I ncorporating Rigid Structuresin Non-rigid
Registration using Triangular B-splines

Kexiang Wang, Ying He, and Hong Qin

Department of Computer Science
State University of New York at Stony Brook
Stony Brook, NY 11790-4400, USA

{kwang| yhe| gi n}@s. sunysb. edu

Abstract. For non-rigid registration, the objects in medical images are usually
treated as a single deformable body with homogeneous stiffness distnibutio
However, this assumption is invalid for certain parts of the human bodgrevh
bony structures move rigidly, while the others may deform. In this papein-
troduce a novel registration technique that models local rigidity of pretiiited
rigid structures as well as global non-rigidity in the transformation fieldgisin
triangularB-splines. In contrast to the conventional registration method based on
tensor-producB-splines, our approach recovers local rigid transformation with
fewer degrees of freedom (DOFs), and accurately simulates shatyrés (°
continuity) along the interface between deformable regions and rigictstes;
because of the unique advantages offered by triand@Hsplines, such as flexible
triangular domain, local control and space-varying smoothnesslmgd€he ac-
curate matching of the source image with the target one is accomplisheglthro
the use of a variational framework, in which a composite energy, miegsihhe
image dissimilarity and enforcing local rigidity and global smoothness, i$ min
mized subject to pre-defined point-based constraints. The algorithniesl tes
both synthetic and real 2D images for its applicability. The experimentaltses
show that, by accurately modeling sharp features using triandtssplines, the
deformable regions in the vicinity of rigid structures are less constraipdédeo
global smoothness regularization and therefore contribute extra flexitailitye
optimization process. Consequently, the registration quality is improvesiczon
erably.

1 Introduction

For the last decade, image registration has become an iampaeichnique for various
computer vision and medical applications, fusing the imfation from images acquired
either at different times or on multiple modalities. A numbéreviews have been doc-
umented in [1][2][3]. The earliest attempts made by [4]§gitally restrict the defor-
mation between the corresponding images to be rigid andidemglobal geometric
differences only. Later, non-rigid registration was iuoed in [6][7] to additionally
cope with local differences, resulting from different amay, intraoperative deforma-
tion, or distortion induced during imaging process. It ileafassumed by the non-rigid
registration that the objects in the matching images belaavié they were a single
elastic bodyj.e, the stiffness is constant everywhere. However, this islyahe case



when the imaged anatomy contains both rigid and soft strestlA practical clinical
example was described in [8] where the shape of the braingeltbafter subdural elec-
trodes were implanted in a surgical procedure. Neither glesingid body motion nor

a nonlinear model with invariant smoothness can accuragglyesent the transforma-
tion between preoperative and postoperative scans sieceléetrodes translate and
rotate only, while the others deform nonlinearly. Therefonore appropriate methods
are required to combine the modeling of both rigidity and-nigidity in the recovered
transformation. Especially, th@° continuity on the borders of rigid structures needs to
be simulated correctly for precise registration.

In principle, we could build patient-specific physical mbtie predict the inter-
action between rigid structures and soft tissues. Howevir,impractical to achieve
solution with desired accuracy due to high computationat emd insufficient details
on mass, elasticity, and other mechanical properties. fbeemade so far were ei-
ther based on interpolatory spline scheme or through ati@ral framework. Little
et al.[9] incorporated independent rigid objects in a modifiechtpiate spline (TPS)
based nonrigid registration. Anisotropic landmarks weteoduced by Rohet al.[10]
to TPS to enforce local rigidity constraints. Duetyal.[11] simulated the rigid motions
by adaptively adjusting TPS radial basis functions acegydd local stiffness. Tan-
ner et al.[12] represented the deformation usiBgsplines and locally couple control
points in order to model local rigidities. Most recently,dakx et al.[13] introduce a
penalty term to keep voxel-based rigidities in their vaoiaél framework by enforc-
ing the orthogonality of Jacobian matrix. Neverthelessienof the above approaches,
except that in [9], can precisely describ® continuity in the displacement field. In
spite of the attempt made in [14], it's not straightforwaad thin-plate splines to be
incorporated with variational framework, which is quite aygrful tool for intensity-
based image registration. On the other hand, tensor-ptdghsplines has been widely
used for optimization-based registration approache& 5[L6]. Although it is possible
for tensor-produci3-splines to describe sharp features when the correspohdioty
collapse, such features can not lie in arbitrary directioe tb the regular domain of
B-splines.

In this paper, we propose a novel non-rigid registratiomadgm in which the re-
covered deformation field is represented by triangiasplines. We first build the do-
main triangulation and adjust corresponding knots to thendaries of pre-segmented
rigid structures. As a result, the® continuity is guaranteed at the desired places in the
displacement field. The landmarks, selected at the viemf rigid objects, are brought
into correspondence between source and target imagesrasopsed constraints. The
optimal transformation is then estimated by minimizing anposite energy function,
which measures image discrepancy, deformation distqréind desired local rigidities.
Empowered by the numerous advantages of trianghifaplines, such as flexible do-
main, local control, space-varying smoothness modeliteg, @ur registration approach
makes the following contributions: The local linear motinithe global non-rigid trans-
formation, caused by rigid structures, can be accuratelyvered using relatively fewer
degrees of freedom (DOFs), as long as the feature lines apefby aligned in the do-
main triangulation. WithC® continuity modeled at the interface between rigid and non-



rigid objects, the deformable region nearby can move me=yfrand tend to improve
the registration quality considerably.

2 Theory and Construction of Triangular B-splines

@) (b) ()

Fig. 1. Modeling sharp features using triangulasspline with degenerate knots. (a) The domain
triangulation and regular knot configurations (no three knots in a domaigte are collinear).
(b) Place the sub-knots along the user-specified edges of domairutatiog. (c) A cubic spline
surface reconstructed using the knot configurations in (a). The sglifié continuous every-
where. (d) A cubic spline surface reconstructed using the knot agafigns in (b). The spline is
C? continuous on smooth regions a6d on sharp features. appropriately, we can model

Triangular B-splines, introduced by Dahmen, Micchelli and Seidel[Tidye nu-
merous desirable properties for geometric design, suchesisgutomatic smoothness,
the ability to define a surface over arbitrary triangulatiand modeling sharp features
between any desired adjacent primary knots [18]. Pfeifle Seidel[19] presented an
efficient algorithm to evaluate quadratic triangulassplines and Fransses al.[20]
extended it to triangulaB-splines of arbitrary degree.

The construction of triangulaB-spline is as follows: let points; € R?, i € N, be
given and define a triangulation

T = {A(I) = [tioatiuth] . I = (io,il,ig) S I - N2}

of a bounded regio® C R2. Next, with every vertex; of T we associate a cloud of
knotst; o, ..., t; , such thatt; o = t,. The knotst, o] € N are called primary knots,
andt; ;| € N, j > 1 are called sub-knots. For every triandle= [t;,, t;,,t;,] € T,

1. allthetriangle$t;, s,,ti, 8., tis,3,] With 8 = (8o, 81, 52) and|F| = Z?:o B <n
are non-degenerate.

2. the set
intem’or(ﬂWKnXé) #+ (Z),Xé = [tio,,@mtil,ﬁntiz,,@z]' (1)
3. If I has a boundary edge, s&y;,, t;, ), then the entire area
[tig,05- - »big.m, tiy,0,- - - tiy .n) Must lie outside of the domain.

Then the triangulaB-spline basis functioWé, || = n, is defined by means of simplex
splinesM(u\Vg) (for details about simplex splines, please refer to [21]) as

N(u|Vg) = |dj| M (u]Vy),



WhereVBI = {tio,o, - ’ti0760’ - 7ti2,0a - atiz,ﬁz} and

1 1 1
df—detXf—det( )
s ( ﬁ) tio.B0 ti,B tis,B,
Assuming (1), thes&-spline basis functions can be shown to be all non-negative
and to form a partition of unity. Then, the triangulrspline is defined as

Fu)=> Y erpNulvy), 2)

1€ |=n

wherec; s is the control point. This spline is globally”~! continuous if all the sets
X},, |3] < n are affinely independent.

One favorable advantage given by trianguldsplines is that by adjusting sub-
knots to the feature lines explicitly, we can model localrpHfeaturesice., C° conti-
nuity) in the approximated space, while keeping €@f&~! smoothness over the other
regions. This feature is demonstrated in a surface reeangin example shown in
Fig.1.

3 Method

Given source imagd,, and target imagel;, defined on the domaif? c R?, the
problem of registration is to find an optimal geometricahgfarmationT : 2 — R?
such that the pixels in both images are matched properly.

3.1 Transformation Model

To reduce the global geometric differences betwé&eand I;, an initial alignment is
achieved using conventional rigid registration algoritfithis obtained transformation
will be used as the initial estimation for the following regation.

The concept of free-form deformation (FFD) is to deform afecbby manipu-
lation underlying control points. In our work, the FFD is demosed as an identity
transformation plus a displacement field, which is represkby triangularB-splines
as:

Tx)=x+u=x+ Z i Bi(x), (3)
1=1..m
whereg; is the control point and; is the associated basis function.

Unlike tensor-producB-spline based FFD[15], whose domain is a rectangular lat-
tice, our triangulaB-spline based FFD has its domain built upon a tessellatieitloér
triangles for 2D or tetrahedra for 3D. It is not difficult téangulate the reference im-
age domain? using established techniques. In order to model the shatpries (see
Fig.3(c)) at the boundaries of pre-identified rigid bodige, have to keep them in the
triangulated tessellation. Such constraints can be satigiing the triangulation algo-
rithm proposed by Shewchuk[22]. According to the definitadririangular B-splines,



the free-form deformation field h&¥"—! continuity everywhere if there is no degener-
acy for any triple of knots in the same triangle. However, weppsely collapse adjacent
sub-knots to pre-identified feature lines in order to modsiitdC® continuity.

Due to the flexibility of the domain triangulation, it is alpossible for users to
overlay the registration domain exactly upon the regiomtérest (ROI), rather than
covering the entire reference image. Thus, the computtieffort will be saved con-
siderably, especially when the ROI can be successfullyaeted.

3.2 Point-based Constraints

Point-based constraints are incorporated in our framedmrbketter registration. The
points on the boundary contours of rigid structure with higinvature are good candi-
dates for landmarks (see Fig.3(d)). Assuming strict rigidf bony structures, only two
pairs of landmarks are required to fully recover local lineansformationi(e.,translation
and rotation), if there is no rotoinversion. In practice, @féen introduce more con-
straints to ensure the stability of the registration.

Let? = {p1,...,pn} be the set of landmarks chosen on the reference domain (
in our implementation). Their correspondencegjmreQ = {qi,...,q,} such that:
T(p;;®?)=q; for j=1...n, 4)

where® denotes the set of the control points of triangubasplines. The above equa-
tions are treated as hard constraints and have to be stsitisfied in the following
optimization process. In most cases, the linear system)a$ (@nder-determined. But
it is possible to become over-constrained when excessidrarks are selected on a
single spline patch. Two approaches can be used to solvepsoislem. One is to subdi-
vide the triangular mesh, where there are overly-condelasetinarks, and re-initialize
the domain triangulation. The drawback of it is that the feobdimension is increased
accordingly. The other approach aims to find a compromisédisp for (4), which
will be discussed later.

3.3 Cost Function

In this paper, we registdl, to I; using a variational approach, in which a metric mea-
suring image similarity and constraints of global smoo#isend local rigidity are com-
bined into an overall cost functiof;..; that is defined as:

Etotal = OéE[ + ﬁER + 7E57 (5)

whereq, 3, and~y control the relative influence among three energy termss)nH;
is the driving force behind the registration process andsaisnmaximize the image
similarity, whereasE'r is a constraint term to ensure local rigidity aig tries to
regularize the transformation as smooth as possible.

A number of approaches have been proposed in literatureldalate either sim-
ilarity or dissimilarity between images. Mutual informat{23][24] and correlation
ratio[25] are the methods to measure image similaritiedlenthe sum-of-squared-
difference (SSD) measures the dissimilarities. In ourentrwork, we simply use SSD



metric to test the feasibility of our registration algorithThe differences betweeh
andI;, represented by, is evaluated by:

By =5 [ IL(T0a) = 1) P . (6)

In the theory of continuum physics, the non-rigid transfation is often measured
by Green-S. Venant strain tensoE. Then a necessary and sufficient condition to obtain
a local rigid transformation can be re-formulated@as- Vu + Vu” + Vu’Vu = 0,
which enforces the strain tensBrto be zero over rigid structures. This is identical to
that proposed in [13], where the Jacobian matrices are deresd instead. We enforce
the rigidity constraint by defining a penalty term as thednéof theFrobenius norm of
E. Since different structures in the image exhibit differdaformation properties, and
do not need to deform similarly, we introduce a characterdshctionw(x) to separate
the rigid objects from deformable regions. The valuewgk) is 1 on rigid structures
and0 elsewhere. The penalty term for local rigidity is given by:

Er = 5/ w(x) HVu +vul + VuTVuHidX, (7
%)

where|| - || » denotes thé&robenius norm.

A regularization termE's, measuring the bending energy of a thin plate metal sub-
ject to external forces[7][15], is also incorporated tacdisrage improbable or impossi-
ble transformations. It depends on the 2nd derivativesetifformation and is written
as:

2 2

1 &ul|® 0%u 0*u
By = J, 4= w0) [Ha— 5] + %
ou ||? ou | ou ||?
+2 <’ dxdy H dyoz * ’ 020z dx,  (8)

where the functionv(x) makes the regularization term valid only over non-rigid re-
gions.

3.4 Optimization

The optimization problem is stated to find an id@asuch that the overall energy (5) is
minimized with the constraints in (4) satisfied. There angouss algorithms available
to accomplish such constrained nonlinear programming tagbarticular, we convert
the constrained optimization problem to a unconstrained cather than applying es-
tablished methods directly. Then a simplex line searchagyr described in [26] is
performed to update the parameters iteratively along thepsist descent of gradient
until the cost function can not be decreased any further.

Putting (3) and (4) together, we discretize the point-basedtraints and write them
in a matrix format:

P+C®=Q, 9



whereP andQ are the vectors collecting the landmark positiond;imnd I, respec-
tively, the vector® consists of the control points of triangulBrsplines, and the trian-
gular B-spline basis functions constitute the mat@ixwhich is extremely sparse and
rank-deficient.

By solving the original optimization problem in the Null-&g ofC, we can suc-
cessfully remove the point-based constraints. Then, the perameter vecto® in
Null-Space is related to the old odeby the equation:

® =N + &, (10)

in which CN = 0 andC®y, = Q — P. We use Gaussian-Jordan-Elimination-like
approach proposed in [27] to constri§t and solve for®q by either singular value
decomposition (SVD) or QR decomposition, both of which armputationally viable
here, since most columns @ are zero.

Instead of estimating the gradient Bf,;,; using finite-difference approximation,
we analytically calculate the derivative with respectit@and obtain:

OFiotal o1 [ OF1 OFR OFg
ow (O‘a@ HT ”arb)’ (11)
where
E;
= / (Is(T(x)) — 1:(x)) VI, |px) Bi(x)dx.
ot Jo

Let ¢;; denotes the; + j)-th component ofe andB; ; be the derivative of the basis
function inj direction, wherej = 1,2, 3 for z, y andz coordinates, respectively. The
derivative of the local rigidity penalty term is:

ER*/w(x) Z Mst%dx
2

Obij 5,6=1,2,3 0%ij
M, = Z ¢}ctBk,s + (f)kSBI%t + (Z)ks(bktBI%W
i
aMst

= Z djt (st + ¢isBzr) + 95 (Bi,t + ¢ithr)
9¢i; r=1,2,3

in which §;; is Dirac function which equals td if and only if i = j. Likewise, the
derivative of the regularization term is given by:

E
S = / (1 —’LU(X)) Z (bijk,sBi,s + Z ¢k,jBk,stBi,st dX,
(7]

Eywie
i s,k=1,2,3 s,t,k=1,2,3

whereB; ,: stands for the second derivative of basis functions. Faildatn efficient
evaluation of triangula3-spline basis functions and their derivatives, pleaser tefe
[19][20][28].

Note that the integration operation in (5) is performed amiythe pixels of ROI.
Therefore, we could significantly speedup the registrapfioscedure if all the basis
functions and their derivatives over the interested regi@pre-computed.



4 Experimental Results

(a ®) o )

Fig. 2. The first experiment: (a) Source image. (b) Target image. (c) Raticm result when
sharp features are NOT modeled. The minimized energy termEare 97.6, Er = 39.9. (d)
Registration result when sharp features are modeled, the minimizegyg¢aens ares = 71.8,
Er = 30.8.

In order to evaluate the feasibility and applicability oétproposed algorithm, we
test it on both synthetic and real data. Cubic triangudasplines are chosen in the
experiments to compare with the frequently used cubic tepsaductB-splines.

The first example demonstrated in Fig.2 doesn’t consideciay image intensi-
ties(.e, a = 0in (5)), but tries to align corresponding points instead.réeg square is
included in the source image to represent a rigid objectjtgrmbunterpart is included
in the target image with a rotation #%°. 8 pairs of landmarks are selected at the corners
of both the image and the rigid square, and applied as thé-pased constraints in the
registration. The target image is chosen as the referenoaidpwhich is triangulated
into 32 patches, and the cubic triangulBrsplines built on it have61 control points.
After applying our algorithm without and with sharp featunedeling respectively, the
achieved registration results are plotted in Fig.2(c) aigd%d). It is noticeable that the
background and the square are more smoothly connected .@(€ighan in Fig.2(d),
because they are treated as a single elastic object in tireefa@ne, but considered as
separate parts in the latter one. It is more physically gmpate to modelC° continu-
ity between the background and the square, when we simhlat@tieraction between
them. Therefore, the method with sharp feature modelingachiieve better registra-
tion result (the minimized energy terms drg = 71.8, Er = 30.8) than the other one
(Fs = 97.6, Er = 39.9), when the same parameter settigg=£ v = 1) is used.

For the second example, both images (see Fig.3(a)(e))dathree geometric ob-
jects to represent rigid structures, whose positions aite gifferent in the source and
the target images. The reference domain (shown in Fig.8@5) 30 triangles and the
triangularB-splines thus havé31 control points13 pairs of landmarks are picked up to
ensure correct alignment between rigid structures (se8(Big The registration result
and the recovered deformation field are shown in Fig.3(g)Rg®(h). An alternative
approach using tensor-produbBtsplines is also applied for the comparison purpose.
Its domain is defined on 25 x 25 to match the number of trianguld-spline control
points. The comparison between the results from both appesa(shown in Fig.3(c)
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Fig. 3. The second experiment: (a) Source image. (e) Target image. épdimain triangula-
tion with feature lines highlighted in red. (f3 landmarks are highlighted in red. (c) Registra-
tion result obtained from tensor-produBtspline based method. (g) Registration result obtained

from triangularB-spline based method. (d) Deformation recovered using tensougrBdspline
based method. (h) Deformation recovered using triangitapline based method.

and Fig.3(g)) indicates that the tensor-product basedaddtils to align the images at
a desired resolution, when there exist large deformatieas rigid structures. In sharp
contrast, triangulaB-spline is built on a flexible domain, so that its modeling pow
can be ideally concentrated on the interested region foetbetgistration. Furthermore,
its power of modeling sharp features helps to improve thestiegion quality far more
better.

Two MRI images of human spines (see Fig.4(a)(b)) are usdtkithird experiment.
The spinal bones are first segmented from the target imagretie characteristic func-
tion w is set accordingly to decide where the rigidity constrasfitsuld be applied. The
source image is registered to the target image as shown.ih, igvhich all of the rigid
structures are successfully matched.

Our algorithm is implemented using MS VC++, and all expenisere conducted
on a platform with 2.8GHz Pentium IV CPU and 1G RAM. Both syitbhimages have
the size of400 x 400, and the size of the MRI images used for the third experingent i
512 x 512. The running time for the three experiments are allauinute,6 minutes,
and12 minutes respectively.

5 Discussion and Conclusion

This paper presents a nonrigid registration technique iitlwthe transformation be-
tween corresponding images are represented by triangisplines. By preserving
feature lines in the domain triangulation and adjustingt&@@cordingly, the proposed



Fig. 4. The third experiment: (a) Source image. (b) Target image. (c) RatiGgiresult. (d) Rigid
structures segmented from the target image.

method successfully recovers local rigid motions and ately simulates”® conti-
nuities at desired regions, using relatively fewer degofdseedom and lower degree
polynomials. The actual registration is done through the afsa variational frame-
work, in which a constrained optimization problem is soltededuce the differences
between images and enforce both local rigidity and globalthmess at the same time.
The method has been tested on both synthetic examples drthtador its efficacy.

Although tensor-produdB-spline based approaches are still dominating in the field
of non-rigid registration, their applicability is somehdwited due to the structure of
their regular domain. On the contrary, our registrationhdtcan correctly delineate
the boundaries of rigid bodies in its domain triangulatib@a anuch coarser level, and
thus model the local rigid motions more accurately. Furtiee, with the degenerate
knots on the boundaries of rigid structuré®), continuity is automatically guaranteed
in the described displacement field, and can be naturallpleduwith the optimiza-
tion process. This advantage enables us to precisely dienthia behavior of rigid ob-
jects inside elastic tissues. From the registration pdiniew, the deformable regions
around the rigid structures may become less constrainelenegularization term and
contribute extra flexibility to the minimization of the cdsinction (5). As a result, the
registration quality can be considerably improved. Anraliive way to modeC® con-
tinuities could be to separate rigid and non-rigid regiarts different domain pieces.
However, extra efforts must be spent to keep the overalsfeamation consistent across
different pieces in a different hierarchy, and in genets, tariational approaches over
irregular domains in a hierarchical fashion have not bed#in &xplored. In this paper,
only rigid structures with simple geometric shapes are idemed in our experiments
for the feasibility test. To accommodate more complicatiedctures, we can subdi-
vide the domain mesh adaptively along their boundaried theidesired accuracy is
achieved. The landmarks applied in our registration aeraatively selected by users
based on their knowledge and subjectivity. Naturally, #gistration result is affected
by the quality of landmark selection.

There are a few possible extensions to our current work oilin only the registra-
tion of two dimensional images is considered in this papeés, inuch more natural to
extend it to the area of volumetric data registration, aivdtiant tetrahedraB-splines
shall be exploited. Alternative metrics measuring imagnmilarities, such as mutual
information and normalized correlation, can be incorpagtanto our variational frame-



work to deal with multi-modality registration. One limitah of our current approach
is the necessity for image segmentation and landmark gagmtior to our registration
procedure. It would be ideal to have an automated methodléatdandmarks, seg-
ment images into different pieces, and accurately mataresponding rigid structures
in order to streamline the task of medical image processing.

Acknowledgements

This research was partially supported by the NSF grant A&218930, the ITR grant
11S-0326388, and the Alfred P. Sloan Fellowship.

References

1.

2.

10.

11.

12.

13.

14.

Brown, L.G.: A survey of image registration techniques. ACM Comfuirv.24 (1992)
325-376

Maintz, J., Viergever, M.: A survey of medical image registratioredMal Image Analysis
2(1998) 1-36

. Zitova, B., Flusser, J.: Image registration methods: a survey. Imagenv@ionput.21

(2003) 977-1000

. Peters, T., Davey, B., Munger, P., Comeau, R., Evans, AvjeliA.: Three-dimensional

multimodal image-guidance for neurosurgery. |IEEE Transactionsmedical imagingl5
(1996) 121128

. Potamianos, P., Davies, B., Hibberd, R.D.: Intraoperative tragjisn for percutaneous

surgery. In: First International Symposium on Medical Robotics anch@uter Asisted
Surgery. Volume 1. (1995) 98-105

. Cachier, P., Mangin, J.F., Pennec, X., Br¢, D., Papadopoulos-Orfanos, Dedss, J., Ay-

ache, N.: Multisubject non-rigid registration of brain mri using intensitd geometric
features. In: MICCAI. (2001) 734-742

. Rueckert, D., Sonoda, L., Hayes, C., Hill, D.L., Leach, M.OCawles, D.J.: Non-rigid

registration using free-form deformations: Application to breast mr esagEEE Trans.
Med. Imagingl8 (1999) 712-721

. Edwards, P.J., Hill, D.L.G., Little, J.A., Sahni, V.A.: Medical ingagegistration incorporat-

ing deformations. In: BMVC. (1995) 691-699

. Little, J.A., Hill, D.L.G., Hawkes, D.J.: Deformations incorporatimgid structures. Com-

puter Vision And Image Understandiie§ (1997) 223-232

Rohr, K., Fornefett, M., Stiehl, H.S.: Spline-based elastic imagistration: Integration of
landmark errors and orientation attributes. Computer Vision And Imagieidtanding®0
(2003) 153-168

Duay, V., D'Haese, P.F,, Li, R., Dawant, B.M.: Non-rigid régition algorithm with spatially
varying stiffness properties. In: ISBI. (2004) 408-411

Tanner, C., Schnabel, J.A., Chung, D., Clarkson, M.J.ckarg D., Hill, D.L.G., Hawkes,
D.J.: Volume and shape preservation of enhancing lesions whenragpplyn-rigid registra-
tion to a time series of contrast enhancing mr breast images. In: MIG@800) 327-337
Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Nidniigage registration using
free-form deformations with a local rigidity constraint. In: MICCAI (12004) 639-646
Meyer, C.R., Boes, J.L., Kim, B., Bland, P.H., Zasadny, .KKson, P.V., Koral, K., Frey,
K.A., Wahl, R.L.: Demonstration of accuracy and clinical versatility aftoal information
for automatic multimodality image fusion using affine and thin-plate spline eéthgeomet-
ric deformations. Med. Image Andl.(1996/7) 195-206



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

Rohlfing, T., Jr., C.R.M., Bluemke, D.A., Jacobs, M.A.: Aremating-constraints algorithm
for volume-preserving non-rigid registration of contrast-enhancedmast images. In:
WBIR. (2003) 291-300

Vemuri, B.C., Huang, S., Sahni, S., Leonard, C.M., Mohr@Gilmore, R., Fitzsimmons, J.:
An efficient motion estimator with application to medical image registration.ibétnage
Analysis2 (1998) 79-98

Dahmen, W., Micchelli, C.A., Seidel, H.P.: Blossoming begetslinesbuilt better by b-
patches. Mathematics of Computatis®(1992) 97-115

Fong, P., Seidel, H.P.: An implementation of triangular b-splineasad over arbitrary tri-
angulations. Computer Aided Geometric Desl@(1993) 267-275

Pfeifle, R., Seidel, H.P.: Faster evaluation of qudartic bivariate sjpline surfaces. In:
Proceedings of Graphics Interface’94. (1994) 182—-189

Franssen, M., Veltkamp, R.C., Wesselink, W.: Efficient evalnatibtriangular b-spline
surfaces. Computer Aided Geometric Desigi(2000) 863877

Micchelli, C.A.: On a numerically efficient method for computing mualtiate b-splines.
Multivariate approximation theorybl) 211-248

Shewchuk, J.R.: Automated three-dimensional registration ohetizgresonance and
positron emission tomography brain images by multiresolution optimizatiowxs#hsimi-
larity measures. Med. Phy24 (1997) 25-35

Collignon, A.: Multi-modality medical image registration by maximizatiomuftual infor-
mation. PhD thesis, Catholic University of Leuven, Leuven, Belgium 8199

Viola, P.A.: Alignment by maximization of mutual information. PhD tkeMassachusetts
Institute of Technology, Boston, MA, USA (1995)

Roche, A., Malandain, G., Pennec, X., Ayache, N.: The taiioa ratio as a new similarity
measure for multimodal image registration. In: MICCAI. (1998) 1111524

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, BNRimerical Recipes in C: The
Art of Scientific Computing. Cambridge University Press (1992)

Gill, P., Murray, W., Wright, M.: Practical Optimization. Academic $3¢1981)

He, Y., Qin, H.: Surface reconstruction with triangular b-splinesGIMP. (2004) 279-290



