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ABSTRACT

This paper presents dynamic NURBS� or D�NURBS� a physics�based generalization of non�uniform ra�

tional B�splines� NURBS have become a de facto standard in commercial modeling systems because of

their power to represent both free�form and common analytic shapes� Traditionally� however� NURBS

have been viewed as purely geometric primitives� which require the designer to interactively adjust many

degrees of freedom �DOFs��control points and associated weights�to achieve desired shapes� The con�

ventional shape modi�cation process can often be clumsy and laborious� D�NURBS are physics�based

models that incorporate mass distributions� internal deformation energies� forces� and other physical

quantities into the NURBS geometric substrate� Their dynamic behavior� resulting from the numerical

integration of a set of nonlinear di�erential equations� produces physically meaningful� hence intuitive

shape variation� Consequently� a modeler can interactively sculpt complex shapes to required speci�ca�

tions not only in the traditional indirect fashion� by adjusting control points� but also through direct

physical manipulation� by applying simulated forces and local and global shape constraints� We use La�

grangian mechanics to formulate the equations of motion for D�NURBS curves� tensor�product surfaces�

swung surfaces� and triangulated surfaces� We apply �nite element analysis to reduce these equations to

e�cient algorithms that can be simulated at interactive rates using standard numerical techniques� We

describe a prototype modeling environment based on D�NURBS� and demonstrate that D�NURBS can

be e�ective tools in a wide range of CAGD applications such as shape blending� scattered data �tting�

and interactive sculpting�
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� Introduction

In ���� Versprille �	
� proposed the Non�Uniform Rational B�Splines or NURBS� This shape representation

for geometric design generalized Riesenfeld�s B�splines� NURBS quickly gained popularity and were incor�

porated into several commercial modeling systems �

�� The NURBS representation has several attractive

properties� It o�ers a uni�ed mathematical formulation for representing not only free�form curves and

surfaces� but also standard analytic shapes such as conics� quadrics� and surfaces of revolution� The most

frequently used NURBS design techniques are the speci�cation of a control polygon� and interpolation or

approximation of data points to generate the initial shape� For surfaces or solids� cross�sectional design

including skinning� sweeping� and swinging operations is also popular� By adjusting the positions of control

points� associated weights� and knots of the initial shape� one can design a large variety of shapes using

NURBS ��� ��� ��� 

� 	��� Despite modern interactive devices� however� this conventional re�nement

process can be clumsy and laborious when it comes to designing complex� real�world objects�

In this paper� we propose Dynamic NURBS� or D�NURBS� D�NURBS are physics�based models that in�

corporate mass distributions� internal deformation energies� and other physical quantities into the NURBS

geometric substrate� Time is fundamental to the dynamic formulation� The models are governed by dy�

namic di�erential equations which� when integrated numerically through time� continuously evolve the

control points and weights in response to applied forces� The D�NURBS formulation supports interactive

direct manipulation of NURBS objects� which results in physically meaningful hence intuitively predictable

motion and shape variation�

Using D�NURBS� a modeler can interactively sculpt complex shapes not merely by kinematic adjust�

ment of control points and weights� but dynamically as well�by applying simulated forces� Additional

control over dynamic sculpting stems from the modi�cation of physical parameters such as mass� damping�

and elastic properties� Elastic functionals allow the imposition of qualitative �fairness� criteria through

quantitative means� Linear or nonlinear constraints may be imposed either as hard constraints that must

not to be violated� or as soft constraints to be satis�ed approximately� The latter may be interpreted

intuitively as simple forces� Optimal shape design results when D�NURBS are allowed to achieve static

equilibrium subject to shape constraints� All of these capabilities are subsumed under an elegant formula�

tion grounded in physics�

� Motivation

NURBS have o�ered designers extraordinary �exibility when utilized for geometric design� Nevertheless�

traditional design methodology does not exploit the full potential of the underlying geometric formulations






whose extraordinary �exibility has some drawbacks�

� Traditional free�form geometric design is a kinematic process� Designers are often faced with the

tedium of indirect shape manipulation through a bewildering variety of geometric parameters� i�e��

by repositioning control points� adjusting weights� and modifying knot vectors� Despite the recent

prevalence of sophisticated 	D interaction devices� indirect geometric design of univariate and tensor

product splines can be clumsy and laborious when it comes to designing complex� real�world objects�

Design re�nement with triangular splines can be especially time�consuming due to the irregularity of

control points and knot vectors�

� Shape design to required speci�cations by manual adjustment of available geometric degrees of free�

dom is often elusive� because relevant design tolerances are typically shape�oriented and not control

point�weight oriented� Moreover� a particular shape can often be represented nonuniquely� with dif�

ferent values of knots� control points� and weights� This �geometric redundancy� of NURBS tends

to make shape re�nement ad hoc and ambiguous� it often requires designers to make nonintuitive

decisions�for instance� to adjust a shape� should the designer move a control point� or change a

weight� or move two control points� or����

� Typical design requirements may be stated in both quantitative and qualitative terms� such as �a

fair and pleasing surface which approximates scattered data and interpolates a cross�section curve��

Such requirements impose both local and global constraints on shape� The incremental manipulation

of local shape parameters to satisfy complex local and global shape constraints is at best cumbersome

and often unproductive�

� Stylists are often interested in geometric �theme variation�� This requires geometric entities to be

generated quickly and naturally� Unlike engineers� stylists are concerned more with the geometric

shape than with its underlying mathematical description� It is apparent that conventional interpola�

tion�approximation techniques� which often generate computerized models from digitized data� may

not be quite suitable to the time�varying requirements of stylists�

Physics�based modeling provides a means to overcome these drawbacks� Free�form deformable models�

which were introduced to computer graphics in ���� �
�� and further developed during the past eight years

are particularly relevant in the context of modeling with NURBS� Important advantages accrue from the

deformable model approach �
���

� The behavior of the deformable model is governed by physical laws� Through a computational physics

simulation� the model responds dynamically to applied simulated forces in a natural and predictable

way� Shapes can be sculpted interactively using a variety of force�based �tools��

	



� The equilibrium state of the dynamic model is characterized by a minimum of its potential energy�

subject to imposed constraints �
��� It is possible to formulate potential energy functionals that

satisfy local and global design criteria� such as curve or surface �piecewise� smoothness� and to

impose geometric constraints relevant to shape design�

� The physical model may be built upon a standard geometric foundation� such as free�form parametric

curve and surface representations� This means that while shape design may proceed interactively

or automatically at the physical level� existing geometric toolkits are concurrently applicable at the

geometric level�

Physics�based shape design can free designers from making nonintuitive decisions such as assigning

weights to NURBS� In addition� with physics�based direct manipulation� non�expert users are able to

concentrate on visual shape variation without necessarily comprehending the underlying mathematical

formulation� Designers are allowed to interactively sculpt shapes in a natural and predictable way using a

variety of force�based tools�

In contrast to recent variational design approaches� time is fundamental to physics�based modeling�

Additional advantages can be obtained through the use of real�time dynamics�

� An �instantaneous� optimizer �if such a thing existed� can produce some kinematics if it were applied

at every interaction step to satisfy constraints� But the motion would be arti�cial and there would

be nothing to prevent sudden� nonsmooth motions �depending on the structure of the constraints�

which can be annoying and confusing� By contrast� the dynamic formulation is much more general

in that it marries the geometry with time� mass� force� and constraint� Dynamic models produce

smooth� natural motions which are familiar and easily controlled�

� Dynamics facilitates interaction� especially direct manipulation and interactive sculpting of complex

geometric models for real�time shape variation� The dynamic approach subsumes all of the geometric

capabilities in an elegant formulation which grounds shape variation in real�world physics� Despite the

fact that incremental optimization may provide a means of interaction� pure optimization techniques

can easily become trapped in the local minima characteristic of non�linear models and�or constraints�

In contrast� real�time dynamics can overcome the di�culty of incremental optimization through the

incorporation of inertial properties into the model and the interactive use of force�based tools by the

designer�

� Practical design processes span conceptual geometric design and the fabrication of mechanical parts�

Physics�based modeling techniques and real�time dynamics integrates geometry with physics in a
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natural and coherent way� The uni�ed formulation is potentially applicable throughout the entire

design and manufacturing process�

� Background

Dynamic NURBS are motivated by prior research aimed at applying the deformable modeling approach to

shape design� Terzopoulos and Fleischer �
�� demonstrated simple interactive sculpting using viscoelastic

and plastic models� Celniker and Gossard �	� developed an interesting prototype system for interactive

free�form design based on the �nite�element optimization of energy functionals �
��� Bloor and Wilson

developed related models using similar energies and numerical optimization� and they proposed the use of

B�splines for this purpose �
�� Subsequently� Celniker and Welch ��� investigated deformable B�splines with

linear constraints� Welch and Witkin �		� extended the approach to trimmed hierarchical B�splines�

In prior work �
� �� 		�� deformable B�spline curves and surfaces are designed by imposing shape criteria

via the minimization of energy functionals subject to hard or soft geometric constraints� These constraints

are imposed through Lagrange multipliers or penalty methods� respectively� The same techniques are ap�

plicable to D�NURBS� Compared to deformable B�splines� however� D�NURBS are capable of representing

a wider variety of free�form shapes� as well as standard analytic shapes� Previous models solve static equi�

librium problems� or involve simple linear dynamics with diagonal �arbitrarily lumped� mass and damping

matrices ����

D�NURBS are a more sophisticated dynamic model derived through the systematic use of Lagrangian

mechanics and �nite element analysis without resorting to any of the ad hoc assumptions of prior schemes�

D�NURBS control points and associated weights are generalized coordinates in the Lagrangian equations

of motion� From a physics�based modeling point of view� the existence of weights makes the NURBS

geometry substantially more challenging than B�spline geometry� Since the NURBS rational basis functions

are functionally dependent on the weights� D�NURBS dynamics are generally nonlinear� and the mass�

damping� and sti�ness matrices must be recomputed at each simulation time step�� Fortunately� this

does not preclude interactive performance on current graphics workstations� at least for the size of surface

models that appear in our demonstrations� Because our dynamic models allow fully continuous mass and

damping distributions� we obtain banded mass and damping matrices� We apply numerical quadrature

to the underlying NURBS basis functions to compute e�ciently the integral expressions for the matrix

entries�

�Note� however� that for static weights� the matrices become time invariant and the computational cost is reduced

signi�cantly�
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� Formulation of D�NURBS

This section formulates the physics�based D�NURBS model� The shape parameters of geometric NURBS

play the role of generalized �physical� coordinates in dynamic NURBS� We introduce time� mass� and

deformation energy into the standard NURBS formulation and employ Lagrangian dynamics to arrive at

the system of nonlinear ordinary di�erential equations that govern the shape and motion of D�NURBS�

In particular� we formulate four di�erent varieties� D�NURBS curves� tensor�product D�NURBS surfaces�

swung D�NURBS surfaces� and triangular D�NURBS surfaces�

��� D�NURBS Curves

NURBS generalize the non�rational parametric form� They inherit many of the properties of non�rational

B�splines� such as the strong convex hull property� variation diminishing property� local support� and

invariance under standard geometric transformations� Moreover� they have some additional properties�

NURBS can be used to satisfy di�erent smoothness requirements� They include weights as extra degrees of

freedom which in�uence local shape� Most importantly� NURBS o�er a common mathematical framework

for implicit and parametric polynomial forms� In principle� they can represent analytic functions such as

conics and quadrics precisely� as well as free�form shapes�

A kinematic NURBS curve extends the geometric NURBS de�nition by explicitly incorporating time�

The kinematic curve is a function of both the parametric variable u and time t�

c�u� t� �

Pn
i�� pi�t�wi�t�Bi�k�u�Pn

i�� wi�t�Bi�k�u�
� ���

where the Bi�k�u� are the usual recursively de�ned piecewise basis functions ���� pi�t� are the n� � control

points� and wi�t� are associated non�negative weights� Assuming basis functions of degree k� �� the curve

has n � k � � knots ti in non�decreasing sequence� t� � t� � � � � � tn�k � In many applications� the end

knots are repeated with multiplicity k in order to interpolate the initial and �nal control points p� and pn�

To simplify notation� we de�ne the vector of generalized coordinates pi�t� and weights wi�t� as

p�t� �

�
p�� w� � � � p�n wn

��
�

where � denotes transposition� We then express the curve ��� as c�u�p� in order to emphasize its depen�

dence on p whose components are functions of time�

The velocity of the kinematic spline is

�c�u�p� � J �p� �
�
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where the overstruck dot denotes a time derivative and J�u�p� is the Jacobian matrix� Because c is a

	�component vector�valued function and p is an ��n� �� dimensional vector� J is the 	� ��n� �� matrix

J �

�
����� � � �

�
�����

�cx
�pi�x


 



 �cy
�pi�y





 
 �cz
�pi�z

�
�����

�c
�wi

� � �

�
����� �	�

where
�cx
�pi�x

�
�cy
�pi�y

�
�cz
�pi�z

�
wiBi�kPn
j�� wjBj�k

�

�c

�wi

�

Pn
j���pi � pj�wjBi�kBj�k

�
Pn

j�� wjBj�k��
�

The subscripts x� y� and z denote the components of a 	�vector� Furthermore� we can express the curve as

the product of the Jacobian matrix and the generalized coordinate vector�

c�u�p� � Jp� ���

The proof of ��� can be found elsewhere �	
��

��� Tensor�Product D�NURBS Surfaces

In analogy to the kinematic curve of ���� a tensor�product D�NURBS surface

s�u� v� t� �

Pm
i��

Pn
j�� pi�j�t�wi�j�t�Bi�k�u�Bj�l�v�Pm

i��

Pn
j�� wi�j�t�Bi�k�u�Bj�l�v�

� ���

generalizes the geometric NURBS surface� The �m � ���n � �� control points pi�j�t� and weights wi�j�t��

which are functions of time� comprise the D�NURBS generalized coordinates� Assuming basis functions

along the two parametric axes of degree k�� and l��� respectively� the number of knots is �m�k����n�

l���� The non�decreasing knot sequence is t� � t� � � � �� tm�k along the u�axis and s� � s� � � � � � sn�l

along the v�axis� The parametric domain is tk�� � u � tm�� and sl�� � v � sn��� If the end knots have

multiplicity k and l in the u and v axis respectively� the surface patch will interpolate the four corners of

the boundary control points�

We concatenate these N � ��m� ���n� �� coordinates into the vector�

p�t� �

�
p���� w��� � � � p�i�j wi�j � � � p�m�n wm�n

��
�

Two subscripts are now associated with the generalized coordinates� re�ecting the surface parameters u
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and v� For concreteness� we order the components in these vectors such that the second subscript varies

faster than the �rst� although this convention does not a�ect the derived results�

Similar to �
� and ���� we have

�s�u� v�p� � J �p� s�u� v�p� � Jp� ���

where J�u� v�p� is the 	 �N Jacobian matrix of the D�NURBS surface with respect to p� However� the

contents of the Jacobian J di�er from those in the curve case� To arrive at an explicit expression for J� let

Bi�j�u� v�p�� for i � 
� � � � � m� and j � 
� � � � � n� be a 	� 	 diagonal matrix whose entries are

Ni�j�u� v�p� �
�s

�pi�j
�

wi�jBi�k�u�Bj�l�v�Pm
c��

Pn
d�� wc�dBc�k�u�Bd�l�v�

and let the 	�vector

wi�j�u� v�p� �
�s

�wi�j

�

Pm
c��

Pn
d���pi�j � pc�d�wc�dBc�k�u�Bd�l�v�Bi�k�u�Bj�l�v�

�
Pm

c��

Pn
d�� wc�dBc�k�u�Bd�l�v���

�

Hence�

J�u� v�p� �

�
B��� w��� � � � Bm�n wm�n

�
�

Note that J is now a 	� ��m� ���n� �� matrix�

��� Swung D�NURBS Surfaces

Many objects of interest� especially manufactured objects� exhibit symmetries� Often it is convenient to

model symmetric objects through cross�sectional design by specifying pro�le curves ���� Woodward �	��

introduced the swinging operator by extending the spherical cross�product with a scaling factor� and applied

it to generate surfaces with B�spline pro�le curves� Piegl �

� carried the swinging idea over to NURBS

curves� He proposed NURBS swung surfaces� a special type of NURBS surfaces formed by swinging one

planar NURBS pro�le curve along a second NURBS trajectory curve� For example� Fig� � illustrates the

design of a cubical NURBS swung surface from two NURBS pro�le curves�

The NURBS swung surface retains a considerable breadth of geometric coverage� It can represent

common geometric primitives such as spheres� tori� cubes� quadrics� surfaces of revolution� etc� The

NURBS swung surface is e�cient compared to a general NURBS surface� inasmuch as it can represent a

broad class of shapes with essentially as few degrees of freedom as it takes to specify the two generator

curves� Several geometric shape design systems include some form of swinging �or sweeping� among their

repertoire of techniques �
���
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Figure �� Construction of a cubical NURBS swung surface� �a� NURBS pro�le curve on x�z plane� NURBS
trajectory curve on x�y plane� �b� Cube surface wireframe�

Geometrically� a dynamic swung surface is generated from two planar kinematic NURBS pro�le curves

through the swinging operation �

� �Fig ��� Let the two generator curves c��u� a� and c��v�b� be of the

form ���� The swung surface is then de�ned as

s�u� v� t� �

�
��t�c��xc��x ��t�c��xc��y c��z

��
���

where � is an arbitrary scalar� The second subscript denotes the component of a 	�vector�

Assume that c� has basis functions of degree k � � and that it has m � � control points ai�t� and

weights wa
i �t�� Similarly� c� has basis functions of degree l � � and that it has n � � control points bj�t�

and weights wb
j�t�� Therefore�

a�t� � �a�� � w
a
�� � � � � a

�
m� w

a
m�

�

and

b�t� � �b�� � w
b
�� � � � �b

�
n � w

b
n�
�

are the generalized coordinate vectors of the pro�le curves� We collect these into the generalized coordinate

vector

p �

�
� a� b�

��
�

This vector has dimensionality M � � � ��m � �� � ��n � ��� Thus the model has O�n �m� degrees of

freedom� compared to O�nm� for general NURBS surfaces�

The velocity of the swung surface is

�s�u� v�p� � L �p ���

�



Figure 
� Knot vectors associated with each triangle in the domain triangulation�

where L�u� v�p� is the Jacobian matrix with respect to the generalized coordinate vector p� Hence� L

comprises the vectors �s���� �s��a� and �s��b� The expression of the 	�M matrix L can be explicitly

formulated �
��� Unlike J in ���� L cannot serve as the basis function matrix of the swung surface� Instead�

we have

s�u� v�p� � Hp� ���

where H is the 	�M basis function matrix �
���

��� Triangular D�NURBS Surfaces

The main drawback of tensor�product NURBS is that the surface patches are rectangular� Consequently�

the designer is forced to model multisided irregular shapes using degenerate patches with deteriorated inter�

patch continuity� Thus� the associated smoothness constraints increase the complexity of the design task

in general� In contrast� triangular B�splines ��� and NURBS can represent complex non�rectangular shapes

over arbitrary triangulated domains with low degree piecewise polynomials that nonetheless maintain

relatively high�order continuity� They can express smooth non�rectangular shapes without degeneracy�

They can also model discontinuities by varying the knot distribution�

Let T � f �i� � �r� s� t�ji � �i�� i�� i�� � Z�
�g be an arbitrary triangulation of the planar parametric

domain� where i�� i�� and i� denote indices of r� s� and t in the vertex array of the triangulation� respectively�

For each vertex v in the triangulated domain� we associate a knot sequence �also called a cloud of knots�
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�v � v��v�� � � � �vn� �which are inside the shaded circles in Fig� 
�� Next� we de�ne a convex hull

Vi�� � fr�� � � � � r��� s�� � � � � s��� t�� � � � � t��g�

where subscript i is a triangle index� and � � ���� ��� ��� is a triplet such that j�j � �� � �� � �� � n�

The bivariate simplex spline M�ujVi��� with degree n over Vi�� can be de�ned recursively �the details are

found elsewhere ����� where u � �u� v� de�nes the triangulated parametric domain of the surface� We then

de�ne a bivariate B�spline basis function as

Ni���u� � d�r��� s��� t���M�ujVi���� ��
�

where d�r��� s��� t��� is twice the area of  �r��� s��� t���� Like the ordinary tensor�product D�NURBS�

we de�ne triangular D�NURBS as the combination of a set of piecewise rational functions by explicitly

incorporating time and physical behavior� The surface is a function of both the parametric variable u and

time t�

s�u� t� �

P
i

P
j�j�n pi���t�wi���t�Ni���u�P
i

P
j�j�nwi���t�Ni���u�

� ����

We de�ne the vector of generalized coordinates �control points� pi�� and �weights� wi�� as

p � �� � � �p�i��� wi��� � � ��
��

We then express ���� as s�u�p� in order to emphasize its dependence on p whose components are functions

of time�

Thus� the velocity of the triangular D�NURBS is

�s�u�p� � J �p� ��
�

where the overstruck dot denotes a time derivative and the Jacobian matrix J�u�p� is the concatenation

of the vectors �s��pi�� and �s��wi��� Assuming m triangles in the parametric domain� � traverses k �

�n�
�!��n!
!� possible triplets whose components sum to n� Because s is a 	�vector and p is an M � �mk

dimensional vector� J is a 	�M matrix� which may be written as

J �

�
������ � � �

�
�����
Ri�� 
 



 Ri�� 



 
 Ri��

�
����� �wi��� � � �

�
����� ��	�

��



where

Ri���u�p� �
�sx

�pi���x
�

�sy
�pi���y

�
�sz

�pi���z
�

wi��Ni���u�P
j

P
j�j�n wj��Nj���u�

and

wi���u�p� �
�s

�wi��
�

�pi�� � s�Ni���u�P
j

P
j�j�n wj��Nj���u�

The subscripts x� y� and z denote derivatives of the components of a 	�vector� Moreover� we can express

the surface as the product of the Jacobian matrix and the generalized coordinate vector�

s�u�p� � Jp� ����

The proof of ���� is the same as that for the tensor�product D�NURBS �	
��

��� D�NURBS Equations of Motion

The equations of motion of our D�NURBS are derived from the work�energy version of Lagrangian dynamics

����� Applying the Lagrangian formulation to D�NURBS curves� tensor�product surfaces� swung surfaces�

and triangulated surfaces� we obtain the second�order nonlinear equations of motion

M"p�D �p�Kp � fp � gp� ����

where the mass matrixM�p�� the damping matrix D�p�� and the sti�ness matrix K�p� can all be formu�

lated explicitly �	
� 
�� 
	�� The N �N mass and damping matrices are are

M�p� �

Z Z
�J�J du dv� D�p� �

Z Z
�J�J du dv ����

where ��u� v� is the prescribed mass density function over the parametric domain of the surface and ��u� v�

is the prescribed damping density function� To de�ne an elastic potential energy for the surface� we adopt

the thin�plate under tension energy model �
�� 	� 		� �
� 	
�� This yields the N �N sti�ness matrix

K�p� �
Z Z �

����J
�
u Ju � ����J

�
v Jv � ����J

�
uuJuu � ����J

�
uvJuv � ����J

�
vvJvv

	
du dv� ����

where the subscripts on J denote parametric partial derivatives� The �i�j�u� v� and �i�j�u� v� are elastic�

ity functions which control tension and rigidity� respectively� in the two parametric coordinate directions�

Other energies are applicable� including the nonquadratic� curvature�based energies �
�� ���� The general�

ized force fp�p� �
RR
J�f�u� v� t� du dv is obtained through the principle of virtual work ���� done by the

applied force distribution f�u� v� t�� Because of the geometric nonlinearity� generalized inertial forces gp�p�

�




are also associated with the models �see our journal articles for the details �	
� 
����

� Finite Element Implementation

The evolution of p� determined by ���� with time�varying matrices� cannot be solved analytically in general�

Instead� we pursue an e�cient numerical implementation using �nite�element techniques ��	��

Standard �nite element codes explicitly assemble the global matrices that appear in the discrete equa�

tions of motion ��	�� We use an iterative matrix solver to avoid the cost of assembling the globalM�D� and

K� In this way� we work with the individual element matrices and construct �nite element data structures

that permit the parallel computation of element matrices�

��� Element Data Structures

We de�ne an element data structure which contains the geometric speci�cation of the surface patch element

along with its physical properties� A complete D�NURBS surface is then implemented as a data structure

which consists of an ordered array of elements with additional information� The element structure includes

pointers to appropriate components of the global vector p �control points and weights�� Neighboring ele�

ments will share some generalized coordinates� The shared variables will have multiple pointers impinging

on them� We also allocate in each element an elemental mass� damping� and sti�ness matrix� and in�

clude in the element data structure the quantities needed to compute these matrices� These quantities

include the mass ��u� v�� damping ��u� v�� and elasticity �i�j�u� v�� �i�j�u� v� density functions� which may

be represented as analytic functions or as parametric arrays of sample values�

��� Calculation of Element Matrices

The integral expressions for the mass� damping� and sti�ness matrices associated with each element are

evaluated numerically using Gaussian quadrature �

�� We shall explain the computation of the element

mass matrix� the computation of the damping and sti�ness matrices follow suit� Assuming the parametric

domain of the element is #� the expression for entry mij of the mass matrix takes the integral form

mij �
Z
�
��u� v�fij�u� v� du dv�

where fij are entries of the mass matrix� Given integers Ng� we can �nd Gauss weights ag� and abscissas

ug� vg in the two parametric directions of # such that mij can be approximated by �

�

mij �

NgX
g��

ag��ug� vg�fij�ug� vg��

�	



We apply the de Boor algorithm ��� or the recursive algorithm of multivariate simplex B�splines ���� to

evaluate fij�ug� vg�� In general� Gaussian quadrature evaluates the integral exactly with N weights and

abscissas for polynomials of degree 
N � � or less� In our system we choose Ng to be integers between �

and �� Our experiments indicate that matrices computed in this way lead to stable� convergent solutions�

Note that because of the irregular knot distribution for the case of triangular D�NURBS� many fij �s are

zero over the triangular subdomains of #� We can further subdivide the subdomains in order to decrease

the numerical quadrature error �
	��

��� Discrete Dynamics Equations

To integrate ���� in an interactive modeling environment� it is important to provide the modeler with

visual feedback about the evolving state of the dynamic model� Rather than using costly time integration

methods that take the largest possible time steps� it is more crucial to provide a smooth animation by

maintaining the continuity of the dynamics from one step to the next� Hence� less costly yet stable time

integration methods that take modest time steps are desirable�

The state of the dynamic NURBS at time t�  t is integrated using prior states at time t and t � t�

To maintain the stability of the integration scheme� we use an implicit time integration method� which

employs the time integration formula

�

M� tD � 
 t�K

	
p�t��t	 � 
 t��fp � gp� � �Mp�t	 � �
M� tD�p�t��t	 ����

where the superscripts denote evaluation of the quantities at the indicated times� The matrices and forces

are evaluated at time t�

We employ the conjugate gradient method to obtain an iterative solution �

�� To achieve interactive

simulation rates� we limit the number of conjugate gradient iterations per time step to �
� We have observed

that 
 iterations typically su�ce to converge to a residual of less than �
��� More than 
 iterations tend to

be necessary when the physical parameters �mass� damping� tension� sti�ness� applied forces� are changed

signi�cantly during dynamic simulation� Hence� our implementation permits the real�time simulation of

dynamic NURBS surfaces on common graphics workstations�

The equations of motion allow realistic dynamics such as would be desirable for physics�based computer

graphics animation� It is possible� however� to make simpli�cations that further reduce the computational

cost of ���� to interactively sculpt larger surfaces� For example� in CAGD applications such as data �tting

where the modeler is interested only in the �nal equilibrium con�guration of the model� it makes sense to

simplify ���� by setting the mass density function ��u� v� to zero� so that the inertial terms vanish�

��



� Physics�Based Shape Design

In the physics�based shape design approach� design requirements may be satis�ed through the use of

energies� forces� and constraints� The designer may apply time�varying forces to sculpt shapes interactively

or to optimally approximate data� Certain aesthetic constraints such as �fairness� are expressible in terms

of elastic energies that give rise to speci�c sti�ness matrices K� Other constraints include position or

normal speci�cation at surface points� and continuity requirements between adjacent surface patches� By

building D�NURBS upon the standard NURBS geometry� we allow the modeler to continue to use the whole

spectrum of advanced geometric design tools that have become prevalent� among them� the imposition of

geometric constraints that the �nal shape must satisfy�

��� Applied Forces

Sculpting tools may be implemented as applied forces� The force f�u� v� t� represents the net e�ect of all

applied forces� Typical force functions are spring forces� repulsion forces� gravitational forces� in�ation

forces� etc� �
���

For example� consider connecting a material point �u�� v�� of a D�NURBS surface to a point d� in space

with an ideal Hookean spring of sti�ness k� The net applied spring force is

f�u� v� t� �

Z Z
k�d� � s�u� v� t����u� u�� v � v�� du dv� ����

where the � is the unit delta function� Equation ���� implies that f�u�� v�� t� � k�d� � s�u�� v�� t�� and

vanishes elsewhere on the surface� but we can generalize it by replacing the � function with a smooth kernel

�e�g�� a unit Gaussian� to spread the applied force over a greater portion of the surface� Furthermore� the

points �u�� v�� and d� need not be constant� in general� We can control either or both using a mouse to

obtain an interactive spring force�

��� Constraints

In practical applications� design requirements may be posed as a set of physical parameters or as geometric

constraints� Nonlinear constraints can be enforced through Lagrange multiplier techniques ����� This

approach increases the number of degrees of freedom� hence the computational cost� by adding unknowns 	i�

known as Lagrange multipliers� which determine the magnitudes of the constraint forces� The augmented

Lagrangian method ���� combines the Lagrange multipliers with the simpler penalty method �
��� The

Baumgarte stabilization method ��� solves constrained equations of motion through linear feedback control

���� 	
�� These techniques are appropriate for D�NURBS with nonlinear constraints�

��



Linear geometric constraints such as point� curve� and surface normal constraints can be easily incorpo�

rated into dynamic swung surface by reducing the matrices and vectors in ���� to a minimal unconstrained

set of generalized coordinates� They can then be implemented by applying the same numerical solver on

an unconstrained subset of p �	
��

D�NURBS have an interesting idiosyncrasy due to the weights� While the control point components

of p may take arbitrary �nite values in �� negative weights may cause the denominator to vanish at some

evaluation points� causing the matrices to diverge� Although not forbidden� negative weights are not useful�

We enforce positivity of weights at each simulation time step by simply projecting any weight value that

has drifted below a small positive threshold back to this lower bound� Alternatively� we can give the

designer the option of constraining the weights near certain desired target values w�
i by including in the

surface energy the penalty term c
P
�wi � w�

i �� where c controls the tightness of the constraint�

� Modeling Applications

This section describes our D�NURBS modeling environment and presents several applications relating to

solid rounding� optimal surface �tting� and interactive sculpting�

��� Interactive Modeling Environment

We have developed a prototype modeling environment based on the tensor�product and swung D�NURBS

model� The system is written in C and it currently runs under Iris Explorer on Silicon Graphics worksta�

tions� It may be combined with existing Explorer modules for data input and surface visualization� Our

parallelized iterative numerical algorithm takes advantage of an SGI Iris �D�	�
VGX multiprocessor� To

date� our D�NURBS modules implement 	D curve and surface objects with basis function orders of 
� 	�

or � �i�e�� from linear to cubic D�NURBS� with linear geometric constraints�

We have also developed prototype modeling software based on dynamic triangular B�splines which is

a special case of triangular D�NURBS by �xing all weights to be unity �an advanced system based upon

dynamic triangular NURBS is under construction�� We have adopted the data structure� �le� and rendering

formats of existing geometric triangular B�spline software ��
�� To implement the Lagrangian dynamics

model on top of this software� we have had to implement a new algorithm for simultaneously evaluating

non�zero basis functions and their derivatives up to second order at arbitrary domain points for �nite

element assembly and dynamic simulation�

Users can sculpt surface shapes in conventional geometric ways� such as by sketching control polygons

of arbitrary pro�le curves� repositioning control points� and adjusting associated weights� or according to

the physics�based paradigm through the use of forces� They can satisfy design requirements by adjusting

��



�a�� �b�� �c��

�a
� �b
� �c
�

Figure 	� Optimal surface �tting� D�NURBS surfaces �t to sampled data from �a� a hemisphere� �b�
a convex�concave surface� �c� a sinusoidal surface� �a$c�� D�NURBS patch outline with control points
�white� and data points �red� shown� �a$c
� D�NURBS surface at equilibrium �tted to scattered data
points� Red line segments in �c
� represent springs with �xed attachment points on surface�

the internal physical parameters such as the mass� damping� and sti�ness densities� along with force gain

factors� Linear constraints such as the freezing of control points have been associated with physics�based

toolkits in our prototype system� Local geometric constraints can be used to achieve real�time local

manipulation for interactive sculpting of complex objects�

��� Optimal Surface Fitting

D�NURBS are applicable to the optimal �tting of regular or scattered data �
��� The most general and often

most useful case occurs with scattered data� when there are fewer or more data points than unknowns�i�e��

when the solution is underdetermined or overdetermined by the data� In this case� D�NURBS can yield

�optimal� solutions by minimizing the thin�plate under tension deformation energy �
��� The surfaces are

optimal in the sense that they provide the smoothest curve or surface �as measured by the deformation

energy� which interpolates or approximates the data�

The data point interpolation problem amounts to a linear constraint problem when the weights are

�xed� and it is amenable to the constraint techniques presented in Section ��
� The optimal approximation

��
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Figure �� Solid rounding with triangular D�NURBS� Rounding of �a� an edge� �b� a trihedral corner� �c�
a bevel joint� �a��c�� Initial wireframe surfaces� �a
�c
� Final rounded� shaded surfaces�

problem can be approached in physical terms� by coupling the D�NURBS to the data through Hookean

spring forces ����� We interpret d� in ���� as the data point �generally in �
�� and �u�� v�� as the D�NURBS

parametric coordinates associated with the data point �which may be the nearest material point to the

data point�� The spring constant c determines the closeness of �t to the data point�

We present three examples of surface �tting using tensor�product D�NURBS coupled to data points

through spring forces� Fig� 	�a� shows �� data points sampled from a hemisphere and their interpolation

with a quadratic D�NURBS surface with �� control points� Fig� 	�b� shows �� data points and the

reconstruction of the implied convex�concave surface by a quadratic D�NURBS with �� control points�

The spring forces associated with the data points are applied to the nearest points on the surface� In

Fig� 	�c� we reconstruct a wave shape from 
� sample points using springs with �xed attachments to a

quadratic tensor�product D�NURBS surface with 
� control points�

��� Rounding

The rounding operation is usually attempted geometrically by enforcing continuity requirements on the �llet

which interpolates between two or more surfaces� By contrast� the D�NURBS can produce a smooth �llet

��



by minimizing its internal deformation energy subject to position and normal constraints� The dynamic

simulation automatically produces the desired �nal shape as it achieves static equilibrium�

Fig� ��a� demonstrates the rounding of a sharp edge represented by a quadratic triangular D�NURBS

surface with 	� control points� The sharp edge can be represented exactly with multiple control points� By

restricting the control polygon to be a continuous net� we reduced the number of control points to 
�� The

initial wireframe surface is shown in Fig� ��a��� After initiating the physical simulation� the sharp edges

are rounded as the �nal shape equilibrates into the minimal energy state shown by the shaded surface in

Fig� ��a
��

Fig� ��b� illustrates the rounding of a trihedral corner of a cube� The corner is represented using a

quadratic triangular D�NURBS with �� control points� The initial wireframe is shown in Fig� ��b��� The

rounding operation is applied in the vicinity of three sharp edges� The sharp edges and corner are rounded

with position and normal constraints along the far boundaries of the faces of the shaded surface shown in

Fig� ��b
��

Fig� ��c� shows a rounding example involving a bevel joint� The bevel joint is a quadratic triangular

D�NURBS with �
� control points� The initial right�angle joint and the �nal rounded surface are shown

in Fig� ��c�$
��

��� Interactive Sculpting

In the physics�based modeling approach� not only can designers manipulate the individual degrees of

freedom with conventional geometric methods� but they can also move the object or re�ne its shape with

interactive sculpting forces�

The physics�based modeling approach is ideal for interactive sculpting of surfaces� It provides direct

manipulation of the dynamic surface to re�ne the shape of the surface through the application of interactive

sculpting tools in the form of forces� Fig� ��a� illustrates the results of four interactive sculpting sessions

using swung D�NURBS surfaces and simple spring forces� A sphere was generated using two quadratic

curves with � and � control points and was sculpted into the ovoid shown in Fig� ��a�� A torus whose two

pro�le curves are quadratic with � and � control points� respectively� has been deformed into the shape in

Fig� ��b�� A hat shape was created from two curves with � and � control points and was then deformed

by spring forces into the shape in Fig ��d�� Finally� we generated a wine glass shape using two curves with

� and � control points and sculpted it into the more pleasing shape shown in Fig ��c��

��



�a� �b�

�c� �d�

Figure �� Interactive Sculpting of D�NURBS Swung Surfaces� Open and closed surfaces shown were
sculpted interactively from prototype shapes noted in parentheses �a� Egg shape �sphere�� �b� Deformed
toroid �torus�� �c� Hat �open surface�� �d� Wine glass �cylinder��







� Conclusion

We have describe D�NURBS� a dynamic generalization of geometric NURBS� D�NURBS were derived

systematically through the application of Lagrangian mechanics and implemented using concepts from

�nite element analysis and e�cient numerical methods� The mathematical development comprised four

varieties� D�NURBS curves� tensor�product D�NURBS surfaces� swung D�NURBS surfaces� and triangular

D�NURBS surfaces�

We also presented a new physics�based design paradigm based on D�NURBS which generalizes well

established geometric design� This paradigm was the basis of a D�NURBS interactive modeling envi�

ronment� The physics�based framework furnishes designers not only the standard geometric toolkits but

powerful force�based sculpting tools as well� It provides mechanisms for automatically adjusting unknown

parameters to support user manipulation and satisfy design requirements�

Since D�NURBS are built on the industry�standard NURBS geometric substrate� designers working

with them can continue to make use of the existing array of geometric design toolkits� With the advent of

high�performance graphics systems� however� the physics�based framework is poised for incorporation into

commercial design systems to interactively model and sculpt complex shapes in real�time� Thus� D�NURBS

can unify the features of the industry�standard geometry with the many demonstrated conveniences of

interaction through physical dynamics�
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