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Abstract

A new dynamic subdivision surface model is pro-
posed for shape recovery from 3D data sets. The model
inherits the attractive properties of the Catmull-Clark
subdivision scheme and is set in a physics-based mod-
eling paradigm. Unlike other existing methods, our
model does not require a parameterized input mesh to
recover shapes of arbitrary topology, allows direct ma-
nipulation of the limit surface via application of forces
and provides a fast, robust, and hierarchical approach
to recover complex shapes from 3D data with very few
degrees of freedom (control vertices). We provide an
analytic formulation and introduce the physical quan-
tities required to develop the dynamic subdivision sur-
face model which can be deformed by applying forces
synthesized from the data. Our experiments demon-
strate that this new dynamic model has a promising
future in shape recovery from volume and range data
sets.

1 Introduction

Recovering shapes of arbitrary topology from large
data sets is an important problem in computer vision.
A physics-based model which recovers the shape accu-
rately with few degrees of freedom without being re-
stricted to parameterized mesh initialization is a good
candidate for the solution. The existing deformable
models used to solve this problem can be classified
into two categories namely, (1) fixed grid size models
[3, 7] using few degrees of freedom for representation
at the cost of accuracy of the recovered shape and
(2) adaptive grid size models [2, 4, 6] involving large
degrees of freedom and computationally expensive ad
hoc schemes for accurate shape representation. The
hierarchical shape representation using locally adap-
tive finite elements discussed in [4] can efficiently rep-
resent the shape of an object of genus zero with a small
number of nodal points. However, this scheme can
not be easily extended to cope with arbitrary shapes.
The balloon model for describing the shape of com-
plex objects [2] also adapts the mesh surface to local

surface shapes and is purely driven by an applied infla-
tion force towards the object surface when initialized
inside the object. This scheme requires a large num-
ber of nodal points for representing complex shapes.
Moreover, all the existing models using either a fixed
or an adaptive grid size require a parameterized mesh
as their input.

The Catmull-Clark subdivision surface model[l],
which is widely used in computer graphics for mod-
eling surfaces of arbitrary topology offer a potential
solution, without the aforementioned pitfalls, to the
shape recovery problem. This recursive subdivision
algorithm generates a smooth surface which is the
limit of a sequence of recursively refined polyhedral
surfaces based on a user-defined initial control mesh.
The Catmull-Clark subdivision surface, defined by an
arbitrary non-rectangular mesh, can be reduced to a
set, of standard B-spline patches in the limit, except at
a finite number of eztraordinary points, where the in-
degree of the corresponding vertex in the mesh is not
equal to four. The most interesting property of the
Catmull-Clark subdivision surfaces is that the initial
control mesh 1is arbitrary and the underlying smooth
limit surface is C? continuous, except at the extraor-
dinary points where it is tangent continuous.

In this paper, we develop a dynamic generalization
of Catmull-Clark subdivision surface which inherits
the benefits of subdivision surfaces for modeling arbi-
trary topology and dynamic splines for efficient shape
recovery. The model can recover shapes from large
range and volume data sets using very few degrees of
freedom (control vertices) for its representation. Our
model can cope with any arbitrary input mesh, not
necessarily parameterized, with an arbitrary number
of extraordinary points. The initialized model deforms
under the influence of synthesized forces to fit the data
set by minimizing its energy. Once the approximate
shape is recovered, the model is further subdivided
and a better approximation to the input data set is
achieved using more degrees of freedom. The process
of subdivision after achieving an approximate fit is



continued till a prescribed error criteria for fitting the
data points is achieved. It may be noted that the
derivation of our dynamic subdivision surface poses a
significant technical challenge because of the fact that
no closed-form parameterization of the limit surface
exists near the extraordinary points. Also, the model
involves direct manipulation of the smooth limit sur-
face via application of forces. This is obviously more
intuitive than manipulating the control mesh itself es-
pecially for computer vision problems involving shape
recovery via model fitting. The performance of our
proposed modeling scheme in the context of shape re-
covery is demonstrated via several model fitting exper-
iments with laser range data and magnetic resonance
image (MRI) data.

2 Formulation

To develop the dynamic model which treats the
smooth limit surface as a function of its control mesh
in a hierarchical fashion, we need to update control
vertex positions continually at any given level. How-
ever, all the vertices introduced through subdivision
are obtained as an affine combination of control vertex
positions of the initial mesh. Therefore, we can control
the dynamic behavior of the limit surface by formulat-
ing the dynamic model on the initial mesh itself. To
define the limit surface using the vertices of the initial
mesh, the enumeration of the bicubic patches in the
limit surface is necessary. We now present schemes
for assigning the bicubic patches of the limit surface
to various faces of the initial mesh.

2.1 Assigning patches to regular faces

Figure 1: A rectangular mesh and its limit surface
consisting of 4 bicubic surface patches.

In Fig.1, a rectangular control mesh is shown along
with the bicubic B-spline surface (4 patches) in the
limit after an infinite number of subdivision steps.
Note that, each of the bicubic patches in the limit
surface is defined by a rectangular face with each ver-
tex of degree four, thereby accounting for 16 control
points (from its 8 connected neighborhood) needed to

Figure 2: A mesh with an extraordinary point of va-
lence 3 and its limit surface.

Figure 3: Local subdivision around the extraordinary
point and the corresponding patches in the limit sur-
face from different levels of subdivision.

define a bicubic surface patch in the limit. Therefore,
for each rectangular face in the initial mesh with a
valence of 4 at each vertex, the corresponding bicubic
surface patch can be assigned to it in a straight for-
ward way. In Fig.1, the surface patches S, S, S3 and
S, are assigned to face Fi, F5, F3 and Fj respectively.
The 16 control points for the patch Si, corresponding
to face F, are highlighted in Fig.1.

2.2 Assigning patches to irregular faces

In Fig.2, a mesh containing an extraordinary point
of valence 3 and its limit surface are shown. The
faces Fy, F1,...,Fg are assigned to bicubic patches
So,S1,...,Ss respectively (as they all have vertices
of valence 4) following the aforementioned scheme.
However, the central smooth surface enclosed by the
patches Sp,Si,...,Ss consists of infinite number of
bicubic patches converging to a point in the limit. We
need to develop a recursive way of enumerating these
bicubic patches and assigning them to various faces at
different levels in order to develop the dynamic subdi-
vision surface model.



The idea of enumerating the bicubic patches cor-
responding to faces having an extraordinary vertex
is shown in Fig.3 where a local subdivision of the
mesh enclosed by dotted lines is carried out. Topolog-
ically, the resulting local subdivision mesh is exactly
the same as the mesh in Fig.2 and hence exactly the
same number of bicubic patches can be assigned to its
faces with vertices of valence 4. This process of local
subdivision and assignment of bicubic patches around
an extraordinary point can be carried out recursively
and in the limit, the enclosed patch corresponding to
faces sharing the extraordinary point will converge to
a point. However, there is no need to carry out an
infinite number of subdivision steps. This description
is for formulation purposes only and the exact imple-
mentation will be detailed in a later section.

2.3 Kinematics of the limit surface

In this section we develop the mathematics for the
kinematics of the limit surface via illustrative exam-
ples and then present the generalized formulas. We
start the illustration with a single bicubic B-spline
patch which is obtained as the limiting process of the
Catmull-Clark subdivision algorithm applied to an ini-
tial 4 by 4 rectangular control mesh. Let sp(u,v),
where (u,v) € [0, 1]2, denote this bicubic B-spline
patch which can be expressed analytically as

Sp(uav) = (x(uav)ay(uav)az(uav))T

D diiBia(w)Bja(v) (1)

i=0 j=0

where d;; represents a 3-dimensional position vec-
tor at the (i,j)th control point location and
B; 4(u),B; 4(v) are the cubic B-spline basis functions.
The subscript p on s denotes the patch under consid-
eration. Expressing Eqn.1 in a generalized coordinate
system we have
sp =Jpq (2)
where J,, is the standard Jacobian matrix of a bicubic
B-spline patch, and is of size (3,48). Vector q is the
concatenation of all control points defining a B-spline
patch in 3D. Note that in the concatenation of the con-
trol points, each control point has an (z,y, z) compo-
nent. For example, the (z,y, z) components of the con-
trol point (4, j) correspond to positions 3k, 3k+1, 3k+2
- where, k = 4i + j - respectively in the vector q. We
can express the entries of J, explicitly in the follow-
ing way: Jp(0,k) = J,(Lk+ 1) = Jp(2,k+2) =
Bi74(u)Bj’4(’U) and Jp(O,k + ].) = Jp(O,k + 2) =
Jo(1,k) =J,(L,kE+2)=T,(2,k) =J,(2,k+ 1) =0.
We now define the limit surface s using the vertices
of initial mesh M for any arbitrary topology, assum-

ing all faces are rectangular and no face contains more
than one extraordinary point as its vertex (i.e., ex-
traordinary points are isolated). If these assumptions
are not satisfied, one or two steps of global subdivi-
sion may be required and the resulting mesh can be
treated as the initial mesh. Let the number of vertices
in the initial mesh M be a, and let | of these be the
extraordinary vertices. Let us assume that the num-
ber of faces in the initial mesh are b, and that k of
these have vertices with valence 4 (henceforth termed
a “normal face”) and each of the remaining (b — k)
faces have one of the [ extraordinary vertices (hence-
forth termed a “special face”). Let p be the 3a = N
dimensional vector containing the control vertex posi-
tions in 3D. Using the formulations in subsections 2.1
and 2.2, the smooth limit surface can be expressed as

k l
s = Z n; + Z S;j (3)
=1 j=1

where n; is a single bicubic patch assigned to each
of the normal faces and s; is a collection of infinite
number of bicubic patches corresponding to each of
the extraordinary points.

We use the following notational convention :
the pre-superscript n is used to indicate that these
mathematical quantities describe bicubic patch in the
limit surface corresponding to normal faces, the pre-
superscript s is used to represent a collection of bicubic
patches around an extraordinary vertex, the subscript
j is used to indicate the j-th extraordinary point, the
post-superscript represents the exponent of a mathe-
matical quantity and the level indicator (to represent
various levels of subdivision in the local control mesh
around an extraordinary vertex) is depicted via sub-
scripts on the curly braces.

It can be shown that

k k k
domi= ("I)("pi) = O (") ("A))p = ("T)p

i=1 i=1 i=1

(4)
where "J; is the Jacobian matrices of size (3,48), "A;
is a transformation matrix with each row consisting
of a single nonzero entry (= 1) and "p; is the (x,y,2)
component concatenation of a subset of control ver-
tices defining the bicubic patch corresponding to the
i-th normal face.

The expression for s; is derived using the recursive
nature of local subdivision around an extraordinary
vertex as shown in subsection 2.2. First, s; can be
expressed as

Sj = {st}l{spj}l + {Sj}l (5)



where the first term of Eqn.5 is the generalized coor-
dinate representation of the bicubic B-spline patches
corresponding to the normal faces of the new local sub-
division mesh obtained after one subdivision step on
the local control mesh. {s;}, represents the rest of the
infinite bicubic B-spline patches surrounding the ex-
traordinary point. The vertices in the newly obtained
local subdivision mesh {*p;}, can be expressed as a
linear combination of a subset of the vertices of the
initial mesh M (which will contribute to the local sub-
division) following the subdivision rules. We can name
this subset of initial control vertices {*p;},. Further-
more, there exists a matrix {°B;}, of size (3c,3d),
such that {*B;},{°p;}, = {°p;}, where {°p;}, and
{°Ppj}, are vectors of dimension 3¢ and 3d respectively.
Applying the idea of recursive local subdivision again
on {s;},, s; can be further expanded as

si = {*JHL{"BiL{°piko
+{8Jj}2{sBj}2{sf)j}1 + {Sj}2 (6)

In the above derivation, {°p;}, is a vector of di-
mension 3d, comprising of a subset of the vertices
defining the 3c dimensional vector {*p;},. Note
that, {*p;}, has the same structure as {*p;},, there-
fore, there exists a (3d,3d) matrix {*C;}, such that
{°C;},{°pj}o = {°Pj},- Each subdivision of a local
mesh with d vertices creates a new local mesh with ¢
vertices which contributes a fixed number of bicubic
B-spline patches. So, if we proceed one step further,
we obtain

sj = {*J;i L "B Uity + {7351, {°Bi 1L, {°Cs 3, {°pi)y

+{SJJ'}3{5Bj}3{scj}?{spj}o + {Sj}3 (7)

Because of the intrinsic property of the local re-
cursive subdivision around the extraordinary point,
we have {*J;}, = {*J;}, = ... = {*J;},, = ... =
{*J;}. - In addition, the subdivision rules remain the
same throughout the refinement process, we also have
{"B;}, = {"Bj}, = ... = {"B;}, = ... = {"B,}.
So, we can further simplify the above equations lead-
ing to

si = {"J;Hh "B {"pite + {"3; 1 "B 1 {°C 1 {°pst

+HTL LB LG Pt + -

= {34LUBLO_{Cipit,  ©®

i=0

We can rewrite s; as

sj = (°3;)(°p;) 9)

where *J; = {*J;}, {"B;}, (X% {*C;}1) and *p; =
{’pj}y- The idea of local recursive subdivision around
an extraordinary point is illustrated in Fig.3. Note
that, each vertex position in the subdivided mesh is
obtained by an affine combination of some vertices in
the previous level and hence any row of {*C;}, sums
to 1. The largest eigenvalue of such a matrix is 1 and it
can be shown that the corresponding infinite series is
convergent following a similar approach as in [5]. The
rest of the derivation leading to an expression for s is
relatively straight forward. Using the same approach
used to derive the Eqn.4, it can be shown that

l l l

s =Y (3)Cp) = O_(I)HCA))P = (CI)p

j=1 j=1 j=1
(10)
From Eqn.3,4 and 10,
s=("J)p+(J)p (11)
Let J = ("J) + (°J), hence
s=Jp (12)

2.4 Dynamics

In an abstract physical system, let p;(t) be a set
of generalized coordinates which are functions of time
and are assembled into the vector p. Let f;(t) be
the generalized force assembled into the vector f, and
acting on p;. The Lagrangian equation of motion can
then be expressed as

Mp +Dp +Kp =1, (13)

Let u(u,v) be the mass density function of the surface.

Then
M://,uJTJdudv (14)

is an N x N mass matrix. Similarly the expression for
damping matrix is

D= / / I Idudv (15)

where v(u,v) is the damping density.

A thin-plate-under-tension energy model is used to
compute the elastic potential energy of the dynamic
subdivision surface. The corresponding expression for
the stiffness matrix K is

K - / / (013730 + a5 d T3, + 81,37 T o

+68123T Ty + 8223 Ty )dudy (16)



where the subscripts on J denote the parametric par-
tial derivatives. The ay;(u,v) and B;;(u,v)s are elas-
ticity functions controlling local tension and rigidity
in the two parametric coordinate directions.

The generalized force vector f, can be obtained
through the principle of virtual work done by the ap-
plied force distribution f(u,v,t) and can be expressed
as

f, = //JTf(u,v,t)dudv (17)

3 Finite Element Implementation

The evolution of the generalized coordinates for our
new dynamic surface model can be determined by the
second-order differential equation as given by Eqn.13.
An analytical solution of the governing differential
equation can not be obtained in general. However,
an efficient numerical implementation can be obtained
using the finite element method. For the dynamic sub-
division surface model, two types of finite elements
are considered - normal elements (bicubic patches as-
signed to the normal faces of the initial mesh) and
special elements (collection of infinite number of bicu-
bic patches assigned to each extraordinary vertex of
the initial mesh).

Each normal element is a bicubic surface patch and
hence defined by 16 vertices (from the 8-connected
neighborhood of the corresponding normal face). For
a normal element, the mass, damping and stiffness
matrices are of size (16, 16) and can be computed ex-
actly by carrying out the necessary integrations ana-
lytically. The matrix J in Eqn.14, 15 and 16 need to
be replaced by J, (of Eqn.2) for computation of the
local M, D and K matrices respectively of the corre-
sponding normal element.

Each special element consists of an infinite number
of bicubic patches in the limit. We have already de-
scribed a recursive enumeration of the bicubic patches
of a special element in Section 2.2. Let us now con-
sider an arbitrary bicubic patch of the special element
in some level j. The mass matrix M, of this patch
can be written as

M; = QI M,Q; (18)

where M, is the normal element mass matrix (scaled
by a factor of ﬁ to take into account of the area
shrinkage in bicubic patches at higher level of sub-
division) and €2 is the transformation matrix of the
control points of that arbitrary patch from the corre-
sponding control points in the initial mesh. The damp-
ing and stiffness matrices for the given bicubic patch
can be derived in an exactly similar fashion. Now,

these mass, damping and stiffness matrices of all the

bicubic patches corresponding to a special element can
be assembled to form the mass, damping and stiffness
matrices of that special element. As mentioned earlier,
the infinite series summation is convergent. However,
it has been found that the contribution from bicubic
patches in a special element at a higher level of sub-
division to the mass, damping and stiffness matrices
becomes negligible and in the implementation, the lo-
cal subdivision is carried out until the contribution is
small enough to be ignored.

The force f(u,v,t) in Eqn.17 represents the net ef-
fect of all applied forces. The current implementa-
tion supports spring, inflation as well as image-based
forces. However other types of forces like repulsion
forces, gravitational forces etc. can easily be imple-
mented.

When the model reaches an equilibrium at a partic-
ular level of subdivision, the model can be subdivided,
if necessary, according to the Catmull-Clark subdivi-
sion rules to increase the number of vertices (control
points) and a better fit to the data can be achieved.
Currently the error of fit criteria is based on distance
between the data points and the points on the limit
surface where the corresponding springs are attached.
However, other types of error criterion can also be de-
fined and used in this context.

4 Results

The proposed dynamic subdivision surface can be
used to recover a wide variety of shapes of arbitrary
genus. The only constraint being that the limit sur-
face of the initial polygon should be of the same genus.
Note that it is much easier to generate the control
mesh whose limit surface is of a given genus than cre-
ating a parameterized mesh of a surface with specified
genus (as needed by the existing physics-based shape
recovery schemes). In this section, we illustrate the
performance of our model fitting algorithm via exper-
iments on real (range and volume) data. In all the
experiments, the special elements are shaded darker
to distinguish them from the normal elements; the ini-
tialized model had 96 faces and 98 vertices, 8 of them
being extraordinary vertices of valence 3. The final fit-
ted model, obtained through one step of subdivision,
has a control polygon of 384 faces with 386 vertices.
The tolerance level of the error in fit was set to be 1%.

In Fig.4(a) and (d), we demonstrate the model fit-
ting algorithm applied to laser range data acquired
from multiple views of a light bulb. Prior to applying
our algorithm, the data were transformed into a single
reference coordinate system. The model was initial-
ized inside the 1000 range data points on the surface of
the bulb. In the next experiment, the shape of an anvil



is recovered from a range data set (Fig.4(b) and (e)).
The range data set has 2031 points. It may be noted
that the final shape with a very low error tolerance
is recovered using very few number of control points
in comparison to the number of data points present
in the original range data set. In the last experiment,
we present the shape extraction of a caudate nucleus
(a cortical structure in human brain) from 64 MRI
slices, each of size (256,256). An expert neuroscien-
tist placed points along the boundary of the caudate
shape in each of the 64 slices. Fig.4(c) depicts the
points in 3D along with the initialized model. Note
that points had to be placed on the boundary of the
region of interest due to lack of image gradients de-
lineating the caudate from the surrounding tissue in
parts of the image. Continuous image based forces as
well as spring forces are applied to the model and the
model deforms under the influence of these forces un-
til maximum conformation to the boundaries of the
desired caudate shape. The fitted model is shown in
Fig.4(f).

5 Conclusions

In this paper, a dynamic generalization of the
Catmull-Clark subdivision surfaces is presented which
is used for efficient shape recovery. The proposed
scheme does not require a parameterized input mesh
to recover shapes of arbitrary topology unlike other
existing methods. It involves direct manipulation of
the smooth limit surface via application of forces and
provides a fast as well as accurate way of recovering
shapes from large range and volume data sets using
very few degrees of freedom. We have presented an
analytic formulation of the subdivision scheme, incor-
porated the advantages of free-form deformable mod-
els into the subdivision scheme, introduced hierarchi-
cal dynamic control, implemented error-based adap-
tive subdivision and demonstrated the advantages of
our model fitting algorithm via experiments. Our cur-
rent implementation of the dynamic subdivision sur-
face scheme can not however recover crease edges in
the data as no additional constraints are imposed.
Also, a local subdivision scheme will further enhance
the efficiency of the model representation. Our future
efforts will be focussed on addressing these issues.
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Figure 4: Fitting the dynamic surface model to range
data : (a), (b) and (c) are the data along with the
superimposed initialized model; (d), (e) and (f) are
the corresponding fitted model.
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