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ABSTRACT

This paper presents dynamic NURBS, or D-NURBS, a physics-based generalization of non-uniform ra-
tional B-splines. NURBS have become a de facto standard in commercial modeling systems because of
their power to represent both free-form and common analytic shapes. Traditionally, however, NURBS
have been viewed as purely geometric primitives, which require the designer to interactively adjust many
degrees of freedom (DOFs)—control points and associated weights—to achieve desired shapes. The con-
ventional shape modification process can often be clumsy and laborious. D-NURBS are physics-based
models that incorporate mass distributions, internal deformation energies, forces, and other physical
quantities into the NURBS geometric substrate. Their dynamic behavior, resulting from the numerical
integration of a set of nonlinear differential equations, produces physically meaningful, hence intuitive
shape variation. Consequently, a modeler can interactively sculpt complex shapes to required specifica-
tions not only in the traditional indirect fashion, by adjusting control points, but also through direct
physical manipulation, by applying simulated forces and local and global shape constraints. We use La-
grangian mechanics to formulate the equations of motion for D-NURBS curves, tensor-product surfaces,
swung surfaces, and triangulated surfaces. We apply finite element analysis to reduce these equations to
efficient algorithms that can be simulated at interactive rates using standard numerical techniques. We
describe a prototype modeling environment based on D-NURBS, and demonstrate that D-NURBS can
be effective tools in a wide range of CAGD applications such as shape blending, scattered data fitting,

and interactive sculpting.
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1 Introduction

In 1975 Versprille [32] proposed the Non-Uniform Rational B-Splines or NURBS. This shape representation
for geometric design generalized Riesenfeld’s B-splines. NURBS quickly gained popularity and were incor-
porated into several commercial modeling systems [20]. The NURBS representation has several attractive
properties. It offers a unified mathematical formulation for representing not only free-form curves and
surfaces, but also standard analytic shapes such as conics, quadrics, and surfaces of revolution. The most
frequently used NURBS design techniques are the specification of a control polygon, and interpolation or
approximation of data points to generate the initial shape. For surfaces or solids, cross-sectional design
including skinning, sweeping, and swinging operations is also popular. By adjusting the positions of control
points, associated weights, and knots of the initial shape, one can design a large variety of shapes using
NURBS [7, 18, 19, 20, 31]. Despite modern interactive devices, however, this conventional refinement
process can be clumsy and laborious when it comes to designing complex, real-world objects.

In this paper, we propose Dynamic NURBS, or D-NURBS. D-NURBS are physics-based models that in-
corporate mass distributions, internal deformation energies, and other physical quantities into the NURBS
geometric substrate. Time is fundamental to the dynamic formulation. The models are governed by dy-
namic differential equations which, when integrated numerically through time, continuously evolve the
control points and weights in response to applied forces. The D-NURBS formulation supports interactive
direct manipulation of NURBS objects, which results in physically meaningful hence intuitively predictable
motion and shape variation.

Using D-NURBS, a modeler can interactively sculpt complex shapes not merely by kinematic adjust-
ment of control points and weights, but dynamically as well—by applying simulated forces. Additional
control over dynamic sculpting stems from the modification of physical parameters such as mass, damping,
and elastic properties. FElastic functionals allow the imposition of qualitative “fairness” criteria through
quantitative means. Linear or nonlinear constraints may be imposed either as hard constraints that must
not to be violated, or as soft constraints to be satisfied approximately. The latter may be interpreted
intuitively as simple forces. Optimal shape design results when D-NURBS are allowed to achieve static
equilibrium subject to shape constraints. All of these capabilities are subsumed under an elegant formula-

tion grounded in physics.

2 Motivation

NURBS have offered designers extraordinary flexibility when utilized for geometric design. Nevertheless,

traditional design methodology does not exploit the full potential of the underlying geometric formulations



whose extraordinary flexibility has some drawbacks:

e Traditional free-form geometric design is a kinematic process. Designers are often faced with the
tedium of indirect shape manipulation through a bewildering variety of geometric parameters; i.e.,
by repositioning control points, adjusting weights, and modifying knot vectors. Despite the recent
prevalence of sophisticated 3D interaction devices, indirect geometric design of univariate and tensor
product splines can be clumsy and laborious when it comes to designing complex, real-world objects.
Design refinement with triangular splines can be especially time-consuming due to the irregularity of

control points and knot vectors.

e Shape design to required specifications by manual adjustment of available geometric degrees of free-
dom is often elusive, because relevant design tolerances are typically shape-oriented and not control
point/weight oriented. Moreover, a particular shape can often be represented nonuniquely, with dif-
ferent values of knots, control points, and weights. This “geometric redundancy” of NURBS tends
to make shape refinement ad hoc and ambiguous; it often requires designers to make nonintuitive
decisions—for instance, to adjust a shape, should the designer move a control point, or change a

weight, or move two control points, or...7

e Typical design requirements may be stated in both quantitative and qualitative terms, such as “a

fair and pleasing surface which approximates scattered data and interpolates a cross-section curve.”
Such requirements impose both local and global constraints on shape. The incremental manipulation
of local shape parameters to satisfy complex local and global shape constraints is at best cumbersome

and often unproductive.

? This requires geometric entities to be

e Stylists are often interested in geometric “theme variation.
generated quickly and naturally. Unlike engineers, stylists are concerned more with the geometric
shape than with its underlying mathematical description. It is apparent that conventional interpola-

tion/approximation techniques, which often generate computerized models from digitized data, may

not be quite suitable to the time-varying requirements of stylists.

Physics-based modeling provides a means to overcome these drawbacks. Free-form deformable models,
which were introduced to computer graphics in 1987 [29] and further developed during the past eight years
are particularly relevant in the context of modeling with NURBS. Important advantages accrue from the

deformable model approach [28]:

e The behavior of the deformable model is governed by physical laws. Through a computational physics
simulation, the model responds dynamically to applied simulated forces in a natural and predictable

way. Shapes can be sculpted interactively using a variety of force-based “tools.”



e The equilibrium state of the dynamic model is characterized by a minimum of its potential energy,
subject to imposed constraints [27]. It is possible to formulate potential energy functionals that
satisfy local and global design criteria, such as curve or surface (piecewise) smoothness, and to

impose geometric constraints relevant to shape design.

e The physical model may be built upon a standard geometric foundation, such as free-form parametric
curve and surface representations. This means that while shape design may proceed interactively
or automatically at the physical level, existing geometric toolkits are concurrently applicable at the

geometric level.

Physics-based shape design can free designers from making nonintuitive decisions such as assigning
weights to NURBS. In addition, with physics-based direct manipulation, non-expert users are able to
concentrate on visual shape variation without necessarily comprehending the underlying mathematical
formulation. Designers are allowed to interactively sculpt shapes in a natural and predictable way using a
variety of force-based tools.

In contrast to recent variational design approaches, time is fundamental to physics-based modeling.

Additional advantages can be obtained through the use of real-time dynamics.

e An “instantaneous” optimizer (if such a thing existed) can produce some kinematics if it were applied
at every interaction step to satisfy constraints. But the motion would be artificial and there would
be nothing to prevent sudden, nonsmooth motions (depending on the structure of the constraints)
which can be annoying and confusing. By contrast, the dynamic formulation is much more general
in that it marries the geometry with time, mass, force, and constraint. Dynamic models produce

smooth, natural motions which are familiar and easily controlled.

e Dynamics facilitates interaction, especially direct manipulation and interactive sculpting of complex
geometric models for real-time shape variation. The dynamic approach subsumes all of the geometric
capabilitiesin an elegant formulation which grounds shape variation in real-world physics. Despite the
fact that incremental optimization may provide a means of interaction, pure optimization techniques
can easily become trapped in the local minima characteristic of non-linear models and/or constraints.
In contrast, real-time dynamics can overcome the difficulty of incremental optimization through the
incorporation of inertial properties into the model and the interactive use of force-based tools by the

designer.

e Practical design processes span conceptual geometric design and the fabrication of mechanical parts.

Physics-based modeling techniques and real-time dynamics integrates geometry with physics in a



natural and coherent way. The unified formulation is potentially applicable throughout the entire

design and manufacturing process.

3 Background

Dynamic NURBS are motivated by prior research aimed at applying the deformable modeling approach to
shape design. Terzopoulos and Fleischer [28] demonstrated simple interactive sculpting using viscoelastic
and plastic models. Celniker and Gossard [3] developed an interesting prototype system for interactive
free-form design based on the finite-element optimization of energy functionals [28]. Bloor and Wilson
developed related models using similar energies and numerical optimization, and they proposed the use of
B-splines for this purpose [2]. Subsequently, Celniker and Welch [4] investigated deformable B-splines with
linear constraints. Welch and Witkin [33] extended the approach to trimmed hierarchical B-splines.

In prior work [2, 4, 33], deformable B-spline curves and surfaces are designed by imposing shape criteria
via the minimization of energy functionals subject to hard or soft geometric constraints. These constraints
are imposed through Lagrange multipliers or penalty methods, respectively. The same techniques are ap-
plicable to D-NURBS. Compared to deformable B-splines, however, D-NURBS are capable of representing
a wider variety of free-form shapes, as well as standard analytic shapes. Previous models solve static equi-
librium problems, or involve simple linear dynamics with diagonal (arbitrarily lumped) mass and damping
matrices [4].

D-NURBS are a more sophisticated dynamic model derived through the systematic use of Lagrangian
mechanics and finite element analysis without resorting to any of the ad hoc assumptions of prior schemes.
D-NURBS control points and associated weights are generalized coordinates in the Lagrangian equations
of motion. From a physics-based modeling point of view, the existence of weights makes the NURBS
geometry substantially more challenging than B-spline geometry. Since the NURBS rational basis functions
are functionally dependent on the weights, D-NURBS dynamics are generally nonlinear, and the mass,
damping, and stiffness matrices must be recomputed at each simulation time step.! Fortunately, this
does not preclude interactive performance on current graphics workstations, at least for the size of surface
models that appear in our demonstrations. Because our dynamic models allow fully continuous mass and
damping distributions, we obtain banded mass and damping matrices. We apply numerical quadrature
to the underlying NURBS basis functions to compute efficiently the integral expressions for the matrix

entries.

!Note, however, that for static weights, the matrices become time invariant and the computational cost is reduced
significantly.



4 Formulation of D-NURBS

This section formulates the physics-based D-NURBS model. The shape parameters of geometric NURBS
play the role of generalized (physical) coordinates in dynamic NURBS. We introduce time, mass, and
deformation energy into the standard NURBS formulation and employ Lagrangian dynamics to arrive at
the system of nonlinear ordinary differential equations that govern the shape and motion of D-NURBS.
In particular, we formulate four different varieties: D-NURBS curves, tensor-product D-NURBS surfaces,

swung D-NURBS surfaces, and triangular D-NURBS surfaces.

4.1 D-NURBS Curves

NURBS generalize the non-rational parametric form. They inherit many of the properties of non-rational
B-splines, such as the strong convex hull property, variation diminishing property, local support, and
invariance under standard geometric transformations. Moreover, they have some additional properties.
NURBS can be used to satisfy different smoothness requirements. They include weights as extra degrees of
freedom which influence local shape. Most importantly, NURBS offer a common mathematical framework
for implicit and parametric polynomial forms. In principle, they can represent analytic functions such as
conics and quadrics precisely, as well as free-form shapes.

A kinematic NURBS curve extends the geometric NURBS definition by explicitly incorporating time.

The kinematic curve is a function of both the parametric variable v and time ¢:

im0 Pilt)wi(t) Bi k()

c(u,1) = 2imo wi(t)Bix(w)

(1)

where the B; (u) are the usual recursively defined piecewise basis functions [8], p;(¢) are the n 4 1 control
points, and w;(t) are associated non-negative weights. Assuming basis functions of degree k — 1, the curve
has n + k + 1 knots t; in non-decreasing sequence: g < ¢ < ... < {,4+%. In many applications, the end
knots are repeated with multiplicity &k in order to interpolate the initial and final control points pg and p,,.
To simplify notation, we define the vector of generalized coordinates p;(¢) and weights w;(t) as
T
P(t)=1|pg wo -+ Py wa | >
where T denotes transposition. We then express the curve (1) as c¢(u,p) in order to emphasize its depen-

dence on p whose components are functions of time.

The velocity of the kinematic spline is

¢(u,p) = JIp, (2)



where the overstruck dot denotes a time derivative and J(u,p) is the Jacobian matrix. Because c is a

3-component vector-valued function and p is an 4(n + 1) dimensional vector, J is the 3 x 4(n + 1) matrix
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The subscripts «, y, and z denote the components of a 3-vector. Furthermore, we can express the curve as

the product of the Jacobian matrix and the generalized coordinate vector:

c(u,p) =Jp. (4)

The proof of (4) can be found elsewhere [30].

4.2 Tensor-Product D-NURBS Surfaces

In analogy to the kinematic curve of (1), a tensor-product D-NURBS surface

2 oimo 2oi=0 Pij()wi (1) B g(u)Bji(v) '

s(u,v,t) = p= -
( ) Y oito 2 j=o wi () Bi g (u)Bji(v)

(5)

generalizes the geometric NURBS surface. The (m 4 1)(n + 1) control points p; ;(¢) and weights w; ;(1),
which are functions of time, comprise the D-NURBS generalized coordinates. Assuming basis functions
along the two parametric axes of degree k— 1 and [ — 1, respectively, the number of knots is (m+k+1)(n+
[+ 1). The non-decreasing knot sequence is tg < t; < ... < ¢4, along the u-axis and sp < 51 < ... < sp44
along the v-axis. The parametric domain is tx—1 < u < ¢,,41 and 57 < v < 5,41. If the end knots have
multiplicity k£ and [ in the » and v axis respectively, the surface patch will interpolate the four corners of
the boundary control points.

We concatenate these N = 4(m + 1)(n + 1) coordinates into the vector:

— T T
P()=| Pdo wWoo “** Plj Wij *** Ppn Wmn

Two subscripts are now associated with the generalized coordinates, reflecting the surface parameters u



and v. For concreteness, we order the components in these vectors such that the second subscript varies
faster than the first, although this convention does not affect the derived results.

Similar to (2) and (4), we have

s(u,v,p) = Jp, s(u,v,p)=Jp. (6)

where J(u,v,p) is the 3 X N Jacobian matrix of the D-NURBS surface with respect to p. However, the
contents of the Jacobian J differ from those in the curve case. To arrive at an explicit expression for J, let
B, ;(u,v,p),fori=0,...,m,and j =0,...,n, be a 3 x 3 diagonal matrix whose entries are

Js wi ;i Bip(w)Bja(v)

N;i(u,v,p) = = == >
) = G = T S e B (0) Baa (0)

and let the 3-vector

s Yo i—o(Pij — Ped)WedBer(w)Bai(v)B; k(u)Bj(v)
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Hence,
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Note that J is now a 3 X 4(m + 1)(n + 1) matrix.

4.3 Swung D-NURBS Surfaces

Many objects of interest, especially manufactured objects, exhibit symmetries. Often it is convenient to
model symmetric objects through cross-sectional design by specifying profile curves [9]. Woodward [34]
introduced the swinging operator by extending the spherical cross-product with a scaling factor, and applied
it to generate surfaces with B-spline profile curves. Piegl [20] carried the swinging idea over to NURBS
curves. He proposed NURBS swung surfaces, a special type of NURBS surfaces formed by swinging one
planar NURBS profile curve along a second NURBS trajectory curve. For example, Fig. 1 illustrates the
design of a cubical NURBS swung surface from two NURBS profile curves.

The NURBS swung surface retains a considerable breadth of geometric coverage. It can represent
common geometric primitives such as spheres, tori, cubes, quadrics, surfaces of revolution, etc. The
NURBS swung surface is efficient compared to a general NURBS surface, inasmuch as it can represent a
broad class of shapes with essentially as few degrees of freedom as it takes to specify the two generator
curves. Several geometric shape design systems include some form of swinging (or sweeping) among their

repertoire of techniques [26].
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Figure 1: Construction of a cubical NURBS swung surface. (a) NURBS profile curve on x-z plane, NURBS
trajectory curve on x-y plane. (b) Cube surface wireframe.

Geometrically, a dynamic swung surface is generated from two planar kinematic NURBS profile curves
through the swinging operation [20] (Fig 1). Let the two generator curves ¢;(u,a) and ca(v,b) be of the

form (1). The swung surface is then defined as

S(u7v7t): a(t)cl,xCQ,x a(t)cl,xCQ,y Ci,2 (7)

where « is an arbitrary scalar. The second subscript denotes the component of a 3-vector.
Assume that ¢; has basis functions of degree £ — 1 and that it has m + 1 control points a;(¢) and
weights w(¢). Similarly, ¢, has basis functions of degree [ — 1 and that it has n 4 1 control points b;(¢)

and weights w’(t). Therefore,

a(t) = [ag,w,...,a, wh]"
and
b(t) = [bg . wg, ..., b wp]"

are the generalized coordinate vectors of the profile curves. We collect these into the generalized coordinate

vector

-
P:[a al bT] .

This vector has dimensionality M = 14 4(m + 1) + 4(n 4+ 1). Thus the model has O(n 4+ m) degrees of
freedom, compared to O(nm) for general NURBS surfaces.

The velocity of the swung surface is

s(u,v,p) = Lp (8)



Figure 2: Knot vectors associated with each triangle in the domain triangulation.
where L(u,v,p) is the Jacobian matrix with respect to the generalized coordinate vector p. Hence, L
comprises the vectors ds/da, ds/da, and ds/db. The expression of the 3 x M matrix L can be explicitly
formulated [24]. Unlike J in (4), L cannot serve as the basis function matrix of the swung surface. Instead,

we have

s(u,v,p) = Hp, (9)

where H is the 3 x M basis function matrix [24].

4.4 Triangular D-NURBS Surfaces

The main drawback of tensor-product NURBS is that the surface patches are rectangular. Consequently,
the designer is forced to model multisided irregular shapes using degenerate patches with deteriorated inter-
patch continuity. Thus, the associated smoothness constraints increase the complexity of the design task
in general. In contrast, triangular B-splines [5] and NURBS can represent complex non-rectangular shapes
over arbitrary triangulated domains with low degree piecewise polynomials that nonetheless maintain
relatively high-order continuity. They can express smooth non-rectangular shapes without degeneracy.
They can also model discontinuities by varying the knot distribution.

Let T = {A(i) = [r,s, t]]i = (io,i1,i2) € Z3} be an arbitrary triangulation of the planar parametric
domain, where ig, 21, and ¢3 denote indices of r, s, and t in the vertex array of the triangulation, respectively.

For each vertex v in the triangulated domain, we associate a knot sequence (also called a cloud of knots)

10



[v = vg,V1,...,V,] (which are inside the shaded circles in Fig. 2). Next, we define a convex hull

Vig = 1r0s.-sT30,805--+»85,, b0, ..., tg,

where subscript i is a triangle index, and 8 = (fg, 31, 82) is a triplet such that |3| = fo + 81 + F2 = n.
The bivariate simplex spline M (u|V] 5) with degree n over V] 5 can be defined recursively (the details are
found elsewhere [5]), where u = (u, v) defines the triangulated parametric domain of the surface. We then

define a bivariate B-spline basis function as

Ni,ﬁ(u) = d(rﬁovsﬁ17tﬁ2)M(u|Vi,ﬁ)v (10)

where d(rg,,sp,,ts,) is twice the area of A(rg,,sg,ts,). Like the ordinary tensor-product D-NURBS,
we define triangular D-NURBS as the combination of a set of piecewise rational functions by explicitly
incorporating time and physical behavior. The surface is a function of both the parametric variable u and
time %:

i 218)=n Pip(Dwi (1) Vi s(u)

s(u,1) = 35 2 1gl=n Wi p() Ny g(u) Y

We define the vector of generalized coordinates (control points) p; 3 and (weights) w; 5 as

P= [ . '7pi—|:ﬁvwi,ﬁv' . ‘]T

We then express (11) as s(u, p) in order to emphasize its dependence on p whose components are functions

of time.

Thus, the velocity of the triangular D-NURBS is

s(u,p) = Jp, (12)

where the overstruck dot denotes a time derivative and the Jacobian matrix J(u, p) is the concatenation
of the vectors Js/0dp; 53 and Js/0w; 5. Assuming m triangles in the parametric domain, 3 traverses k =
(n+2)!/(n!2!) possible triplets whose components sum to n. Because s is a 3-vector and p is an M = 4mk

dimensional vector, J is a 3 X M matrix, which may be written as

Ri,ﬁ 0 0
J= 5 0 Ri,ﬁ 0 » Wi s (13)
0 0 Ri,ﬁ

11



where
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The subscripts z, y, and z denote derivatives of the components of a 3-vector. Moreover, we can express

Wi,ﬁ(uv p)

the surface as the product of the Jacobian matrix and the generalized coordinate vector:
s(u,p) = Jp. (14)
The proof of (14) is the same as that for the tensor-product D-NURBS [30].

4.5 D-NURBS Equations of Motion

The equations of motion of our D-NURBS are derived from the work-energy version of Lagrangian dynamics
[11]. Applying the Lagrangian formulation to D-NURBS curves, tensor-product surfaces, swung surfaces,

and triangulated surfaces, we obtain the second-order nonlinear equations of motion
Mp + Dp + Kp =1, + g, (15)

where the mass matrix M(p), the damping matrix D(p), and the stiffness matrix K(p) can all be formu-

lated explicitly [30, 24, 23]. The N x N mass and damping matrices are are

M(p) :/ pI I du dv; D(p) = //’yJTJ du dv (16)

where p(u, v) is the prescribed mass density function over the parametric domain of the surface and v(u, v)
is the prescribed damping density function. To define an elastic potential energy for the surface, we adopt

the thin-plate under tension energy model [27, 3, 33, 12, 30]. This yields the N x N stiffness matrix
K(p) = // (al,IJIJu +oag 3] To 4 Biad T + Br2d T + 52,2-];-]@@) du dv, (17)

where the subscripts on J denote parametric partial derivatives. The o; ;(u,v) and f; ;(u,v) are elastic-
ity functions which control tension and rigidity, respectively, in the two parametric coordinate directions.
Other energies are applicable, including the nonquadratic, curvature-based energies [29, 17]. The general-
ized force f,(p) = [[ IJTf(u,v,t)dudv is obtained through the principle of virtual work [11] done by the

applied force distribution f(u, v,t). Because of the geometric nonlinearity, generalized inertial forces g,(p)

12



are also associated with the models (see our journal articles for the details [30, 24]).

5 Finite Element Implementation

The evolution of p, determined by (15) with time-varying matrices, cannot be solved analytically in general.
Instead, we pursue an efficient numerical implementation using finite-element techniques [13].

Standard finite element codes explicitly assemble the global matrices that appear in the discrete equa-
tions of motion [13]. We use an iterative matrix solver to avoid the cost of assembling the global M, D, and
K. In this way, we work with the individual element matrices and construct finite element data structures

that permit the parallel computation of element matrices.

5.1 Element Data Structures

We define an element data structure which contains the geometric specification of the surface patch element
along with its physical properties. A complete D-NURBS surface is then implemented as a data structure
which consists of an ordered array of elements with additional information. The element structure includes
pointers to appropriate components of the global vector p (control points and weights). Neighboring ele-
ments will share some generalized coordinates. The shared variables will have multiple pointers impinging
on them. We also allocate in each element an elemental mass, damping, and stiffness matrix, and in-
clude in the element data structure the quantities needed to compute these matrices. These quantities
include the mass p(u,v), damping y(u,v), and elasticity o; ;(u,v), 5; ;(u,v) density functions, which may

be represented as analytic functions or as parametric arrays of sample values.

5.2 Calculation of Element Matrices

The integral expressions for the mass, damping, and stiffness matrices associated with each element are
evaluated numerically using Gaussian quadrature [22]. We shall explain the computation of the element
mass matrix; the computation of the damping and stiffness matrices follow suit. Assuming the parametric

domain of the element is 2, the expression for entry m;; of the mass matrix takes the integral form

mi; = /Q,u(u,v)fij(u,v) du dv,

where f;; are entries of the mass matrix. Given integers N,, we can find Gauss weights a,, and abscissas

g, vy in the two parametric directions of  such that m;; can be approximated by [22]

Ny

M =~ Zagﬂ(ugv”g)fij(ugv”g)-
g=1
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We apply the de Boor algorithm [6] or the recursive algorithm of multivariate simplex B-splines [15] to
evaluate f;;(ug4,v4). In general, Gaussian quadrature evaluates the integral exactly with N weights and
abscissas for polynomials of degree 2N — 1 or less. In our system we choose N, to be integers between 4
and 7. Our experiments indicate that matrices computed in this way lead to stable, convergent solutions.
Note that because of the irregular knot distribution for the case of triangular D-NURBS, many f;;’s are
zero over the triangular subdomains of 2. We can further subdivide the subdomains in order to decrease

the numerical quadrature error [23].

5.3 Discrete Dynamics Equations

To integrate (15) in an interactive modeling environment, it is important to provide the modeler with
visual feedback about the evolving state of the dynamic model. Rather than using costly time integration
methods that take the largest possible time steps, it is more crucial to provide a smooth animation by
maintaining the continuity of the dynamics from one step to the next. Hence, less costly yet stable time
integration methods that take modest time steps are desirable.

The state of the dynamic NURBS at time ¢ + At is integrated using prior states at time ¢ and ¢ — At.
To maintain the stability of the integration scheme, we use an implicit time integration method, which

employs the time integration formula
(2M + AID + 2A2K) pl+49 = 2A1(f, + g, ) + 4Mp(") — (2M — AID)p( =27 (18)

where the superscripts denote evaluation of the quantities at the indicated times. The matrices and forces
are evaluated at time ¢.

We employ the conjugate gradient method to obtain an iterative solution [22]. To achieve interactive
simulation rates, we limit the number of conjugate gradient iterations per time step to 10. We have observed
that 2 iterations typically suffice to converge to a residual of less than 102, More than 2 iterations tend to
be necessary when the physical parameters (mass, damping, tension, stiffness, applied forces) are changed
significantly during dynamic simulation. Hence, our implementation permits the real-time simulation of
dynamic NURBS surfaces on common graphics workstations.

The equations of motion allow realistic dynamics such as would be desirable for physics-based computer
graphics animation. It is possible, however, to make simplifications that further reduce the computational
cost of (18) to interactively sculpt larger surfaces. For example, in CAGD applications such as data fitting
where the modeler is interested only in the final equilibrium configuration of the model, it makes sense to

simplify (15) by setting the mass density function u(u,v) to zero, so that the inertial terms vanish.

14



6 Physics-Based Shape Design

In the physics-based shape design approach, design requirements may be satisfied through the use of
energies, forces, and constraints. The designer may apply time-varying forces to sculpt shapes interactively
or to optimally approximate data. Certain aesthetic constraints such as “fairness” are expressible in terms
of elastic energies that give rise to specific stiffness matrices K. Other constraints include position or
normal specification at surface points, and continuity requirements between adjacent surface patches. By
building D-NURBS upon the standard NURBS geometry, we allow the modeler to continue to use the whole
spectrum of advanced geometric design tools that have become prevalent, among them, the imposition of

geometric constraints that the final shape must satisfy.

6.1 Applied Forces

Sculpting tools may be implemented as applied forces. The force f(u,v,t) represents the net effect of all
applied forces. Typical force functions are spring forces, repulsion forces, gravitational forces, inflation
forces, etc. [29].

For example, consider connecting a material point (ug, vg) of a D-NURBS surface to a point dg in space

with an ideal Hookean spring of stiffness k. The net applied spring force is

f(u,v,t) = // k(do — s(u,v,t))8(u— ug,v — vg) du dv, (19)

where the ¢ is the unit delta function. Equation (19) implies that f(ug,vo,t) = k(do — s(uo, vo,1)) and
vanishes elsewhere on the surface, but we can generalize it by replacing the é function with a smooth kernel
(e.g., a unit Gaussian) to spread the applied force over a greater portion of the surface. Furthermore, the
points (ug,vg) and dg need not be constant, in general. We can control either or both using a mouse to

obtain an interactive spring force.

6.2 Constraints

In practical applications, design requirements may be posed as a set of physical parameters or as geometric
constraints. Nonlinear constraints can be enforced through Lagrange multiplier techniques [16]. This
approach increases the number of degrees of freedom, hence the computational cost, by adding unknowns A;,
known as Lagrange multipliers, which determine the magnitudes of the constraint forces. The augmented
Lagrangian method [16] combines the Lagrange multipliers with the simpler penalty method [21]. The
Baumgarte stabilization method [1] solves constrained equations of motion through linear feedback control

[14, 30]. These techniques are appropriate for D-NURBS with nonlinear constraints.
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Linear geometric constraints such as point, curve, and surface normal constraints can be easily incorpo-
rated into dynamic swung surface by reducing the matrices and vectors in (15) to a minimal unconstrained
set of generalized coordinates. They can then be implemented by applying the same numerical solver on
an unconstrained subset of p [30].

D-NURBS have an interesting idiosyncrasy due to the weights. While the control point components
of p may take arbitrary finite values in &, negative weights may cause the denominator to vanish at some
evaluation points, causing the matrices to diverge. Although not forbidden, negative weights are not useful.
We enforce positivity of weights at each simulation time step by simply projecting any weight value that
has drifted below a small positive threshold back to this lower bound. Alternatively, we can give the
designer the option of constraining the weights near certain desired target values w? by including in the

surface energy the penalty term ¢ (w; — w?), where ¢ controls the tightness of the constraint.

7 Modeling Applications

This section describes our D-NURBS modeling environment and presents several applications relating to

solid rounding, optimal surface fitting, and interactive sculpting.

7.1 Interactive Modeling Environment

We have developed a prototype modeling environment based on the tensor-product and swung D-NURBS
model. The system is written in C and it currently runs under Iris Explorer on Silicon Graphics worksta-
tions. It may be combined with existing Explorer modules for data input and surface visualization. Our
parallelized iterative numerical algorithm takes advantage of an SGI Iris 4D /380VGX multiprocessor. To
date, our D-NURBS modules implement 3D curve and surface objects with basis function orders of 2, 3,
or 4 (i.e., from linear to cubic D-NURBS) with linear geometric constraints.

We have also developed prototype modeling software based on dynamic triangular B-splines which is
a special case of triangular D-NURBS by fixing all weights to be unity (an advanced system based upon
dynamic triangular NURBS is under construction). We have adopted the data structure, file, and rendering
formats of existing geometric triangular B-spline software [10]. To implement the Lagrangian dynamics
model on top of this software, we have had to implement a new algorithm for simultaneously evaluating
non-zero basis functions and their derivatives up to second order at arbitrary domain points for finite
element assembly and dynamic simulation.

Users can sculpt surface shapes in conventional geometric ways, such as by sketching control polygons
of arbitrary profile curves, repositioning control points, and adjusting associated weights, or according to

the physics-based paradigm through the use of forces. They can satisfy design requirements by adjusting
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Figure 3: Optimal surface fitting: D-NURBS surfaces fit to sampled data from (a) a hemisphere, (b)
a convex/concave surface, (¢) a sinusoidal surface. (a—cl) D-NURBS patch outline with control points
(white) and data points (red) shown. (a—c2) D-NURBS surface at equilibrium fitted to scattered data
points. Red line segments in (c2) represent springs with fixed attachment points on surface.

the internal physical parameters such as the mass, damping, and stiffness densities, along with force gain
factors. Linear constraints such as the freezing of control points have been associated with physics-based
toolkits in our prototype system. Local geometric constraints can be used to achieve real-time local

manipulation for interactive sculpting of complex objects.

7.2 Optimal Surface Fitting

D-NURRBS are applicable to the optimal fitting of regular or scattered data [25]. The most general and often
most useful case occurs with scattered data, when there are fewer or more data points than unknowns—i.e.,
when the solution is underdetermined or overdetermined by the data. In this case, D-NURBS can yield
“optimal” solutions by minimizing the thin-plate under tension deformation energy [27]. The surfaces are
optimal in the sense that they provide the smoothest curve or surface (as measured by the deformation
energy) which interpolates or approximates the data.

The data point interpolation problem amounts to a linear constraint problem when the weights are

fixed, and it is amenable to the constraint techniques presented in Section 6.2. The optimal approximation
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Figure 4: Solid rounding with triangular D-NURBS: Rounding of (a) an edge, (b) a trihedral corner, (¢)
a bevel joint. (al-cl) Initial wireframe surfaces. (a2-c2) Final rounded, shaded surfaces.

problem can be approached in physical terms, by coupling the D-NURBS to the data through Hookean
spring forces (19). We interpret dg in (19) as the data point (generally in R%) and (ug, vg) as the D-NURBS
parametric coordinates associated with the data point (which may be the nearest material point to the
data point). The spring constant ¢ determines the closeness of fit to the data point.

We present three examples of surface fitting using tensor-product D-NURBS coupled to data points
through spring forces. Fig. 3(a) shows 19 data points sampled from a hemisphere and their interpolation
with a quadratic D-NURBS surface with 49 control points. Fig. 3(b) shows 19 data points and the
reconstruction of the implied convex/concave surface by a quadratic D-NURBS with 49 control points.
The spring forces associated with the data points are applied to the nearest points on the surface. In
Fig. 3(c) we reconstruct a wave shape from 25 sample points using springs with fixed attachments to a

quadratic tensor-product D-NURBS surface with 25 control points.

7.3 Rounding

The rounding operation is usually attempted geometrically by enforcing continuity requirements on the fillet

which interpolates between two or more surfaces. By contrast, the D-NURBS can produce a smooth fillet
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by minimizing its internal deformation energy subject to position and normal constraints. The dynamic
simulation automatically produces the desired final shape as it achieves static equilibrium.

Fig. 4(a) demonstrates the rounding of a sharp edge represented by a quadratic triangular D-NURBS
surface with 36 control points. The sharp edge can be represented exactly with multiple control points. By
restricting the control polygon to be a continuous net, we reduced the number of control points to 21. The
initial wireframe surface is shown in Fig. 4(al). After initiating the physical simulation, the sharp edges
are rounded as the final shape equilibrates into the minimal energy state shown by the shaded surface in
Fig. 4(a2).

Fig. 4(b) illustrates the rounding of a trihedral corner of a cube. The corner is represented using a
quadratic triangular D-NURBS with 78 control points. The initial wireframe is shown in Fig. 4(b1). The
rounding operation is applied in the vicinity of three sharp edges. The sharp edges and corner are rounded
with position and normal constraints along the far boundaries of the faces of the shaded surface shown in
Fig. 4(b2).

Fig. 4(c) shows a rounding example involving a bevel joint. The bevel joint is a quadratic triangular
D-NURBS with 108 control points. The initial right-angle joint and the final rounded surface are shown
in Fig. 4(c1-2).

7.4 Interactive Sculpting

In the physics-based modeling approach, not only can designers manipulate the individual degrees of
freedom with conventional geometric methods, but they can also move the object or refine its shape with
interactive sculpting forces.

The physics-based modeling approach is ideal for interactive sculpting of surfaces. It provides direct
manipulation of the dynamic surface to refine the shape of the surface through the application of interactive
sculpting tools in the form of forces. Fig. 5(a) illustrates the results of four interactive sculpting sessions
using swung D-NURBS surfaces and simple spring forces. A sphere was generated using two quadratic
curves with 4 and 7 control points and was sculpted into the ovoid shown in Fig. 5(a). A torus whose two
profile curves are quadratic with 7 and 7 control points, respectively, has been deformed into the shape in
Fig. 5(b). A hat shape was created from two curves with 9 and 6 control points and was then deformed
by spring forces into the shape in Fig 5(d). Finally, we generated a wine glass shape using two curves with

7 and 5 control points and sculpted it into the more pleasing shape shown in Fig 5(c).
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(c) (d)

Figure 5: Interactive Sculpting of D-NURBS Swung Surfaces. Open and closed surfaces shown were
sculpted interactively from prototype shapes noted in parentheses (a) Egg shape (sphere). (b) Deformed
toroid (torus). (c) Hat (open surface). (d) Wine glass (cylinder).
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8 Conclusion

We have describe D-NURBS, a dynamic generalization of geometric NURBS. D-NURBS were derived
systematically through the application of Lagrangian mechanics and implemented using concepts from
finite element analysis and efficient numerical methods. The mathematical development comprised four
varieties: D-NURBS curves, tensor-product D-NURBS surfaces, swung D-NURBS surfaces, and triangular
D-NURBS surfaces.

We also presented a new physics-based design paradigm based on D-NURBS which generalizes well
established geometric design. This paradigm was the basis of a D-NURBS interactive modeling envi-
ronment. The physics-based framework furnishes designers not only the standard geometric toolkits but
powerful force-based sculpting tools as well. It provides mechanisms for automatically adjusting unknown
parameters to support user manipulation and satisfy design requirements.

Since D-NURBS are built on the industry-standard NURBS geometric substrate, designers working
with them can continue to make use of the existing array of geometric design toolkits. With the advent of
high-performance graphics systems, however, the physics-based framework is poised for incorporation into
commercial design systems to interactively model and sculpt complex shapes in real-time. Thus, D-NURBS
can unify the features of the industry-standard geometry with the many demonstrated conveniences of

interaction through physical dynamics.
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