The triangular B-spline is essentially a normalized simplex spline. Let 

T : { A ( i )  = [ r , s , t ]  ] i = (i0. il i2) E Z ~ }  

be an arbitrary triangulation of the planar parametric domain, where i0, il, and i2 denote 
indices of r, s, and t in the vertex array of the triangulation, respectively. For each vertex 
v in the triangulated domain, we then assign a knot sequence (also called a cloud of 
knots) [v = v0, v l , . . . , v , , ]  (which are inside the shaded circles in Fig. l). Next, we 
define a convex hull 

Vi,;~ = {r0, • • •, r~,,, s o , . . . ,  s~,, t o , . . . ,  t~  }, 

where subscript i is a triangle index and /3 = (/30,/31,/32) is a triplet such that 1/31 = 
/3o +/31 +/32 = n. The bivariate simplex spline M(ulVi,;3) with degree n over Vi,~ can be 
defined recursively (see (Dahmen et al., 1992) for the details), where u = (u, v) defines 
the triangulated parametric domain of the surface. We then define a bivariate B-spline 
basis function as 

Xi,~(u) = Id(rA,, s/3,, t~) l~1(ulVi,9) ,  (5) 

where Id(r~,,,s~,,t~:)l is twice the area of A(r2, , ,S2, , t~) .  Like the ordinary tensor 
product B-spline, a triangular B-spline surface of degree n over arbitrary triangulated 
domain is the combination of a set of basis functions with control points Pi,~: 

S(U) : Z Z Pi'2Ni'2(u)" (6) 
i I~l=n 

Generalizing (6) by associating a weight wi,~ with each control point, we define triangular 
NURBS as the combination of a set of piecewise rational functions: 

s ( u )  : ~--~i ~--~'~[Ol=- pi,2wi,~Ni.2(u) (7) 

Z i  ~-'~1¢3[:n ?t)i,oNi,2(u) 
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Triangulated Domain 

Knot Sequences 

\ f l  ~ / 
"-,,f l ~ / 

/ ' ~  I .Z ' .  \ 
I S~ ~ ; Q ' ~ "  ~ Knot Sequences 

. /  
/ - -  / ' - 4 ,  . . -  ', 

Knotsw.s i J 
I ~ -  / 

\ / ~_ / 
\ ~ ~ / 
\\ T ~ / /  

Fig, 1. Knot vectors associated with each triangle in the domain triangulation. 

2.3. Properties 

Like nonrational B-splines, the rational nonnegative basis functions of triangular 
NURBS sum to unity. They inherit many of the properties of nonrational B-splines, 
such as the convex hull property, local support, affine invariance, and form a common 
representation for any piecewise polynomial (Dahmen et al., 1992; Seidel, 1993; Fong and 
Seidel, 1993; Greiner and Seidel, 1994). Moreover, they have some additional properties: 

• Triangular NURBS and their rational basis functions are infinitely smooth in the 
interior of nonoverlapping sub-triangles formed by the knot nets, provided the de- 
nominator is nonzero. At the boundary of sub-triangles, they are C n-~ continuous 
if the knots are in general position. The designer can obtain different smoothness 
conditions by varying the knot arrangement. 

• Triangular NURBS include weights as extra degrees of freedom which influence 
local shape. If a particular weight is zero, then the corresponding rational basis 
function is also zero and its control point does not effect the NURBS shape. The 
spline is "attracted" toward a control point more if the corresponding weight is 
increased and less if the weight is decreased. 

Shape design based on triangular NURBS includes the specification of a domain trian- 
gulation, knot sequences, and a control polygon to generate an initial shape. The initial 
shape is then refined into the final desired shape through interactive adjustment of control 
points, weights, and knots. The availability of weights as additional degrees of freedom 
expands the geometric coverage of triangular NURBS. In contrast to the case of regular 
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NURBS, however, the special analytic shapes that can be represented precisely by trian- 
gular NURBS remains an open question. Because of the irregularity of the triangulation 
vertices and knot sequences, the shape refinement process is ad hoc and it can become 
extremely tedious. Hence, the considerable geometric flexibility of triangular NURBS 
can thwart the conventional geometric design approach. To improve matters, we propose 
a physics-based triangular NURBS model. 

3. Physics-based triangular NURBS 

In this section, we formulate a dynamic model based on triangular NURBS. The control 
points and weights of the geometric model of Section 2 become generalized (physical) 
coordinates in the dynamic model. We derive the Jacobian and basis function matrices 
that lead to compact expressions for the velocity and position functions of the surface. 
We introduce time, mass, and deformation energy into the triangular NURBS formulation 
and employ Lagrangian dynamics to derive the equations of motion of the physics-based 
model. 

3.1. Geomet~ and kinematics 

The dynamic triangular NURBS extend the geometric triangular NURBS in (7) by 
explicitly incorporating time and physical behavior. The surface is a function of both the 
parametric variable u and time t: 

S(U, t) = ~-~i ~-~l/31=n Pi,o(/~)zt'i,2(t)-N-i,fl(u) 
~ i  ~i21 =n 2/31,/3 (t)Ni,2 (u) (8) 

To simplify notation, we define the vector of generalized coordinates (control points) 
Pi,;~ and (weights) wi,;~ as 

p [.. - .IT. : • ~' Pi,3, 2/)i,¢3, • - 

We then express (8) as s(u, p) in order to emphasize its dependence on p whose com- 
ponents are functions of time. 

Thus, the velocity of the dynamic triangular NURBS is 

s(u, p) = Jp, (9) 

where the overstruck dot denotes a time derivative and the Jacobian matrix J(u, p) is 
the concatenation of the vectors i~s/0pi,~ and 0s/0wi,~. Assuming m triangles in the 
parametric domain,/3 traverses k = (n + 2)!/(n!2!)  possible triplets whose components 
sum to n. Because s is a 3-vector and p is an M = 4ink dimensional vector, J is a 
3 x M matrix, which may be written as 

I Ri,.2 0 0 

J . . . .  , 0 Ri,3 0 ,wi./3,.. (10) 

0 0 Ri,~ 
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where 

and 

0S~: 0S~ 0Sz wi,3]Vi,3 (u) 
Ri,~(u,p)- 0Pi,3,x - 0Pi , ;Lu - 0pi,3.z = ~ j  ~ l c ~ ] :  ~ w j , ~ N j , c ~ ( u )  

OS (Pi,3 -- s)Ni,3(u) 
Wi,3(U, P) -- 07Ui, 3 -- ~ j  ~ lc~[ :n  7J)j,o~Nj,c~(u) ' 

The subscripts x, y, and z denote derivatives of the components of a 3-vector. Moreover, 
we can express the surface as the product of the Jacobian matrix and the generalized 
coordinate vector: 

s ( u ,p )  = Jp. (11) 

The proof of (1 l) is the same as that for D-NURBS in (Terzopoulos and Qin, 1994). 

3.1.1. Lagrange equations of motion 
We derive the equations of motion of our dynamic triangular NURBS by applying La- 

grangian dynamics (Grossick, 1967). We express the kinetic energy due to a prescribed 
mass distribution function/~(u, v) over the parametric domain of the surface and a dis- 
sipation energy due to a damping density function 7(u, v). To define an elastic potential 
energy, we adopt the thin-plate under tension energy model (Terzopoulos, 1986; Cetniker 
and Grossard, 1991; Welch and Witkin, 1992) 

~T = ~ (t'~l,lS ~ -+- C~2,2S, 2, ~- /~l ,IS~u-- f~l.2Suv @ ~2.2S2,v) dudv. 
u 

The subscripts on s denote parametric partial derivatives. The c~i,j (u, v) and 3i,j (u, v) 
are elasticity functions which control tension and rigidity, respectively. Other energies 
are applicable, including, at greater computational cost, the nonquadratic, curvature-based 
energies in (Terzopoulos and Fleischer, 1988; Moreton and Sequin, 1992). Applying the 
Lagrangian formulation, we obtain the second order nonlinear equations of motion 

Mii + D o + Kp = fp + gp, (12) 

where the mass matrix is 

= f / # j T j  du M(p)  dr, 

the damping matrix is 

D ( P ) = f / 7 J T J d n d v ' .  . 

and the stiffness matrix is 

K(p)  [/" (oq, T T T I J~,Jwu = J~ J,~ + o~2,2Jv J~, + 3J, 
/ d 

F T Jr- • + 3,.2J~.,J .... 32,2J~,J,.,) du dr. 
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All are M x M matrices. The generalized forces on generalized coordinates due to the 
applied force distribution f(u, v, t) is 

fp(p) = / 7 ' J T f ( u ,  v, t) dudv. 

Because of the geometric nonlinearity, the generalized inertial forces 

gp(p) = - / / # J T , J l i  du dv 

appear in the equations of motion. The derivation of (12) proceeds as for D-NURBS (see 
(Terzopoulos and Qin, 1994) for the details). 

4. Finite element implementation 

The evolution of the generalized coordinates p(t), determined by (12) with time- 
varying matrices, cannot be solved analytically in general. Instead, we pursue an efficient 
numerical implementation using finite-element techniques (Kardestuncer, 1987). Standard 
finite element codes explicitly assemble the global matrices that appear in the discrete 
equations of motion (Kardestuncer, 1987). This approach would be too expensive for 
interactive performance. We use an iterative matrix solver to avoid the cost of assembling 
the global matrices M, D, and K, working instead with the individual element matrices. 
We construct finite element data structures that permit the parallel computation of the 
element matrices. The remainder of this section provides the details of our numerical 
implementation. 

4.1. Discrete dynamics equations 

To integrate (12) in an interactive modeling system, it is important to provide the 
designer with visual feedback about the evolving state of the dynamic model. Rather 
than using costly time integration methods that take the largest possible time steps, it is 
more crucial to support a smooth animation by maintaining the continuity of the dynamics 
from one step to the next. Hence, less costly yet stable time integration methods that 
take modest time steps are desirable. 

The state of the dynamic triangular NURBS at time t + At is integrated using prior 
states at time t and t - At. To maintain the stability of the integration scheme, we use an 
implicit time integration method, which employs discrete derivatives of p using backward 
differences 

ii(t+at) ~ (p(t+at) _ 2p(t) + p( t -a~)) /At:  

and 

p(t+at) ~ (p(t+at) _ p(t at))/2At.  

We obtain the time integration formula 

(2M + AtD + 2AtaK)p (t+at) 

= 2At2(fp + gp) + 4Mp (t) - (2M - AtD)p (t-at), (13) 
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where the superscripts denote evaluation of the quantities at the indicated times. The 
matrices and forces are evaluated at time t. We employ the conjugate gradient method 
(Press et al., 1986) to obtain an iterative solution for p(t+At) at each time step. To achieve 
interactive simulation rates, we limit the number of conjugate gradient iterations per time 
step to 10. More than 2 iterations tend to be necessary when the physical parameters are 
changed significantly during the numerical simulation. Hence, it is possible to achieve 
interactive simulation rates on common graphics workstations. We have observed that 
quadratic and cubic surfaces with about 100 control points may be simulated at real-time 
interactive rates. 

It is possible to make simplifications that further reduce the computational expense 
of (13), making it practical to work with larger triangular NURBS surfaces. First, it is 
seldom necessary to simulate the fully general triangular NURBS model throughout an 
entire sculpting session. Once we freeze the values of the weights, all of the matrices 
in (12) are constant and their entries need no longer be recomputed at each time step. 
Interactive rates are readily obtained for surfaces with up to an order of magnitude more 
degrees of freedom with this restricted rational generalization of the triangular B-splines. 
Moreover, triangular NURBS reduce to dynamic B-splines if all the frozen weights are 
set equal to 1. Second, although (12) will generate realistic dynamics for physics-based 
graphics animation, in certain CAGD applications where the designer is interested only in 
the final equilibrium configuration of the model, we can simplify (12) by setting the mass 
density function #(u, v) to zero, so that the inertial terms vanish. This economizes on 
storage and makes the algorithm more efficient. With zero mass density, (12) reduces to 

Dp + Kp = fp. (14) 

Discretizing the derivatives of p in (14) with backward differences, we obtain the inte- 
gration formula 

(D + At K) p(t+At) _- At fp + Dp (t). (15) 

4.2. Element data structure 

We construct triangular finite element data structures that permit the parallel compu- 
tation of the element matrices. Fig. 2 illustrates a typical triangular spline finite element, 
along with its local degrees of freedom. Note that, the degrees of freedom of this finite 
element consist of all control points and weights whose basis functions are non-zero 
over the current triangle in the parametric domain. Also, the weights are not explicitly 
provided in Fig. 2. Because of the irregular knot distribution of triangular splines, we do 
not display all the degrees of freedom for this finite element; only 10 indexed control 
points are shown in Fig. 2. 

We define an element data structure which contains the geometric specification of 
the triangular patch element along with its physical properties. In each element, we 
allocate an elemental mass, damping, and stiffness matrix, and include the physical 
quantities--the mass #(u, v), damping 7(u, v), and elasticity c~,j (u, v),/3i,j (u, v) density 
functions. A complete dynamic triangular NURBS model then consists of an ordered 
array of elements with additional information. The element structure includes pointers to 
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Element Degrees of Freedom 

ular NURBS Element 

I Physical Surface 
x I 

/ 

iangulated Domain 

u 

Fig. 2. One finite element and its degrees of freedom of a triangular NURBS surface. 

appropriate components of the global vector of generalized coordinates p (control points 
and weights). Neighboring elements will share some generalized coordinates. 

4.3. Calculation of element matrices 

The integral expressions for the mass, damping, and stiffness matrices associated with 
each element are evaluated numerically using Gaussian quadrature (Press et al., 1986). 
We explain the computation of the element mass matrix; the computation of the damping 
and stiffness matrices follow suit. The expression for entry mij  of the element mass 
matrix takes the integral form 

mij = / /"  #(u, v)fij (u, v) du dv, 

zS(r,s,t) 

where A(r ,s ,  t), is the parametric domain of the element. Given integers Ng, we can 
find Gauss weights ag and abscissas Ug and Vg in the two parametric directions such that 
mij  can be approximated by 

Ny 

mij ~ Z ag#(Ug, vg)f.ij(ug, vg). 
g = l  
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Triangulated Domain 

Curren 

Fig. 3. Nine subtriangles for numerical quadrature. 
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Fig. 4. Finer triangulation due to intersection of knot lines (see text). 
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We apply the recursive algorithm of multivariate simplex splines (Micchelli, 1979) to 
evaluate f i j(ug,  vg). In our implementation we choose Ng to be 7 for quadratic and cubic 
triangular splines. 

Note that because of the irregular knot distribution, the integrands f i j 's  may vanish 
over subregions of A(r, s, t). We can minimize numerical quadrature error by further 
subdividing the A(r ,s , t ) .  We subdivide a triangular into 9 subtriangles as shown in 
Fig. 3 and observe that matrices computed according to this subdivision lead to stable, 
convergent solutions. Alternatively, a more precise albeit expensive approach is to convert 
a triangular B-spline into piecewise Bezier surfaces defined on a finer triangulation with 
extra knot lines (Fig. 4 illustrates the quadratic case). Note that Fig. 4 shows only a 
subset of the finer triangulation comprising the intersection of knot lines. The complete 
finer triangulation can be obtained by adding extra edges (Fong and Seidel, 1993) into 
Fig. 4. This subdivision scheme yields about 10-100 subtriangles per parametric domain 
triangle for cubics and quadratics. 

5. Dynamic interaction 

The physics-based shape design approach allows modeling requirements to be ex- 
pressed and satisfied through the use of energies, forces, and constraints. The designer 
may apply time-varying forces to sculpt shapes interactively or to optimally approxi- 
mate data. Certain aesthetic constraints (such as "fairness") are expressible in terms of 
elastic energies that give rise to specific stiffness matrices K. Other constraints include 
position or normal specification at surface points and continuity requirements between 
adjacent patches. By building the dynamic model upon the triangular NURBS geometry, 
we allow the designer to continue to use the repertoire of advanced geometric tools that 
have become prevalent, among them, the imposition of geometric constraints that the fi- 
nal shape must satisfy. Our physics-based shape design approach (Terzopoulos and Qin, 
1994; Qin and Terzopoulos, 1995a, b) which utilizes energies, forces, and constraints 
has proven to be simpler and more intuitive than conventional geometric design methods 
(e.g., the manipulation and adjustment of control points and weights). This approach is 
even more attractive for triangular NURBS, because of the complexity and irregularity 
of their control point and knot vectors. 

5.1. Force tools 

Sculpting tools may be implemented as applied forces. The force distribution f(u, v, t) 
represents the net effect of all applied forces. Typical force functions are spring forces, 
repulsion forces, gravitational forces, inflation forces, etc. (Terzopoulos and Fleischer, 
1988). Consider connecting a material point (u0, v0) of a dynamic triangular NURBS 
surface to a point do in space with an ideal Hookean spring of stiffness k. The net 
applied spring force is 

f(~, v, t )  = f f  k (do - s(u, v, t))6(u - uo, v - Co) du dv, (1 6) 
J J 
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where the 6 is the unit delta function. Eq. (16) implies that f(uo, vo, t) = k(do - 
s(u0, v0, t)) and vanishes elsewhere on the surface, but we can generalize it by replac- 
ing the 6 function with a smooth kernel (e.g., a unit Gaussian) to spread the applied 
force over a greater portion of the surface. In general, the points (uo, v0) and do need 
not be constant. We can control either or both using a mouse to obtain an interactive 
spring force. More advanced force tools are readily implemented to intuitively manipulate 
geometrically intrinsic quantities such as normal and curvature anywhere on the surface. 

5.2. Constraints 

In practical applications, design requirements may be posed as a set of physical param- 
eters or as geometric constraints. Nonlinear constraints can be enforced through Lagrange 
multiplier techniques (Minoux, 1986; Platt, 1992). This approach increases the number 
of degrees of freedom, hence the computational cost, by adding unknowns Ai, known as 
Lagrange multipliers, which determine the magnitudes of the constraint forces. The aug- 
mented Lagrangian method (Minoux, 1986) combines the Lagrange multipliers with the 
simpler penalty method. The Baumgarte stabilization method (Baumgarte, 1972) solves 
constrained equations of motion through linear feedback control (see also (Metaxas and 
Terzopoulos, 1992; Terzopoulos and Qin, 1994)). These techniques are appropriate for 
enforcing constraints on dynamic triangular NURBS. 

Linear geometric constraints such as point, curve, and surface normal constraints can 
be easily incorporated into dynamic triangular NURBS by reducing the matrices and 
vectors in (12) to a minimal unconstrained set of generalized coordinates. For example, 

Poos Qoo.~ Qs~s 

~ Q o ~ s  

I I Pscs=Qcos 
I Psi2=Q~o~ 

I I Po2~=Q2ol 

Plo2 

P2o: 

Psoo 

! I Pc3o Q3oo 
I 
I 
I 

x $ 
% j 

% s 

R :  

Z ~  
~ u 5 ," ' 

Triangulated Domain 

Fig. 5. A constrained triangular B-spline configuration: continuous net. 
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by confining all associated weights to be unity, we obtain dynamic triangular B-splines. 
Furthermore, we arrive at the continuous net (Fong and Seidel, 1993), which is a spe- 
cial case of general triangular B-splines, by constraining respective control points along 
common boundaries of two adjacent triangles in parametric triangulation (Fig. 5). Linear 
constraints can be implemented by applying the same numerical solver on an uncon- 
strained subset of p. See (Terzopoulos and Qin, 1994) for a detailed discussion on linear 
constraints. 

Rational dynamic models have an interesting peculiarity due to the weights. While the 
control point components of p may take arbitrary finite values in IR, negative weights 
may cause the denominator to vanish at some evaluation points, causing the matrices 
to diverge. Although not forbidden, negative weights are not useful. We enforce the 
positivity of weights at each simulation time step by simply projecting any weight value 
that has drifted below a small positive threshold back to this lower bound. Alternatively, 
we can give the designer the option of constraining the weights near certain desired target 
values using penalty methods (Terzopoulos and Qin, 1994). 

6. Modeling applications 

We have developed prototype modeling software based on dynamic triangular B-splines 
(an advanced system based upon dynamic triangular NURBS is under construction). We 
have adopted the data structure, file, and rendering formats of existing geometric trian- 
gular B-spline software (Fong and Seidel, 1993). To implement the Lagrangian dynamics 
model on top of this software, we have had to implement a new algorithm for simulta- 
neously evaluating nonzero basis functions and their derivatives up to second order at 
arbitrary domain points for finite element assembly and dynamic simulation. Our paral- 
lelized iterative numerical algorithm takes advantage of an SGI Iris 4D/380VGX shared 
memory multiprocessor. 

In accordance with the physics-based paradigm, users can sculpt surface shapes by 
applying simulated forces. They can satisfy design requirements by adjusting the internal 
physical parameters such as the mass, damping, and stiffness densities, along with the 
force gain factors. In our prototype system, linear constraints such as the freezing of con- 
trol points have been associated with physics-based toolkits. Local geometric constraints 
can be used to achieve real-time local manipulation for interactive sculpting of complex 
objects. 

In the following sections we demonstrate applications of dynamic triangular B-splines 
to interactive sculpting, solid rounding, and scattered data fitting. Table 1 specifies the 
physical parameters used in the subsequent experiments. Fig. 6 illustrates the parametric 
domain triangulation of the various surfaces used in these experiments. 

6.1. Rounding 

The rounding operation is usually attempted geometrically by enforcing continuity 
requirements on the fillet which interpolates between two or more surfaces. By contrast, 
the dynamic triangular B-spline can produce a smooth fillet by minimizing its internal 
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Table 1 
Physical parameters used in the examples. Parameter k denotes the stiffness of the spring force. 

Applications Physical Parameters 

11 7 O~].l OL2,.. ~l,I /~1,2 /~2,2 At  k 

Edge rounding 0.0 500.0 1000.0 0.0 1.0 0.0 0.0 0.04 0.0 

Corner rounding 0.0 50.0 1000.0 1000.0 10.0 10.0 10.0 0.04 0.0 

Bevel rounding 0.0 25.0 100.0 100.0 0.0 0.0 0.0 0.04 0.0 

Hill fitting 0.0 10.0 0.0 0.0 10.0 10.0 10.0 0.04 1000.0 

Convex/Concave fitting 0.0 5.0 0.0 0.0 5.0 5.0 5.0 0.04 2000.0 

Mountain/Valley fitting 0.0 25.0 0.0 0.0 1.0 1.0 1.0 0.04 2000.0 

Quadratic objectsculpting 5.0 25.0 10.0 10.0 1000.0 1000.0 1000.0 0.04 2000.0 

Cubic patch sculpting 5.0 10.0 100.0 100.0 10.0 10.0 10.0 0.04 1000.0 

/ / \  

(a) (b) (c) 

(d) (e) (f) 

Fig. 6. Domain triangulation of surfaces used in the examples (see text). (a) An edge. (b) A tri- 
hedral corner. (c) A bevel joint. (d) A pentagonal surface. (e) An open quadratic surface. (f) A cubic 
patch. 
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(a) (b) (c) 

Fig. 7. Rounding of an edge. (a) Initial wireframe object. (b) Initial shaded object. (c) Rounded 
object. 

(a) (b) (c) 

Fig. 8. Rounding of a trihedral corner. (a) Initial wireframe object. (b) Initial shaded object. 
(c) Rounded object. 

deformation energy subject to position and normal constraints. The dynamic simulation 
automatically produces the desired final shape as it achieves static equilibrium. 

Fig. 7 demonstrates the rounding of a sharp edge represented by a quadratic triangular 
B-spline surface with 36 control points. The sharp edge can be represented exactly with 
multiple control points (note that a sharp edge can also be obtained with colinear knots). 
By restricting the control polygon to be a continuous net, we reduced the number of 
control points to 21. The initial wireframe and shaded shapes are shown in Fig. 7(a-b). 
After initiating the physical simulation, the sharp edges are rounded as the final shape 
equilibrates into the minimal energy state shown in Fig. 7(c). 

Fig. 8 illustrates the rounding of a trihedral comer of a cube. The comer is represented 
using a quadratic triangular B-spline with 78 control points. The initial wireframe and 
shaded shapes are demonstrated in Fig. 8(a-b). The rounding operation is applied in the 
vicinity of three sharp edges. The sharp edges and comer are rounded with position and 
normal constraints along the far boundaries of the faces shown in Fig. 8(c). 

Fig. 9 shows a rounding example involving a bevel joint. The bevel joint is a quadratic 
triangular B-spline with 108 control points. The initial right-angle joint and the final 
rounded shapes are shown in Fig. 9(a-c). 
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(a) (b) (c) 

Fig. 9. Rounding of a bevel joint. (a) Initial wireframe object. (b) Initial shaded object. (c) Rounded 
object. 

6.2. Scattered data fitting 

A useful modeling technique generally known as scattered data fitting is based on 
fitting surfaces to unorganized point constraints. Interesting situations arise when there 
are fewer or more data points than there are degrees of freedom in the model, leading to 
underconstrained or overconstrained fitting problems, respectively. The inclusion of an 
elastic energy in our dynamic surfaces makes them applicable to such problems. 

The data interpolation problem is amenable to common constraint techniques (Minoux, 
1986). Approximation can be achieved by physically coupling the dynamic triangular B- 
splines to the data through Hookean spring forces (16). We interpret do in (16) as the 
data point (generally in ~3) and (u0, v0) as the parametric coordinates associated with 
the data point (typically the nearest material point of the surface). The spring constant c 
determines the closeness of fit to the data point. 

We present three examples of surface fitting using dynamic triangular B-spline surfaces 
coupled to data points through spring forces. The initial surface is a quadratic pentagon 
with 30 control points defined over the pentagonal domain. Three different sets of 6 data 
points are shown in Fig. 10(al-cl)  along with the initial surfaces. The spring forces 
associated with the data points are applied to the nearest points on the surfaces. Note 
that the spring attachments shown in Fig. 10(al-cl)  show the initial correspondence and 
are not fixed during the dynamic surface fitting process. Fig. 10(a2-c2) show the final 
fitted surfaces. 

6.3. Dynamic interactive sculpting 

The physics-based modeling approach is ideal for the interactive sculpting of surfaces. 
Not only can the designer indirectly manipulate the surface by adjusting the degrees of 
freedom of the underlying geometry as is traditional in geometric modeling, but he can 
sculpt the dynamic surface directly, through the use of interactive sculpting tools in the 
form of simulated forces. 

Fig. 1 1 illustrates four shapes sculpted using spring forces. The initial open surface is 
generated using a quadratic B-splines with 24 control points. Second, a cubic triangular 
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(al) (bl) (cl) 

(a2) (b2) (c2) 

Fig. 10. Fitting a pentagonal surface to three different sets of scattered data. Data points and initial 
surfaces (al,bl,c 1). Final fitted surfaces (a2,b2,c2). 

planar patch with l0 control points shown in Fig. 12(a) was dynamically manipulated 
into the shape shown in Fig. 12(b). 

7. Conclusion 

We have proposed dynamic triangular NURBS, a new free-form shape model that mar- 
ries the elegant geometry of rational multivariate simplex splines with physical dynamics. 
By using dynamic triangular NURBS, the designer can benefit from arbitrary parametric 
domains, non-degeneracy for multi-sided surfaces, and other important features. 

We have applied Lagrangian dynamics to derive the equations of motion of dynamic 
triangular NURBS and techniques from finite element analysis to reduce the equations to 
efficient numerical algorithms. Our physics-based model responds to applied simulated 
forces with natural and predictable dynamics, while the underlying geometric parameters 
are determined automatically. Designers can employ force-based "tools" to manipulate 
the surface directly and interactively sculpt its shape. Additional control over the shape 
is available through the modification of physical parameters. Elastic energy functionals 
allow the qualitative imposition of fairness criteria through quantitative means. Linear 
or nonlinear constraints may be imposed either as hard constraints that must not be 
violated, or as soft constraints to be satisfied approximately in the form of simple forces. 
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(a) (b) 

(c) (d) 

Fig. 11. Interactive sculpting of an open quadratic surface into four different shapes (a-d). 

(a) (b) 

Fig. 12. Interactive sculpting of a cubic patch (a) into another shape (b). 

Constraint-based shape optimization is an automatic consequence of the dynamic model 
achieving static equilibrium. 

Our experimental software demonstrates the ease of use of the special case of dynamic 
triangular B-splines in a variety of applications, including constraint-based optimization, 
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automatic parametric design, shape blending, and interactive sculpting. Since our dynamic 
model is built upon existing geometric primitives, designers working with it can continue 
to use existing geometric design toolkits. Thus, dynamic triangular NURBS appear to be 
a promising new solid modeling tool. 

Acknowledgments 

We would like to thank Professor Hans-Peter Seidel of  Universit~it Erlangen for kindly 
making available the software for triangular B-spline surfaces that he developed with 
Mr. Philip Fong. This research was made possible by grants from the Natural Sciences 
and Engineering Research Council of  Canada and the Information Technology Research 
Center of  Ontario. Terzopoulos is a fellow of  the Canadian Institute for Advanced Re- 
search. 

References 

Auerbach, S., Gmelig Meyling, R., Neamtu, M. and Schaeben, H. (1991), Approximation and 
geometric modeling with simplex B-splines associated with irregular triangles, Computer Aided 
Geometric Design 8, 67-87. 

Baumgarte, J. (1972), Stabilization of constraints and integrals of motion in dynamical systems, 
Comp. Meth. in Appl. Mech. and Eng. I, 1-16. 

Bloor, M.I.G. and Wilson, M.J. (1990), Representing PDE surfaces in terms of B-splines, 
Computer-Aided Design 22, 324-331. 

Celniker, G. and Gossard, D. (1991), Deformable curve and surface finite elements for free-form 
shape design, Computer Graphics 25, 257-266. 

Dahmen, W. and Micchelli, C. (1982), On the linear independence of multivariate B-splines, I. 
Triangulations of simploids, SIAM J. Numer. Anal. 19, 993-1012. 

Dahmen, W. and Micchelli, C. (1983), Recent progress in multivariate splines, in: Chui, C.K., 
Schumaker, L.L. and Ward, J.D., eds., Approximation Theo~ IV, Academic Press, New York, 
27-121. 

Dahmen, W., Micchelli, C. and Seidel, H.-P. (1992), Blossoming begets B-spline bases built better 
by B-patches, Mathematics of Computation 59, 97-115. 

de Boor, C. (1976), Splines as linear combinations of B-splines, in: Lorentz, G., Chui, C. and 
Schumaker, L.L., eds., Approximation Theor3." H, Academic Press, New York, 1-47. 

Fong, P. and Seidel, H.-P. (1993), An implementation of triangular B-spline surfaces over arbitrary 
triangulations, Computer Aided Geometric Design 3--4, 267-275. 

Gossick, B.R. (1967), Hamilton ~" Principle and Physical Systems, Academic Press, New York 
and London. 

Grandine, T. (1988), The stable evaluation of multivariate simplex splines, Mathematics of 
Computation 50, 197-205. 

Greiner, G. and Seidel, H.-P. (1994), Modeling with triangular B-splines, IEEE Computer Graphics 
and Applications 14, 56-60. 

Hollig, K. (1982), Multivariate splines, SIAM J. Numer. Anal. 19, 1013-1031. 
Kardestuncer, H. (1987), Finite Element Handbook, McGraw-Hill, New York. 
Metaxas, D. and Terzopoulos, D. (1992), Dynamic deformation of solid primitives with constraints, 

Computer Graphics 26, 309-312. 



H. Qin. D. Terzopoulos / Computer Aided Geometric Design 14 (1997) 325-347 347 

Micchelli, C.A. (1979), On a numerically efficient method for computing with multivariate B-spli- 
nes, in: Schempp, W. and Zeller, K., eds., Multivariate Approximation Theor3', Birkhauser, Ba- 
sel, 211-248. 

Minoux, M. (1986), Mathematical Programming, Wiley, New York. 
Moreton, H.P. and Sequin, C.H. (1992), Functional optimization for fair surface design, Computer 

Graphics 26, 167-176. 
Pfeifle, R. and Seidel, H.-P. (1995), Fitting triangular B-splines to functional scattered data, in: 

Proceedings ~f Graphics Interface '95, 26-33. 
Platt, J. (1992), A generalization of dynamic constraints, CVGIP: Graphical Models and Image 

Processing 54, 516-525. 
Press, W., Flanney, B., Teukolsky, S. and Verttering, W. (1986), Numerical Recipes: The Art 0[ 

Scientific Computing, Cambridge University Press, Cambridge. 
Qin, H. and Terzopoulos, D. (1995a), Dynamic manipulation of triangular B-splines, in: Procee- 

dings of  Third ACM/IEEE Symposium on Solid Modeling and Applications, Salt Lake City, 
ACM Press, 351-360. 

Qin, H. and Terzopoulos, D. (1995b), Dynamic NURBS swung surfaces for physics-based shape 
design, Computer Aided Design 27, 111-127. 

Seidel, H.-P. (1992), Representing piecewise polynomials as linear combinations of multivariate 
B-splines, in: Lyche, T. and Schumaker, L.L., eds., Curves and Surfaces, Academic Press, New 
York, 559-566. 

Seidel, H.-P. (1993), An introduction to polar forms, IEEE Computer Graphics and Applications 
13, 38-46. 

Terzopoulos, D. (1986), Regularization of inverse visual problems involving discontinuities, IEEE 
Transactions on Pattern Analysis and Machine Intelligence 8, 413-424. 

Terzopoulos, D. and Fleischer, K. (1988), Deformable models, The Visual Computer 4, 306-331. 
Terzopoulos, D. and Qin, H. (1994), Dynamic NURBS with geometric constraints for interactive 

sculpting, ACM Transactions on Graphics 13, 103-136. 
Traas, C. (1990), Practice of bivariate simplicial splines, in: Dahmen, W. et al., eds., Computation 

of Curves and Surfaces, Kluwer Academic Publishers, 383-422. 
Welch, W. and Witkin, A. (1992), Variational surface modeling, Computer Graphics 26, 157-166. 


