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Abstract. This paper presents Virtual Clay as a novel, interactive, dy-
namic, haptics-based deformable solid of arbitrary topology. Our Virtual
Clay methodology is a unique, powerful visual modeling paradigm which
is founded upon the integration of (1) deformable models, (2) free-form,
spline-based solids, (3) procedural subdivision solids of arbitrary topol-
ogy, and (4) dynamic objects governed by physical laws. Solid geometry
exhibits much greater modeling potential and superior advantages to
popular surface-based techniques in visual computing. This is primarily
because a CAD-based solid representation of a real-world physical ob-
ject is both geometrically accurate and topologically unambiguous. We
first introduce the concept of Virtual Clay based on dynamic subdivi-
sion solids. Then, we formulate the mathematics of Virtual Clay through
the integration of the geometry of subdivision solids with the principle
of physics-based CAGD. Our Virtual Clay models respond to applied
forces in a natural and predictive manner and offer the user the illusion
of manipulating semi-elastic clay in the real world. We showcase example
sculptures created with our Virtual Clay sculpting environment, which
is equipped with a large variety of real-time, intuitive sculpting toolkits.
The versatility of our Virtual Clay techniques allows users to modify the
topology of sculpted objects easily, while the inherent physical properties
are exploited to provide a natural interface for direct, force-based defor-
mation. More importantly, our sculpting system supports natural haptic
interaction to provide the user with a realistic sculpting experience. It is
our hope that our Virtual Clay graphics system can become a powerful
tool in graphics, computer vision, animation, computer art, interactive
techniques, and virtual environments.

1 Introduction and Rationale

Existing solid modeling techniques are oftentimes based on one or several of the
following geometric foundations: implicit surfaces, including Constructive Solid
Geometry (CSG) and blobby models; Boundary representations (B-reps), such
as subdivision surfaces and general polygonal meshes; spline-based solids, in-
cluding Bézier and B-spline solids; and cell decompositions, such as voxel-based
models. Although these approaches are ideal for certain applications, each tends



to fall short in offering a flexible and unified representation that can be used to
manipulate deformable solid objects of inhomogeneous material distributions. In
this work we attempt to overcome some of the difficulties associated with exist-
ing modeling approaches by developing a physics-based, deformable, volumetric
model founded upon subdivision solids. Our new model serves as the basis for a
virtual sculpting system that features haptic interaction and a suite of intuitive
sculpting tools.

Solid modeling approaches are inherently complex due to the great number
of degrees of freedom that are required to represent real-world objects. In prin-
ciple, such freedom is necessary in order to design complex mechanical parts
and to model more organic or natural-looking objects. When interacting with
spline-based solids, certain geometric quantities, such as the knot vectors in the
formulation of Non-Uniform Rational B-splines (NURBS), have little intuitive
or physical meaning. Users are typically forced to manipulate a large number
of geometric parameters in order to make small changes to solid objects. This
problem is especially severe when the modeled object consists of both complex
interior structure and boundary information. The inclusion of interior informa-
tion for solid modeling inevitably increases the number of degrees of freedom by
at least one order of magnitude. Furthermore, most geometry-based interfaces
permit only indirect interaction through control point manipulation, which is
usually tedious and very time-consuming.

Physics-based modeling techniques can alleviate many of these problems by
augmenting geometric objects with physical attributes such as mass, damping
and stiffness distributions. Geometric parameters can be hidden from the user
by providing natural, force-based interfaces that facilitate direct manipulation
of solid objects through virtual sculpting tools. The system synchronizes the
geometric and physical representations of objects in order to maintain the un-
derlying geometric structures of sculpted solids. Such dynamic and interactive
approaches can provide inexperienced users with a natural, force-based interface,
while at the same time provide expert users with the familiar geometric interface
if desired.

In this paper we use a physics-based approach to conceal from users the
inherent topological and geometric complexity of subdivision solids. Physical at-
tributes are assigned both on the boundary and in the interior of deformable sub-
division solid objects. Meanwhile, we propose and develop a number of haptics-
based tools that assist users during 3D interaction with force-feedback. In this
manner users can use haptic exploration to gain a better understanding of the
physical attributes of virtual sculptures. Haptics can enhance the functionality
of physics-based models in a natural and intuitive way. Note that both physics-
based modeling and haptic interaction are founded upon real-world physical
laws. Therefore, their integration offers numerous new modeling, manipulation,
and visualization advantages. For example, the haptic interface fundamentally
improves understanding by permitting direct interaction with virtual objects
and by enhancing the sense of realism through computer communication. Our
deformable model is very general and should find application not only in vir-



tual sculpting, but also in education, surgical simulation, virtual reality, and
entertainment.

2 Contributions

Our novel deformable model is based on a new type of subdivision model pio-
neered by MacCracken and Joy [10]. Whereas, their algorithm was conceived only
as a new mechanism for free-form deformation (FFD), we employ their subdi-
vision rules to systematically formulate free-form subdivision solids for physics-
based volumetric sculpting. It may be noted that the new subdivision solids
naturally include free-form volumetric splines such as B-spline solids as their
special cases [12].

In comparison with existing modeling techniques associated with subdivi-
sion surfaces, subdivision solid formulations transcend surface-based approaches
by defining geometry and topology both in the interior and on the boundary
of solid objects. In our approach, we augment subdivision solids with physical
properties that permit users to manipulate solids directly through a haptic in-
terface and through physical forces. The inherent geometric parameters of the
solid maintain the subdivision structure, while the physical attributes support
direct manipulation. The geometric and topological complexities of subdivision
solids are concealed by both our physics-based formulation and by an intuitive
user interface. Our sculpting system provides users with many virtual tools that
let them directly manipulate solid objects. The user can quickly and easily make
topological, geometric and physical changes to sculpted objects without the need
to understand the complicated mathematics of subdivision solids.

Our system offers both an explicit and an implicit solver. The former is
efficient and is easy to implement, while the latter guarantees numerical stability.
In addition, our physical model incorporates diverse types of elastic behavior
that can produce structurally stable objects that exhibit great shape variation.
Furthermore, we have devised and implemented a local, adaptive subdivision
algorithm that can be employed to create refined features in any region(s) of
interest. Additionally, our novel sculpting system provides the user with a suite of
powerful, haptics-based tools that interact directly with our deformable modeling
framework.

3 Background Review

3.1 Deformable Models

Our deformable subdivision solid model is based on well-established techniques
and algorithms from deformable and physics-based modeling. Physically-based
solid models were introduced to the graphics and vision communities by Ter-
zopoulos and colleagues [14, 22–24]. In essence, the geometry of their models is
discretized from continuous surfaces and solids and is attached to mass-spring



meshes. Others have used modal dynamics [17] and other finite element ap-
proaches [5] in order to improve the stability and accuracy of dynamic mod-
els. Baraff, Witkin, Kass and others [2, 3, 27] have developed techniques for
animating and constraining non-penetrating dynamic surfaces. Qin and col-
leagues [11, 19, 20] derived dynamic models for direct manipulation of spline-
and subdivision-based surfaces. James and Pai [9] developed a dynamic surface
model based on the Boundary Element Method (BEM).

3.2 Subdivision Solids

Subdivision solids [10] have recently emerged as a generalization of tri-cubic
B-spline solids to free-form solid models of arbitrary topologies. In general, B-
spline solids and other spline-based solid representations are cumbersome to use
in sculpting applications since many separate solids must be carefully patched
together to create simple features such as handles and holes. Subdivision solids,
in contrast, can represent a topologically complex, deformable object with a
single control lattice. In contrast to the control mesh that defines a typical sub-
division surface, which consists of points, edges and polygons, the control lattice
of a subdivision solid consists of points, edges, polygons and closed polyhedra
(which we call “cells”). Note that the use of cells results in the complete subdi-
vision of the volumetric space occupied by the control lattice. In this manner it
allows users to represent a volumetric object without any geometric ambiguity
or topological inconsistency. The geometric construction of our deformable solid
model is based on [10]. Since the original subdivision rules do not define the sur-
face structure, we use the Catmull-Clark subdivision surfaces rules [4] to obtain
smooth boundaries.

Because of their unique advantages [12, 13], subdivision solids can provide a
very general framework for representing volumetric objects. While subdivision
surfaces are very convenient and general for creating models in which only the
boundary is important, subdivision solids can offer users additional flexibility
whenever necessary or appropriate. Like subdivision surfaces, subdivision solids
are natural candidates for multiresolution analysis and level-of-detail (LOD) con-
trol since one can subdivide a given model until the desired amount of detail is
achieved. Subdivision solids depend solely on the use of simple subdivision algo-
rithms that are similar to those found in most subdivision surface approaches.
Thus, the solid subdivision algorithm is relatively easy to implement and does
not require very sophisticated data structures.

3.3 Haptic Interfaces

Our sculpting system offers a number of haptics-based sculpting tools that at-
tempt to enhance the sense of realism experienced by the user. A good review
of haptics literature can be found in [21]. Thompson et al. [25] derived efficient
intersection techniques that permit direct haptic rendering of NURBS surfaces.
Miller and Zeleznik [15] defined a set of robust haptic principles and techniques
that can be applied to nearly any type of haptic interface. Dachille et al. [6]



developed a haptic interface that permits direct manipulation of dynamic sur-
faces. Balakrishnan et al. [1] developed ShapeTape, a curve and surface ma-
nipulation technique that can sense user-steering bending and twisting motions
of the rubber tape. To date, haptics has been an active area of research that
has demonstrated great potential for the development of natural and intuitive
human-computer interfaces.

4 Deformable Subdivision Solids

Our deformable subdivision solid model marries the geometric information and
topological structure of subdivision solids with physical attributes and other rel-
evant material quantities. Figure 1 shows a cubical control lattice after one level
of subdivision. The complex cell structure in the interior of the solid is high-
lighted in Figure 1b. The difference in complexity between the subdivision solid
wireframe (Figure 1c) and subdivision surface wireframe (Figure 1d) can also be
easily observed. The second wireframe is that of a Catmull-Clark surface which
coincides with the boundary of the solid. The first wireframe clearly demon-
strates the topological and geometric complexity introduced by the cells of the
solid. In order to manage the complex non-manifold topological nature of subdi-
vision solids, we employ the radial-edge data structure invented by Weiler [26].
This data structure can be viewed as a generalization of the winged-edge data
structure for polygonal surfaces to non-manifold objects. Note that, in the in-
terest of clarity and convenience, we render only the boundary surfaces of solid
sculptures for most of the examples in this paper. Nevertheless, a large amount
of topological, geometric, physical and material information is employed for the
interior description and is therefore hidden.

After a user-specified number of subdivisions of the control lattice, the result-
ing subdivision solid is assigned physical properties such as mass, damping, and
stiffness. To avoid ambiguity, we use the term “subdivided lattice” to describe
the control lattice after one or more applications of the subdivision algorithm.
Material properties are assigned both in the inside and on the boundary of the
subdivided solid. Note that a subdivision surface (or any other pure surface
model) could not represent heterogeneous interior attributes because the inte-
rior of a subdivision surface is empty. The control lattice is retained but is not
assigned any physical parameters. That is, material properties are associated
only with the limit shape of subdivision solids and not with the initial control
lattice. The control structure is required to maintain the geometric smoothness
and continuity of the subdivided model.

Using our approach, each point in the subdivided solid is assigned an initial
mass by the application. To avoid confusion with points in the control lattice,
these points will henceforth be called “mass points.” Vertices in the control
lattice shall be called “control points.” Each edge between mass points is assigned
an initial spring stiffness. Such edges are termed “normal springs,” while edges
in the control lattice shall be called “control edges.” Each face in the subdivided
lattice is also assigned a set of “angular springs,” which we describe in detail
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Fig. 1. (a) A subdivision solid after one level of subdivision along with its control
lattice. (b) After scaling the cells, the complex interior structure becomes visible. (c)
A wireframe rendering of the subdivided solid. (d) A wireframe of a Catmull-Clark
subdivision surface that coincides with the boundary. The difference in geometric and
topological complexity of the solid and surface is significant.

later. These faces in the subdivided solid are called “subdivided faces,” while
faces in the control lattice are termed “control faces.” Similarly, cells in the
subdivided lattice are “subdivided cells,” and cells in the control lattice are
“control cells.” In summary, the initial control lattice is subdivided and is then
used to define a mass-spring lattice containing mass points and two types of
springs.

Like virtually all procedural subdivision algorithms, the subdivision solid
representation can be expressed as a global matrix multiplication:

d = Ap. (1)

The p is a column vector of the control point positions; the matrix A is a sparse,
rectangular matrix that contains weights given by the subdivision rules; and the
column vector d gives the positions of the mass points. Note that matrix A is
a global subdivision matrix and that local changes to the subdivision rules can
be expressed by changing a few rows of the matrix. Due to the sparsity of A,
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Fig. 2. A typical cell in the subdivided lattice. Normal springs (straight lines) resist
stretching forces, while angular springs (arcs) resist shearing forces. Each subdivided
edge is assigned a normal spring, and each vertex in each face is assigned an angular
spring.

we employ a sparse matrix storage scheme to improve time performance and to
save memory.

Figure 2 shows a typical hexahedral cell from a subdivided solid along with
its mass points, normal springs, and angular springs. Normal springs are tradi-
tional linear springs found in many other deformable models and in introduc-
tory physics textbooks. Their end-points are mass points that appear in the
subdivided lattice. The force exerted on each end-point is given by Hooke’s law:
f = −k(x−x0), where k is the spring’s stiffness, x is the current position of the
end-point, and x0 is the rest position of the end-point. In our solid model, each
normal spring can have a different stiffness and rest length, which permits the
definition of a wide variety of physical behaviors.

Traditional mass-spring lattices often suffer from structural instability since
they do not attempt to maintain internal angles (i.e., to avoid shearing). Some
other deformable models rely on diagonal springs to avoid these problems, but
these types of springs can exert forces even when shearing is not occurring (see
Figure 3). In order to better characterize an object’s resistance to shearing forces,
we employ angular springs instead. The system assigns one angular spring per
mass point per subdivided face. An angular spring exerts forces on points only
when its associated angle deviates from its initial value. The angular spring
pushes its “end-points” away from (or towards) each other in order to regain
the original angle. In this way the model attempts to enforce a soft curvature
constraint on faces.

Figure 4 shows the arrangement of angular springs in a subdivided face. For
each mass point in each subdivided face, we compute the initial rest angle of the
two normal springs that coincide at that mass point. When the face undergoes
forces as a result of shearing deformation, the angular springs respond by exerting
forces on the two end-points to bring the angle back to its initial value (see
Figure 5). The initial angle (θ0) and current angle (θ) can be computed directly
using the dot product of the two incident edges (s1 and s2): θ = cos−1

(
s1·s2

|s1||s2|
)
.
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diagonal springs exert forces!

Fig. 3. Diagonal springs exhibit incorrect behavior when stretching occurs but not
shearing, as this figure demonstrates. In this special case, diagonal springs erroneously
exert forces to resist stretching. Angular springs (Figures 4 and 5) should be used
instead in order to correctly characterize an object’s resistance to shearing forces.

To compute the forces that should be applied to each end-point of s1 and s2

(indicated by e1 and e2 in Figure 5), we calculate where the end-points would be
if the current angle equaled the rest angle (i.e., θ = θ0). This requires computing
two rotations around the mass point. The axis of rotation is computed using
the cross product of s1 and s2: s1 × s2. The rotations provide two new virtual
points, e′1 and e′2, from which we compute displacements d1 = e′1 − e1 and
d2 = e′2 − e2. Using Hooke’s law, linear spring forces are applied to e1 and e2

in the directions of d1 and d2 to help bring the angle back to its rest value.
It should be noted that our unique formulation of deformable subdivision

solids and its aforementioned stiffness distribution (especially the structure of
its angular springs) are founded upon concepts and their rigorous analysis from
differential geometry [22]. Consider a 3 × 3 metric tensor function G(s):

G =




∂s
∂u · ∂s

∂u
∂s
∂u · ∂s

∂v
∂s
∂u · ∂s

∂w

∂s
∂v · ∂s

∂u
∂s
∂v · ∂s

∂v
∂s
∂v · ∂s

∂w

∂s
∂w · ∂s

∂u
∂s
∂w · ∂s

∂v
∂s
∂w · ∂s

∂w


 , (2)

where (u, v, w) is a local parameterization for s(x). One important result is that
the above matrix tensor remains unchanged if there is no solid deformation
for any solid object s(x) (i.e., rigid-body motion does not modify the tensor
function G(s)). The amount of deformation of a given object is therefore defined
by a function of G0

ij − Gn
ij , which is the difference between the metric tensors

of the initial and current states of the object, where the superscript denotes
time, and the subscripts indicate matrix entries. Therefore, in the context of
deformable subdivision solids, normal springs attempt to minimize the change
for the diagonal terms of G(s), while the angular springs attempt to minimize
the variation of the off-diagonal terms.



normal spring
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Fig. 4. To help maintain the structural stability of a dynamic subdivision solid, the sys-
tem employs angular springs to help maintain internal angles and to counteract shear-
ing forces. Traditional springs, indicated by jagged lines, are used to resist stretching
forces.

5 Numerical Algorithms for Physics-Based Simulation

We have implemented both an explicit numerical solver for time integration and
an implicit one. When extensive user interaction is required, the explicit solver
is used to provide real-time update rates. The implicit solver can be invoked
when numerical stability is more of a concern or when one is performing offline
simulations.

5.1 Explicit Time Integration

Our dynamic model is founded upon the energy-based Lagrangian equation of
motion, which has the following continuous and discrete forms, respectively:

µs̈ + γṡ +
∂E(s)

∂s
= f , (3)

Mẍ + Dẋ + Kx = fx. (4)

The M, D and K matrices represent the mass, damping and internal energy
distributions of an object; the x, ẋ and ẍ represent the discrete position, velocity
and acceleration of an object; and fx contains the total external forces acting an
object.

We augment the discrete Lagrangian equation of motion with geometric and
topological quantities derived from the subdivision solid algorithm. Recall that
p is a vector containing the positions of the control points, and d stores the
positions of the mass points. The fd collects the external forces acting on the
mass points. The rectangular matrix A stores the subdivision weights that define
the positions of the mass points as a function of the control points. Subject to
the constraints defined by Equation 1, we augment the Lagrangian equation of
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Fig. 5. To compute the forces exerted by an angular spring, we begin by computing
where end-points e1 and e2 would be if there were no shearing (given by e′

1 and e′
2).

The points are rotated about the mass point using the axis of rotation (given by the
cross product s1×s2). Using these virtual positions we compute a pair of displacements
(d1 and d2). The displacements are used to provide the spring forces we apply to the
end-points to help bring the angle back to its rest configuration. In this example we
assume the rest angle is 90 degrees.

motion as follows. First we substitute d for the generic x and multiply each side
by A�:

A�Md̈ + A�Dḋ + A�Kd = A�fd.

By applying Equation 1 and rearranging terms we obtain:

A�MAp̈ + A�DAṗ + A�KAp = A�fd,

A�MAp̈ = A�fd − A�Dḋ − A�Kd.

Then we solve for the acceleration of the control points using a least-squares
approach:

p̈ = (A�MA)−1(A�fd − A�Dḋ − A�Kd). (5)

Note that Equation 5 essentially states that the external forces acting on the
mass points are mapped to the control points (which are purely geometric ob-
jects) using the subdivision matrix. Once the accelerations of the control points
are computed, the model’s position and velocity are computed using a forward
Euler method to drive the simulation:

ṗi+1 = ṗi + p̈i∆t,

pi+1 = pi + ṗi∆t.

5.2 Implicit Time Integration

While the explicit numerical solver derived above is easy to implement and is
very efficient, it tends to suffer from numerical instability when large time-steps
are taken or when spring stiffnesses are very high. To ameliorate this problem we
derived and implemented an implicit solver based on backward Euler integration.
Discrete derivatives are computed using backward differences:

p̈i+1 =
(pi+1 − 2pi + pi−1)

∆t2
,



Fig. 6. The user interface consists of a PHANToM haptic device, a standard 2D mouse,
and on-screen GUI controls.

ṗi+1 =
(pi+1 − pi−1)

2∆t
.

We obtain the time integration formula
(
2Mp + ∆tDp + 2∆t2Kp

)
pi+1 =

2∆t2fp + 4Mppi − (2Mp − ∆tDp)pi−1, (6)

where
Mp = A�MA,

Dp = A�DA,

Kp = A�KA,

and the subscripts denote evaluation of the quantities at the indicated time-steps.
It is straightforward to employ the conjugate gradient method [18] to obtain an
iterative solution for pi+1. To achieve interactive simulation rates, we limit the
number of conjugate gradient iterations per time-step to 10. We have observed
that two iterations typically suffice to converge the system to a residual error of
less than 10−4. More than two iterations tend to be necessary when the physical
parameters are changed dramatically during interactive sculpting.

6 Sculpting System and Toolkits

6.1 Architecture and Interface

The user interface (see Figure 6) of our sculpting system consists of a Sens-
able Technologies PHANToM 1.0 3D haptic input/output device, a standard 2D



mouse, and on-screen GUI controls. The PHANToM features a thimble for the
user’s index finger and can exert a real-world force in any 3D direction. The
mouse is used in conjunction with the PHANToM to activate or enable over
a dozen sculpting tools. Forces are exerted on the user’s finger only when a
haptics-based sculpting tool is active. The entire system runs on a generic Mi-
crosoft Windows NT PC with an Intel Pentium III 550 Mhz CPU and 512 MB
RAM. Experimental results and system performance data are provided towards
the end of the paper.

An overview of the physical simulation and design process is shown in Fig-
ure 7. After an initialization step in which data structures are assembled, the
system runs in an infinite loop that continuously updates the physical state of a
sculpture. The system traverses all springs and computes the total internal forces
acting on the mass points. External forces are queried from the input devices
and added to the system. The aggregate forces acting on the mass points are
then mapped to the control vertices (see Section 5). The acceleration and veloc-
ity of the control lattice are then computed in order to move the control lattice
to its new position. The subdivision matrix is applied to the control vertices to
obtain the new positions of the mass points. This step is required to maintain
the geometric and subdivision structure of the subdivided lattice. At any time
during the simulation, the user may pause the execution and invoke a tool that
causes a change in topology (for instance, to create a protrusion). This type of
action requires re-subdivision of the geometry and the re-assembly of certain
data structures.

A second thread is required to control the haptic interaction and to accept
3D input from the user. When any haptic tool is in use, this thread computes
the haptic force to be felt by the user. Without a second thread of execution, the
haptic device is not able to send real-time forces to the user’s finger. This causes
the PHANToM to buzz and vibrate, which is very distracting during sculpting.

Regarding data structures, most geometric quantities and matrices are stored
in one- and two-dimensional arrays. The sophisticated topological structure of
subdivision solids is represented using a simplified version of Weiler’s radial-edge
data structure [16, 26]. By storing adjacency information, this data structure
allows our system to efficiently query and update topological information. Fast
accesses are critical to make topological changes as efficiently as possible.

The remainder of this section briefly covers the sculpting functionality of our
system. The interested reader is directed to [12, 13] for a full description of each
sculpting tool.

6.2 Haptic Tools

Through our non-compressive “rope” tool (Figure 8a) the user can select any of
the mass points, both on the boundary and in the interior, and exert a linear
spring force on the point. This tool is employed to deform a shape much in
the same way that an artist might mold a piece of clay with his fingers. The
PHANToM exerts a real force on the user’s hand that is a linear function of
the mass of the attached point, the distance of the cursor to the point, and the
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Fig. 7. An overview of the physical simulation and design process featured in our
sculpting system. The application requires two separate execution threads in order to
generate real-time haptic feedback.

strength of the rope tool (whose stiffness can be changed in the GUI). The user
also has the ability to study an object’s stiffness both graphically and haptically
through our probing tool (Figure 8b). When active, the probing tool exerts a
force on the user’s hand proportional to the local stiffnesses of those springs
within a given radius of the tool. In addition, the user can run the cursor over
the surface of a solid to examine the boundary tactilely. In this way a designer
can feel how smooth the surface is at the current subdivision level and also look
for any surface anomalies that might be hard to detect visually.

6.3 Geometric and Topological Tools

Our geometric and topological tools operate directly on the control lattice. For
instance, using the 3D cursor provided by the PHANToM, the user can carve
material from a sculpture (Figure 9a). As with all of the tools that modify
the topology of the sculpted object, the radial-edge data structure and certain
matrices need to be re-computed to effect the change. Second, the extrusion
tool (Figure 9b) can be employed to extrude new material from the face on the
surface nearest the 3D cursor. When the user activates the tool, a new control
cell is created and attached to the face. It “grows” in the direction of the surface
normal, and its size is computed based on the size of the control cell to which it is
attached. Third, two cells near the surface of a sculpture can be joined together



(a) (b)

Fig. 8. Haptics-based sculpting tools. (a) Rope tool. (b) Haptics-based probing.

by using our joining tool (Figure 9c). This tool is very useful for making loops,
twisted cylindrical structures, ring-like features, and handles. In reality this kind
of action is somewhat difficult to achieve even with actual clay.

Our local subdivision algorithm allows users to make very fine-level details
on their models (Figure 9d). Much like the carving tool, the user selects a cell
to subdivide with the 3D cursor. The system replaces the highlighted cell with
several smaller cells whose structure is based on the normal subdivision solid
rules. Faces and edges in adjacent cells are also subdivided in order to avoid T-
shapes and other topological anomalies (such as a vertex in the middle of a face).
This process is illustrated in Figure 10. Although this procedure complicates the
local topological structure, the resulting control lattice is still valid and can be
treated and manipulated like any other subdivision control lattice.

Sharp features (Figure 9e) such as corners and creases can be created by
tagging faces, edges, or points as “sharp”. In our implementation, sharp features
are created by using different subdivision rules for tagged geometric elements.
Note that since we use a Catmull-Clark surface to represent the boundary, one
can use other special rules, such as those found in [7, 8, 10].

6.4 Deformation Tools

Our sculpting system features a number of tools that use physics to interact with
a model. The use of physical tools frees the user from the need to deal with the
multitude of control vertices inherent in subdivision solid objects. In addition,
the user can interact with deformable subdivision solids directly, rather than
through indirect and often non-intuitive control point manipulation.

For example, our B-spline manipulation tool (Figure 11a) lets the user select
mass points from a sculpture, build a cubic B-spline curve that interpolates
the points, and then manipulate the spline using its control points. In this way
the user can use a B-spline to quickly design curved regions as well as make
large, well-controlled deformations. It is straightforward to generalize this tool
to B-spline surfaces and other types of curve and surface representations.
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Fig. 9. Geometry-based and topology-based sculpting tools. (a) Carving. (b) Extru-
sion. (c) Joining. (d) Detail editing. (e) Sharp feature creation.

Since our model defines geometric and physical properties on both the bound-
ary and interior, the user has the option of modifying the mass and stiffness
distributions both in the inside and on the boundary (Figure 11b). Our virtual
sculpting material is more general than real clay since it can actually have dif-
ferent physical properties throughout the sculpture. This offers extra flexibility
and advantages to the user. For instance, the user can use such functionality to
localize the effects of certain physics-based tools, especially the rope tool.

The inflation and deflation tools (Figures 11c and 11d) allow the user to grow
and shrink local portions of the model, respectively. The rest lengths of springs
are increased or decreased, depending on whether inflation or deflation is taking
place. The inflation tool is typically used to create bumps and rounded features,
while the deflation tool is useful for shrinking and tapering parts of sculptures.

The physical trimming tool (Figure 11e) allows users to effectively “turn off”
cells in the subdivided lattice. Unlike the cell-deletion tool, which modifies the
topology of a sculpture, this tool directly operates on the physical representation.
It enables the user to prevent portions of a model from participating in the
physical simulation.

Sometimes the user may wish to deform only a local region of a sculpture.
This action can be facilitated by using our “physical window” feature (Fig-
ure 11f) that constrains the physical simulation to occur in a local region of
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Fig. 10. The cell on the left is subdivided locally. The face indicated by heavy lines
is shared between the two cells. This face must be subdivided to maintain topological
consistency.

interest. In addition to localizing the effect of deformation, the physical window
speeds up the simulation and improves frame rates by reducing the amount of
data that needs to be processed by the system. For instance, the subdivision ma-
trix A as well as the vectors d and p can be partitioned into “free” (A1,p1,d1)
and “fixed” (A2,p2) matrices:

d = Ap → d1 = A1p1 + A2p2.

The fixed portions can be computed once and stored for look-up later. Other
matrices such as M, D and K can be modified in a similar manner.

6.5 Additional GUI Controls

In addition to the sculpting tools, our GUI contains several widgets that allow the
user to change the global state of the model and various simulation parameters,
such as the time-step, damping coefficient, spring stiffness values, etc. The user
can also change the stiffness (or strength) of the rope tool using a slider in
the GUI. High values of this stiffness allow the user to made large, sweeping
deformations in a short amount of time. Also, the user can press the “Reset
Rest Shape” button in order to redefine the rest shape of a sculpture to its
current shape. Without this functionality a sculpted object would always revert
to its initial physical state due to the elasticity of the springs.
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Fig. 11. Physics-based sculpting tools. (a) B-spline curve manipulation. (b) Stiffness
painting. (c) Deflation. (d) Inflation. (e) Physical trimming. (f) Physical window.

7 Experimental Results and Time Performance

Table 1 details the data sizes and run-time statistics for the sculptures featured
in this paper. This table contains the running times only for the simulation loop.
Note that in order to generate final images, we subdivided the models several
additional times to produce smooth boundary surfaces seen in the figures.

Table 1. Data-set sizes and simulation timing information for some of the models
described in this paper. All statistics are for one level of subdivision, except for the
soccer player, which was subdivided twice.

Model Control Cells Subdivided Cells Update Time (ms)

Man’s head 123 1069 114.7

Soccer player 24 1536 85.0

Chair with holes 76 744 82.5

Chair without holes 62 552 50.6

Mug 102 816 80.9



Fig. 12. Several sculptures created entirely with our system and then composed and
rendered with POV-Ray (www.povray.org).

7.1 Example Sculpture: Human Head

We shall use the sculpted cartoon head in Figure 12 to describe how our sculpting
tools can be used in practice. The sculpting of the head required the use of almost
every design tool, and so it serves as a good example of how to use our sculpting
system. We began with a 5×5×5 block containing 125 control cells. Cells on the
underside and back were carved out to give the head its general shape. The eye
sockets were created by removing one cell each. The eyes were then inserted by
extruding a single cell from each hole. The nose was extruded from the front of
the face and then shaped with the rope tool. The mustache was extruded from
the nose, bent, and slightly twisted downward. The mouth was created first by
deleting a cell, by locally subdividing the lower jaw, and then by stretching it
to create the thin lower lip and protruding chin. The ears were sculpted by
extruding a few cells on either side of the head, locally subdividing them, and
then stretching and denting them to make them thin and oval. The deformation
and inflation tools were employed to give the top of the head a more rounded
appearance. Then the deflation tool was used to smooth out bumps and pits. For
certain features the physical window was activated to constrain the influence of
the rope tool on the model. Finally, the surface of the solid was extracted and
ray-traced offline.

8 Conclusions

We have developed a novel deformable solid modeling framework along with its
intuitive, natural haptic interface based on the unique integration of subdivision
solids and physics-based techniques. Our system for shape design and sculpting
permits the user to create real-world, complicated models in real-time using an
extensive suite of geometry-based, topology-based, physics-based, and haptics-
based tools. Within our modeling environment, the virtual clay responds to



direct, user-applied forces in a predictable and intuitive manner while the haptic
feedback can significantly enhance the sense of realism. Our physical formulation
of topologically complex subdivision solids frees users from the need to deal with
abstract geometric quantities and esoteric mathematical structures that often
hinder the extensive use of sophisticated solid models on a large scale. To verify
the applicability of our sculpting system on virtual clay and its powerful toolkits,
we have conducted many sculpting sessions which have resulted in numerous
interesting sculptures. The gallery of our virtual sculptures in Figure 12 (see [12,
13] for more examples) should appeal to a wide spectrum of users including
researchers, designers, animators, artists and even non-professionals.
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