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Abstract

Recursive subdivision schemes have been extensively used in com-
puter graphics and scientific visualization for modeling smooth sur-
faces of arbitrary topology. Recursive subdivision generates a vi-
sually pleasing smooth surface in the limit from an initial user-
specified polygonal mesh through the repeated application of a
fixed set of subdivision rules. In this paper, we present a new
dynamic surface model based on the Catmull-Clark subdivision
scheme, which is a very popular method to model complicated ob-
jects of arbitrary genus because of many of its nice properties. Our
new dynamic surface model inherits the attractive properties of the
Catmull-Clark subdivision scheme as well as that of the physics-
based modeling paradigm. This new model provides a direct and
intuitive means of manipulating geometric shapes, a fast, robust,
and hierarchical approach for recovering complex geometric shapes
from range and volume data using very few degrees of freedom
(control vertices). We provide an analytic formulation and intro-
duce the physical quantities required to develop the dynamic subdi-
vision surface model which can be interactively deformed by apply-
ing synthesized forces in real time. The governing dynamic differ-
ential equation is derived using Lagrangian mechanics and a finite
element discretization. Our experiments demonstrate that this new
dynamic model has a promising future in computer graphics, geo-
metric shape design and scientific visualization.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; 1.3.8
[Computer Graphics]: Miscellaneous.

Keywords: Visualization, Subdivision Surfaces, Dynamics, Finite
Elements, Interactive Techniques.

1 INTRODUCTION

Generating smooth surfaces of arbitrary topology is a grand chal-
lenge in geometric modeling, visualization, and computer graphics.
The recursive subdivision scheme which generates a smooth sur-
face as the limit of a sequence of recursively refined polyhedral
surfaces based on a user-defined initial control mesh, is well suited
for the purpose. At each step of the subdivision, a smoother polyhe-
dral surface with more vertices and faces will be constructed from

the previous one via a refinement process (also called “chopping
corners”). In general, subdivision schemes can be categorized into
two distinct classes namely, (1) approximating subdivision meth-
ods, and (2) interpolating subdivision methods.

Among the approximating schemes, the techniques of Doo and
Sabin [6] and Catmull and Clark [3] generalize the idea of obtain-
ing biquadratic and bicubic B-spline patches from rectangular con-
trol meshes. In [3], Catmull and Clark developed a method for
recursively generating a smooth surface from a polyhedral mesh
of arbitrary topology. The Catmull-Clark subdivision surface, de-
fined by an arbitrary non-rectangular mesh, can be reduced to a
set of standard B-spline patches except at a finite number of ex-
traordinary points, where the in-degree of the vertex in the mesh is
not equal to four. Doo and Sabin [6] further analyzed the smooth-
ness behavior of the limit surface near extraordinary points using
Fourier transforms and an eigenvalue analysis of the subdivision
matrix. Ball and Storry [1] and Reif [14] further extended the prior
work on continuity properties of subdivision surfaces by deriving
various necessary and sufficient conditions on smoothness for dif-
ferent subdivision schemes. In [10], Loop presented a similar sub-
division scheme based on the generalization of quartic triangular
B-splines for triangular meshes. Halstead et al. [11] proposed an
algorithm to construct a Catmull-Clark subdivision surface that in-
terpolates the vertices of a mesh of arbitrary topology. The most
well-known interpolation-based subdivision scheme is the “butter-
fly” algorithm proposed by Dyn et al. [5]. Butterfly subdivision
method makes use of a small number of neighboring vertices for
subdivision. It requires simple data structures and is extremely easy
to implement. However, it needs a topologically regular setting for
the initial polygonal meshes in order to obtain a smooth limit sur-
face. Recently, Zorin et al. [13] further developed an improved in-
terpolatory subdivision scheme that can retain the simplicity of the
butterfly scheme and result in much smoother surfaces from initial
polygonal meshes that are irregular.

Although recursive subdivision surfaces are extremely powerful
to represent smooth geometric shapes of arbitrary topology, they
constitute a purely geometric representation, and furthermore, con-
ventional geometric modeling with subdivision surfaces may be in-
feasible for representing highly complicated objects. For example,
modelers are faced with the tedium of indirect shape modification
and refinement through time-consuming operations on a large num-
ber of (most often irregular) control vertices when using typical
spline-based modeling schemes. In addition, it may not be enough
to obtain the most “fair” surface that interpolates a set of (ordered
or unorganized) data points. A certain number of local features
such as bulges or inflections (“roughness”) may be strongly desired
while making geometric objects satisfy global smoothness require-
ments in scientific visualization and biomedical applications. In
contrast, physics-based modeling provides a superior approach to
shape modeling that can overcome most of the limitations asso-
ciated with traditional geometric modeling approaches. Free-form
deformable models are of particular interest in this context. The be-
havior of dynamic deformation is governed by physical laws. De-



formable models will respond dynamically to applied forces in a
very intuitive manner. The equilibrium state of the model is charac-
terized by a minimum of the potential energy of the model subject
to imposed constraints. The potential energy functionals can be
formulated to satisfy local and global modeling criteria and impose
geometric constraints relevant to shape design.

Free-form deformable models were first introduced to com-
puter graphics and visualization in Terzopoulos et al. [8]. Bloor
and Wilson [2], Celniker and Welch [4] and Welch and Witkin
[17] proposed deformable B-spline curves and surfaces which can
be designed by imposing the shape criteria via the minimization
of the energy functionals subject to hard or soft geometric con-
straints through Lagrange multipliers or penalty methods. Recently,
Qin and Terzopoulos [16] have developed dynamic NURBS (D-
NURBS) which are very sophisticated models suitable for repre-
senting a wide variety of free-form as well as standard analytic
shapes. The D-NURBS have the advantage of interactive direct ma-
nipulation of NURBS curves and surfaces, resulting in physically
meaningful hence intuitively predictable motion and shape varia-
tion.

A severe limitation of the existing deformable models, including
D-NURBS, is that they are defined on a parametric domain. Hence,
it is almost impossible to model surfaces of arbitrary genus using
these models. In this paper, we develop a dynamic generalization
of recursive subdivision schemes based on Catmull-Clark subdivi-
sion surfaces. Our new dynamic model combines the benefits of
subdivision surfaces for modeling arbitrary topology as well as the
dynamic splines for direct interactive manipulation of shapes by ap-
plying synthesized forces. Note that, the derivation of our dynamic
subdivision surface poses a significant technical challenge because
of the fact that no closed-form parametrization of the limit surface
exists near the extraordinary points. We present the details of our
formulation in a later section. We conduct various experiments that
demonstrates the fact that our new dynamic surface model is ex-
tremely useful in computer graphics and visualization. The model
can recover shapes from large range and volume data sets using
very few degrees of freedom for its representation. The initialized
model deforms under the influence of synthesized forces to fit the
data set by minimizing its energy according to the laws of physics.
When the approximate shape is recovered, the model can be further
subdivided to achieve a better approximation to the input data set
using higher degrees of freedom.

The rest of the paper is organized as follows: Section 2 presents
the detailed formulation of the dynamic Catmull-Clark subdivision
surfaces. The implementation details are provided in Section 3. Ex-
perimental results are presented in Section 4. Finally, we conclude
in Section 5.

2 FORMULATION

In this section we present a systematic formulation of our new dy-
namic model based on Catmull-Clark subdivisions. First, we briefly
review the Catmull-Clark subdivision scheme. Then, we demon-
strate how to assign a bicubic patch in the limit surface to a non-
boundary face in a topologically rectangular setting. We further
generalize this idea to assign the infinite number of bicubic patches
in the limit surface to faces that are in the vicinity of an extraor-
dinary point/vertex. Next, we formulate a closed form analytical
representation of the limit smooth surface which can be viewed as
a function of its (initial) polyhedral control vertices. Finally, we
introduce physical quantities into our dynamic model in order to
derive its motion equation.

2.1 Catmull-Clark subdivision surfaces

Catmull-Clark subdivision scheme, like any other subdivision
scheme, starts with a user-defined mesh of arbitrary topology, re-
fines the initial mesh by adding new vertices, edges and faces with
each step of subdivision which follows a fixed set of subdivision
rules; in the limit, a sequence of recursively refined polyhedral
meshes will converge to a smooth surface. The subdivision rules
are as follows:

e For each face, introduce a new face point which is the average
of all the old vertices defining the face.

e For each (non-boundary) edge, introduce a new edge point
which is the average of the following four points: two old
vertices defining the edge and two new face points of the faces
adjacent to the edge.

e For each (non-boundary) vertex, introduce a new face point
obtained from the average % + % + w where F is the
average of the new face points of all faces adjacent to the old
vertex point, E is the average of the midpoints of all edges
incident on the old vertex and n is the number of the edges
incident on the vertex.

e Form new edges by connecting each new face point to the
new edge points of the edges defining the old face and by
connecting each new vertex point to the new edge points of
all old edges incident on the old vertex point.

e Define new faces as those enclosed by new edges.

Figure 1: A rectangular mesh and its limit surface consisting of 4
bicubic surface patches.

The most important property of Catmull-Clark subdivision sur-
faces is that the smooth surface can be generated from control
meshes of arbitrary topology. Therefore, this subdivision scheme
is extremely valuable for modeling various complicated geometric
objects of arbitrary topology. Catmull-Clark subdivision surfaces
include standard bicubic B-spline surfaces as their special case (i.e.,
the limit surface is a tensor-product B-spline surface for a rectangu-
lar control point mesh). In addition, the aforementioned subdivision
rules generalize the recursive bicubic B-spline patch subdivision al-
gorithm. For non-rectangular meshes, the limit surface converges to
a bicubic B-spline surface except at a finite number of extraordinary
points. Note that, after the first subdivision, all faces are quadrilat-
erals, hence all new vertices created subsequently will have four
incident edges. The number of extraordinary points on the surfaces



Figure 2: A mesh with an extraordinary point of valence 3 and its
limit surface.

Figure 3: Local subdivision around the extraordinary point and the
limit surface.

remains a constant which is determined by the refined meshes after
one subdivision. The limit surface is curvature-continuous every-
where except at extraordinary vertices, where only tangent plane
continuity is achieved. In spite of the popularity of Catmull-Clark
subdivision surfaces for representing complex geometric shapes of
arbitrary topology, these subdivision surfaces are not parametriz-
able and lack closed-form analytic formulations. These deficien-
cies preclude their immediate pointwise manipulation and hence
may restrain the applicability of these schemes. We develop a new
dynamic model based on Catmull-Clark subdivision surfaces which
offer modelers a closed-form analytic formulation and allows users
to manipulate the model directly and intuitively.

To develop the dynamic model which treats the limit smooth
surface as a function of its control mesh in a hierarchical fashion,
we need to update control vertex positions continually at any given
level. However, all the vertices introduced through subdivision are
obtained as an affine combination of control vertex positions of the
initial mesh. Therefore, we can control the dynamic behavior of the
limit surface by formulating the dynamic model on the initial mesh
itself, the only exception being the case when the initial mesh has
non-rectangular faces. The problem can be circumvented by tak-
ing the mesh obtained through one step of subdivision as the initial
mesh. To define the limit surface using the vertices of the initial
mesh, the enumeration of the bicubic patches in the limit surface
is necessary. In the next two subsections, we present a scheme of
assigning the bicubic patches to various faces of the initial mesh. It
may be noted that one additional subdivision step may be needed in
some cases to isolate the extraordinary points and treat the obtained

mesh as the initial mesh (one typical example is when the initial
mesh is a tetrahedron).

2.2 Assigning patches to regular faces

In Fig.1, a rectangular control mesh is shown along with the bicubic
B-spline surface (4 patches) in the limit after an infinite number of
subdivision steps. Note that, each of the bicubic patches in the limit
surface is defined by a rectangular face with each vertex of degree
four, thereby accounting for 16 control points (from its 8 connected
neighborhood) needed to define a bicubic surface patch in the limit.
Therefore, for each rectangular face in the initial mesh with a va-
lence of 4 at each vertex, the corresponding bicubic surface patch
can be assigned to it in a straight forward way. In Fig.1, the surface
patches Si, Sa, Ss and Sy are assigned to face Fi, F», F3 and Fy
respectively. The 16 control points for the patch S1, corresponding
to face Fi, are highlighted in Fig.1.

2.3 Assigning patches to irregular faces

In Fig.2, a mesh containing an extraordinary point of valence 3 and
its limit surface are shown. The faces Fy, Fi, ..., Fg are assigned
to bicubic patches So, Si, ...Ss respectively (as they all have ver-
tices of valence 4) following the aforementioned scheme. However,
the smooth surface enclosed by the patches Sy, S1, ...Ss consists of
infinite number of bicubic patches converging to a point in the limit.
We need to develop a recursive way of enumerating these bicubic
patches and assigning them to various faces at different levels in
order to develop the dynamic subdivision surface model.

The idea of enumerating the bicubic patches correspond-
ing to faces having an extraordinary vertex is shown in Fig.3
where a local subdivision of the mesh consisting of faces
Fo, F, ..., Fs, Py, P, P> (and not the other boundary faces) of
Fig.2 is carried out. Topologically, the resulting local subdivision
mesh (shown as dotted mesh) is exactly the same as the mesh in
Fig.2 and hence exactly the same number of bicubic patches can be
assigned to its faces with vertices of valence 4 as is evident from
Fig.3 (the new faces and the corresponding patches are marked by
“p” and “n” respectively). This process of local subdivision and as-
signment of bicubic patches around an extraordinary point can be
carried out recursively and in the limit, the enclosed patch corre-
sponding to faces sharing the extraordinary point will converge to a
point. However, there is no need to carry out an infinite number of
subdivision steps. This description is for formulation purposes only
and the exact implementation will be detailed in a later section.

2.4 Kinematics of the limit surface

In this section we develop the mathematics for the kinematics of
the limit surface via illustrative examples and then present the gen-
eralized formulas. We start the illustration with a single bicubic
B-spline patch which is obtained as the limiting process of the
Catmull-Clark subdivision algorithm applied to an initial 4 by 4
rectangular control mesh. Let s, (u,v), (u,v) € [0, 1]?, denote this
bicubic B-spline patch which can be expressed analytically as

sp(u,0) = (2(w,0),y(u,v), 2(u,v))"

3 3
Z Zdi,jBiA(u)Bj,‘i(U) (l)

i=0 ;=0

where d;_; represents a 3-dimensional position vector at the (z, j)th
control point location and B; 4(u),Bj,4(v) are the cubic B-spline
basis functions. The subscript p on s denotes the patch under con-
sideration. Expressing Eqn. 1 in a generalized coordinate system



we have
sp = Jpq )

where J, is the standard Jacobian matrix of a bicubic B-spline
patch, and is of size is (3, 48). Vector q is the concatenation of all
control points defining a B-spline patch in 3D. Note that in the con-
catenation of the control points, each control point has an (z, y, z)
component. For example, the (z,y, z) components of the control
point (¢, ) correspond to positions 3k, 3k + 1,3k + 2 - where,
k = 4i+ j - respectively in the vector g. We can express the entries
of J, explicitly in the following way: J,(0,k) = J,(1,k+ 1) =
Jp(2,k+2) = Bi,4(u)Bj,4(U) and Jp(O, k+1) = J,,(O, k+2) =
Jo(1,k) =Jp(1,k+2) =J,(2,k) = Jp(2,k + 1) = 0.

2.4.1 Limit surface with many bicubic patches from a
rectangular initial mesh

Now let’s consider a limit surface consisting of many bicubic sur-
face patches obtained after applying an infinite number of subdivi-
sion steps to a rectangular initial mesh. For example, let the limit
surface of Fig.1 be s,,, which can be written as

1
Sm(u,v) = Smy (2u, 20) + Sy (2u,2(v — 5))

oy (21— 2),20) + 5m, (2w — 3). 20— ) ()

where s, (2u, 20) = sy (u, v) for 0 < u,v < 1, and 0 otherwise.
Similarly, sy, Sms and sy, are also equal to s, (u, v) for an ap-
propriate range of values of u,v and 0 outside. It may be noted
that sy, , Smo, Sms, Sm, COrrespond to patches Si, Sz, Ss, Sa re-
spectively in Fig.1. Rewriting Eqn. 3 in generalized coordinates we
have

4
sm =Ji1q1 + J2q2 + J3q3 +J4q4=ZJiqi 4

i=1

where J;s are the Jacobian matrices of size (3, 48) and q;s are the
(x,y,z) component concatenation of a subset of the control points of
sm defining s;;, 2 = 1, 2,3 and 4. A more general expression for
S IS

sm = JiAigm +J2A2qm + J3A3qm + J1A4qm
4
= Z.L-Aiqm =Jmnqm- (5)
i=1

Where, q., is the 75-component vector of 3D positions of the
25 vertex control mesh defining the limit surface s,,. Matrices
A;;1 < i < 4, are of size (48,75) , each row consisting of a
single nonzero entry (= 1) and the (3, 75)-sized matrix J,, =

S JiAs

2.4.2 Limit surface with many bicubic patches from an
arbitrary initial mesh

The stage is now set to define the limit surface s using the vertices
of initial mesh M for any arbitrary topology, assuming all faces are
rectangular and no face contains more than one extraordinary point
as its vertex (i.e., extraordinary points are isolated). As mentioned
earlier, if these assumptions are not satisfied, one or two steps of
global subdivision may be required and the resulting mesh can be
treated as the initial mesh. Let the number of vertices in the initial
mesh M be a, and let [ of these be extraordinary vertices. Let
us assume that the number of faces in the initial mesh are b, and
that & of these have vertices with valence 4 (here onwards termed a

“normal face”) and each of the remaining (b — k) faces have one of
the I extraordinary vertices (here onwards termed a “special face”).
Let p be the 3¢ = N dimensional vector containing the control
vertex positions in 3D. Using the formulations in subsections 2.2
and 2.3, the smooth limit surface can be expressed as

k l
s = Z n; + Z Sj (6)
i=1 j=1

where n; is a single bicubic patch assigned to each of the normal
faces and s; is a collection of infinite number of bicubic patches
corresponding to each of the extraordinary points. Employing the
same approach taken before to derive Eqgn. 5, it can be shown that

k k

k
> omi=> (I)(p) = (Q_("I)("A)p = ("T)p (D)

where *J;,” p; and ™" A; are the equivalent of J;, p; in Eqn.4 and
A; in Eqgn. 5 respectively. The pre-superscript n is used to in-
dicate that these mathematical quantities describe bicubic patch in
the limit surface corresponding to normal faces.

We will use the following notational convention for describing
various mathematical quantities used in the derivation of the expres-
sion for a collection of infinite number of bicubic patches around
an extraordinary vertex. The pre-superscript s is used to represent
a collection of bicubic patches around an extraordinary vertex, the
subscript j is used to indicate the j-th extraordinary point, the post-
superscript represents the exponent of a mathematical quantity and
the level indicator (to represent various levels of subdivision in the
local control mesh around an extraordinary vertex) is depicted via
subscripts on the curly braces.

The expression for s; is derived using the recursive nature of
local subdivision around an extraordinary vertex as shown in sub-
section 2.3. First, s; can be expressed as

si ={*3;ih{’pit +{sih ®)
where the first term of Eqn.8 is the generalized coordinate represen-
tation of the bicubic B-spline patches corresponding to the normal
faces of the new local subdivision mesh obtained after one sub-
division step on the local control mesh (similar to those patches
marked n in Fig.3). {s;}, represents the rest of the infinite bicubic
B-spline patches surrounding the extraordinary point (similar to the
patch enclosed by patches marked n in Fig.3). The vertices in the
newly obtained local subdivision mesh {*p; }, can be expressed as
a linear combination of a subset of the vertices of the initial mesh
M (which will contribute to the local subdivision) following the
subdivision rules. We can name this subset of initial control ver-
tices {°p;},. Furthermore, there exists a matrix {*B;}, of size
(3¢, 3d), such that {*B;},{*p;}, = {*p;}, where {*p;}, and
{*p; }, are vectors of dimension 3c and 3d respectively. Applying
the idea of recursive local subdivision again on {s;},, s; can be
further expanded as

si = {*5H{"BH{"pi}o

+HJ1,{°B; 1,0 H +{si}. )
In the above derivation, {*p;}, is a vector of dimension 3d, com-
prising of a subset of the vertices defining the 3¢ dimensional
vector {°*p;},. Note that, {*p;}, has the same structure as
{*Pj }, therefore, there exists a (3d, 3d) matrix {*C;}, such that
{*C; },{*pi}, = {*P;}, . Each subdivision of a local mesh with d
vertices creates a new local mesh with ¢ vertices which contributes

a fixed number of bicubic B-spline patches. So, if we proceed one
step further, we obtain

si = {"LKLH{BiLHpito +{°3;1L,{"B; L{°CiH{°pito
+{°3;}1: 0B 1, {°C s} + {si}s (10)



Because of the intrinsic property of the local recursive subdivi-
sion around the extraordinary point, we have {*J;}, = {*J;}, =
o= {J35}, =...={*J;}. Inaddition, the subdivision rules
remain the same throughout the refinement process, we also have
{°Bj}, = {°B;}, = ... = {°B;}, = ... = {*Bj},. So, we
can further simplify the above equations leading to
Sj = {st}1 {SBj}1 {Spj }0 + {SJj}l{sBj}1{st}1{spj }0

+HL LB LG pido +

3 4LEBHO_{Ci)piko (11)

i=0

We can rewrite s; as
si = (*3;)(Cps) 12

where *J; = {*3;}, {*B;}, (1, {"C;}}) and *p; = {*p;},.
Note that, each vertex position in the subdivided mesh is obtained
by an affine combination of some vertices in the previous level and
hence any row of {*C;}, sumsto 1. The largest eigenvalue of such
a matrix is 1 and it can be shown that the corresponding infinite
series is convergent following a similar approach as in [11]. The
rest of the derivation leading to an expression for s is relatively
straight forward. Using the same approach used to derive the Eqgn.
7, it can be shown that

1

l 1l
DS Z (3)(ps) = Z CI)CANP = (Dp (13)

From Eqgn. 6,7 and 13,
s=("Ip+(Ip (14)
LetJ = ("J) + (°J), hence
s=Jp (15)

2.5 Dynamics

We now treat the control point positions (alternatively, the vertex
positions in the initial mesh) defining the limit surface s as a func-
tion of time in order to develop our new dynamic model. The ve-
locity of the surface model can be expressed as

$(u,v,p) =Jp (16)

where an overstruck dot denotes a time derivative. The physics
of the dynamic subdivision surface model is based on the work-
energy version of Lagrangian dynamics [7] and is formulated in an
analogous way to that in [16].

In an abstract physical system, let p;(t) be a set of generalized
coordinates which are functions of time and are assembled into the
vector p. Let f;(¢) be the generalized applied force acting on p;
and these f;’s are assembled into the vector f,. The Lagrangian
equation of motion can then be expressed as

Mp+Dp+Kp =1, 17

Let p be the mass density function of the surface. Then

M= / / w7 Idudv (18)

isan N x N mass matrix. Similarly the expression for damping

matrix is
D= / / ~IT Jdudv (19)

where « is the damping density.

A thin-plate-under-tension energy model [15] is used to compute
the elastic potential energy of the dynamic subdivision surface. The
corresponding expression for the stiffness matrix K is

//(OthEJu + 0422JvTJv +,311qu‘luu
+B8123 L T + Boad iy Iy )dudy (20)

where the subscripts on J denote the parametric partial derivatives.
The a;; and B;;s are elasticity functions controlling local tension
and rigidity in the two parametric coordinate directions.

The generalized force vector f, can be obtained through the
principle of virtual work [7] done by the applied force distribution
f(u,v,t) and can be expressed as

f, ://JTf(u,v,t)dudv (21)

2.5.1 Multilevel Dynamics

Our dynamic Catmull-Clark surface model can be subdivided glob-
ally to increase the number of vertices (control points) of the model.
Therefore, we need to derive the equation of motion for this subdi-
vided model involving larger number of vertices. We need to re-
compute the mass, damping and stiffness matrices for this level.
However, the equation of motion as given by Eqn. 17 remains valid,
only the dimensionality of M, D, K, p and £, changes in the newly
obtained subdivided level.

3 FINITE ELEMENT IMPLEMENTATION

The evolution of the generalized coordinates for our new dynamic
surface model can be determined by the second-order differential
equation as given by Eqgn. 17. An analytical solution of the govern-
ing differential equation can not be obtained in general. However,
an efficient numerical implementation can be obtained using finite
element analysis techniques [9]. For the dynamic subdivision sur-
face model, two types of finite elements are considered - normal
elements (bicubic patches assigned to the normal faces of the ini-
tial mesh) and special elements (collection of infinite number of
bicubic patches assigned to each extraordinary vertex of the initial
mesh). In the current implementation, the M, D and K matrices
for each individual normal and special elements are calculated and
they can be assembled into the global M, D and K matrices that
appear in the corresponding discrete equation of motion. In prac-
tice, we never assemble the global matrices explicitly in the interest
of time performance. The detailed implementation is explained in
the following subsections.

3.1 Data Structures

A subdivision surface defined by a control mesh at any level is de-
signed as a class which has a pointer to its parent mesh, a set of
pointers to its offspring meshes (arising out of local subdivision
around the extraordinary vertices at that level), a list of faces, edges,
vertices and normal elements . Face, edge, vertex and normal ele-
ments are, in turn, classes which store all the connectivity and other
information needed to either enumerate all the patches or locally
subdivide around an extraordinary vertex in that level. The imple-
mentation takes the initial mesh as the base subdivision surface ob-
ject (with its parent pointer set to NULL) and locally subdivides
the initial mesh upto a user-defined maximum level around each
extraordinary vertex to create offspring objects at different levels.
At this point, let’s take a closer look at normal and special element



data structures and computation of the corresponding local M, D
and K matrices.

3.1.1 Normal Elements

Each normal element is a bicubic surface patch and hence defined
by 16 vertices (from the 8-connected neighborhood of the corre-
sponding normal face). Each normal element keeps a set of pointers
to those vertices of the initial mesh which act as control points for
the given element. For a normal element, the mass, damping and
stiffness matrices are of size (16, 16) and can be computed exactly
by carrying out the necessary integrations analytically. The matrix
J in Egn. 18, 19 and 20 need to be replaced by J,, (of Eqn. 2) for
computation of the local M, D and K matrices respectively of the
corresponding normal element.

3.1.2 Special Elements

Each special element consists of an infinite number of bicubic
patches in the limit. We have already described a recursive enu-
meration of the bicubic patches of a special element in Section 2.3.
Let us now consider some arbitrary bicubic patch of the special el-
ement in some level j. The mass matrix M, of this patch can be
written as

M, = QTM,Q, (22)

where M, is the normal element mass matrix (scaled by a factor
of LJ to take into account of the area shrinkage in bicubic patches
at higher level of subdivision) and €2, is the transformation matrix
of the control points of that arbitrary patch from the correspond-
ing control points in the initial mesh.The damping and stiffness
matrices for the given bicubic patch can be derived in an exactly
similar fashion. Now, these mass, damping and stiffness matrices
can be assembled to form the mass, damping and stiffness matri-
ces of the special element. As mentioned earlier, the infinite series
summation is convergent. However, it has been found that the con-
tribution from bicubic patches at higher level of subdivision to the
mass, damping and stiffness matrices becomes negligible and in the
implementation, the local subdivision is carried out until the con-
tribution is small enough to ignore in the formation of the global
mass, damping and stiffness matrices.

3.2 Force Application

The force f(u,v,t) in Eqn.21 represents the net effect of all ap-
plied forces. The current implementation supports spring, inflation
as well as image-based forces. However other types of forces like
repulsion forces, gravitational forces etc. can be implemented eas-
ily as well.

To apply spring forces, a spring of stiffness & can be connected
from a point do to a point (uo,vo) on the limit surface, the net
applied spring force being

f(u,v,t) ://k(do—s(u,v,t))5(u—u0,v—Uo)dudv (23)

where § is the unit impulse function implying f(uo,vo,t) =
k(do — s(uo,vo,t)) and vanishes elsewhere in the surface. How-
ever, the ¢ function can be replaced with a smooth kernel to spread
the force over a greater portion on the surface. The spring forces
can be applied interactively using a mouse button or the points from
which forces need to be applied can be read in from the disk.

To recover shapes from 3D image data, we synthesize image-
based forces. A 3D edge detection is performed on a Gaussian
smoothed volume data set using the 3D Monga-Deriche(MD) oper-
ator [12] to produce a 3D potential field P(z,y, z), which we use

as an external potential for the model. The force distribution is then
computed as

vP(z,y,2)

f(z,y,2) = k——"""— 24
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where k controls the strength of the force. The applied force on
each element is computed using Gaussian quadrature for evaluating
Eqn. 21 in Cartesian coordinates. It may be noted that we can apply
spring forces in addition with the image-based forces by placing
points near the region of interest in the slices of the 3D image data.

3.3 Discrete Dynamic Equation

The differential equation given by Eqn. 17 is integrated through
time by discretizing the time derivative of p over time steps At.
The state of the dynamic subdivision surface at time t + At is in-
tegrated using prior states at time ¢t and ¢t — A¢. An implicit time
integration method is used in the current implementation where dis-
crete derivatives of p are calculated using backward differences

p(t+ At) — 2p(t) + p(t — At)

l")(t + At) = At2

(25)

and
p(t + At) — p(t — At)
2A¢t

Using Eqn. 17, 25 and 26, the discrete equation of motion is
obtained as

p(t+ At) =

(26)

(2M + DAt + 2A°K)p(t + At) =
2AL’E, (t + At) + (DAL — 2M)p(t — At) + 4AMp(t) (27)

This linear system of equations is solved iteratively between each
time step using the conjugate gradient method.

3.4 Model Subdivision

The initialized model grows dynamically according to the equation
of motion (Eqgn. 17) and when an equilibrium is achieved at a given
level of subdivision, the model can be subdivided, if necessary, ac-
cording to the Catmull-Clark subdivision rules to increase the num-
ber of vertices (control points) and a better fit to the data can be
achieved. Currently the error of fit criteria is based on distance be-
tween the data points and the points on the limit surface where the
corresponding springs are attached. However, other types of error
criterion can also be defined and used in this context. For example,
in the context of image-based forces, if the model energy does not
change between successive iterations indicating an equilibrium for
the given resolution, the model can be subdivided further until the
model energy is sufficiently small and the change in energy between
successive iterations becomes less than a pre-specified tolerance.

4 RESULTS

The proposed dynamic subdivision surface can be used to represent
a wide variety of shapes with arbitrary genus. In this section we
demonstrate the power of our modeling scheme via model fitting
examples to a variety of data sets of varying degree of complexity.
In all the experiments, normal elements are shaded yellow, while
special elements are colored green.

In Fig.4(a) an open limit surface defined by an initial mesh of
61 vertices and 45 faces is shown. The mesh has one extraordi-
nary point of valence 5. The limit surface is acted upon by spring
forces as shown in Fig.4(b). An intermediate stage of model evo-
lution is shown in Fig.4(c) and the final fitted model is depicted in



Fig.4(d). It may be noted that the model controlled by the initial
mesh reached a local minimum without fitting the points exactly.
In order to obtain an exact fit (Fig.4(d)), the control mesh is subdi-
vided once thereby increasing the degrees of freedom (control ver-
tices) of the underlying model. Thus the dynamics can be applied
in a hierarchical fashion. Our model can be used to obtain a very
fast approximate fitting with fewer number of vertices and an exact
fit after more subdivision steps as needed.

In the next experiment, we show the fitting process using spring
forces with a closed surface of genus two(Fig.5). The smooth sur-
face is controlled by an initial mesh of 544 faces and 542 vertices,
8 of them being extraordinary points of valence 5. In this exper-
iment, the model has sufficient degrees of freedom and fitted the
data points exactly without needing further subdivision of its con-
trol mesh.

In Fig.6, we present shape recovery from range data using our
model. The model, with 96 faces and 98 vertices, 8 of them being
extraordinary vertices of valence 3, was initialized inside a set of
1,779 range data points. The final fitted model has a control poly-
gon of 384 faces with 386 vertices and thus the shape is recovered
using a very few number of control points in comparison with the
number of data points in the range data set.

In the last experiment, we fit the model to a cerebellum (a cortical
structure in brain) given an input of 30 sagittal slices from a MR
brain scan. Fig.7(a) depicts a slice from this MRI scan and a slice
of the 3D model initialized inside the region of interest is shown in
Fig.7(b). Image gradient-based forces are applied to the model and
the model deforms under the influence of these forces until maximal
conformation to the boundaries of of the desired cerebellum shape.
The final fitted model is shown in Fig.7(c). An arbitrary 3D view
of the fitted model is shown in Fig.7(d).

5 CONCLUSIONS

In this paper, a dynamic generalization of the Catmull-Clark sub-
division surfaces is presented which has numerous applications in
geometric modeling and visualization. Apart from providing a di-
rect intuitive way of manipulating shapes, it provides a fast as well
as robust way of visualizing large range and volume data sets using
very few degrees of freedom. We have presented an analytic for-
mulation of the subdivision scheme, incorporated the advantages of
free-form deformable models in subdivision scheme, introduced hi-
erarchical dynamic control and shown the advantages of our model
via experiments. However, the current scheme can not recover very
sharp edges. Also, the initialization is interactive; ideally, initial-
ization should be done automatically on the basis of the input data
set. Our future efforts will focus on addressing these issues.
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(b) (c) (d)

Figure 4: Fitting the dynamic open surface model to discrete points in 3D : (a) model initialization depicting the associated control mesh, (b)
model and data points, (c) intermediate stage of the fitting and (d) the fitted model.

(b) (© (d)

Figure 5: Fitting the dynamic closed surface model to discrete points in 3D : (a) model initialization depicting the associated control mesh,
(b) model and data points, (c)intermediate stage of the fitting and (d) the fitted model.
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Figure 6: (a) Range data of a head, (b) data and initialized model, (c) intermediate stage of evolution and (d) the fitted model polygon.

(b) (d)

Figure 7: (a) A slice from a brain MRI along with the region of interest (ROI), (b) a slice of the initialized model inside the ROI superimposed
on the data slice, (c) a slice of the fitted model superimposed on the corresponding slice of data and (d) a 3D view of the model fitted to the
cerebellum in the ROI.



