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ABSTRACT

In this paper we develop a novel image processing technique to register two dimensional temporal mammograms
for effective diagnosis and therapy. Our registration framework is founded upon triangular B-spline finite element
method (TBFEM). In contrast to tensor-product B-splines, which is widely used in medical imaging, triangular
B-splines are much more powerful, associated with many desirable advantages for image registration, such as
flexible triangular domain, local control, space-varying smoothness, and sharp feature modeling. Empowered
by the rigorous theory of triangular B-splines, our method can explicitly model the transformation between
temporal mammogram pairs over irregular region of interest(ROI), using a collection of triangular B-splines. In
addition, it is also capable of describing C0 continuous deformation at the interfaces between different elastic
tissues, while the overall displacement field is smooth. Our registration process consists of two steps: 1) The
template image is first nonlinearly deformed using TBFEM model, subject to pre-segmented feature constraints;
2) The deformed template image is further perturbed by applying pseudo image forces, aiming to reducing
intensity-based discrepancies. The proposed registration framework has been tested extensively on practical
clinical data, and the experimental results demonstrates that the registration accuracy is improved comparing
to using conventional FEMs. Besides, the modeling of local C0 continuities of the displacement field helps to
further increase the registration quality considerably.
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1. INTRODUCTION AND BACKGROUND

Breast cancer is one of the most common causes for cancer-related death, with annual mortality of over 400, 000
women worldwide. Taking regular mammographic screening and comparing corresponding mammogram are
necessary for early detection of breast cancer, which is also the key to successful treatment. To seek abnormality
through comparison, the clinical diagnosis involves either pairs of mammogram from the bilateral breasts of the
same patient or a series of mammogram acquired from the same breast at different time. However, the first
method tends to be unreliable when the left and right breasts contain significantly different structures. But
the latter one, which aims at detection of temporal changes in the same breast, produces more robust results.
Unfortunately, a temporal pair of mammogram may vary quite significantly due to the spatial disparities caused
by the variety in acquisition environments, including 3D position of the breast, the amount of the pressure applied,
etc. Such disparities can be corrected through the process of Temporal Registration. This paper contributes to
the existing state of the art in temporal registration of digital mammography.

Earliest attempts for mammogram registration typically assumed rigidity and affinity of breast deformation.
Yin et al1 align mammograms using an optimal rigid transformation which minimizes the least square error
between two group of control points. However, due to the elastic nature of the breast, it’s far from correct to
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match mammograms using solely rigid models. Later, radial basis functions (RBF) based on Thin-plate Spline
(TPS)2 and Cauchy-Navier Spline (CNS)3 are incorporated to build a global smooth nonrigid transformation from
a local displacement vector field representing spatial differences between corresponding control points. However,
those registration method depending on control points are prone to failure when the pre-segmentation is accurate
enough. To this end, recent techniques tend to incorporate the metrics measuring intensity similarities between
corresponding images. Writh et al4 align subregions according to local mutual information, then combine them
into a global transformation using TPS. Hadjiiski et al5 propose an automatic regional registration method,
which bases on the identification of corresponding lesions in temporal mammogram pairs. A pyramid-based
multiresolution technique given by Kostelec et al6 integrates a least square measurement with TPS transformation
to match bilateral mammograms. Likewise, Rueckert et al7 hierarchically match corresponding breast images, but
using a B-spline based free-form deformation(FFD) technique instead. Due to the large variety of breast tissues
and their mechanical behaviors, however, it’s more appropriate to register temporal mammograms by utilising
model-driven simulation. Pathmanathan et al8 build a patient-specific nonlinear 3D model to predict the tumor
location. Kita et al9 simulate the deformation of breasts, and accordingly establish the correspondences between
their CC and MLO mammographic views. Richard et al1011 build a 2D FEM model from X-ray mammograms,
then conduct the registration by deforming it subject to both feature and intensity-driven constraints.

Our approach is inspired by Richard et al ’s work.10 But we employ a novel triangular B-spline finite element
method (TBFEM) instead and recover large deformation between temporal mammograms following nonlinear
elasticity theory. Triangular B-splines, introduced by Dahmen et al ,12 has many favorable features, such as
flexible simplex-based domain, space-varying continuities, local control, etc. The most unique one of them is the
ability to model local sharp features along in the approximated smooth solution. A example of this is illustrated
in Figure.1(c). Therefore, the incorporation of TBFEM within our registration framework gives the following
advantages over conventional FEMs: i) The region of interest (ROI) can be accurately described and selected
as the registration domain, while the tensor-product B-splines methods7 necessitate extra efforts to refine the
problem domain along the irregular boundaries of ROI. ii) In contrast to other simplex-based elements, such as
Lagrange Polynomials, our TBFEM offers a global smooth solution (Note that the continuities of the solutions
given by traditional Lagrange FEM are not ensured across the element boundaries). iii) Users are allowed
to model the spatially varying continuities in the approximated deformation field by manipulating the knot
configuration according to pre-identified features. Sharp features may appear in the displacement field when the
elastic object contains different materials (see Figure.1(a)(b) for this concept). iv) The accurate simulation of the
elastic deformation incorporating material heterogeneity can be achieved by using relatively fewer finite-elements.
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Figure 1. (a) A one dimensional cascaded spring system system consisting of three springs with stiffness of k, 2k and k
respectively. When the system is compressed by an external force F, it is deformed and the displacement caused along
x-axis is plotted in (b). The sharp features A and B in the displacement profile are built at the joint points between
different springs. (c) A functional approximated by a single triangular B-spline, where both C1 and C0 continuities
co-exist.

2. METHOD

The temporal registration problem can be stated as: given both previous mammogram T (template) and current
one R (reference), we are asked to find an optimal transformation φ such that the disparities between them are



Figure 2. The main flow of the registration process.

reduced maximally. Our registration process(see Figure.2) consists of two consecutive steps, whose details will
be developed in the following.

2.1. NONLINEAR ELASTIC DEFORMATION

First, the registration domain Ω is defined over the breast region, which is previously segmented from R and
usually circumvented by the breast skin contour and partial image boundaries. The domain Ω is then triangulated
with the user-specified feature lines(see Figure.3(a)). Then we adjust the knots configuration such that the knots
collapse to their adjacent sharp features. Thus, C0 continuity will be successfully modeled in the solution of the
recovered displacement field.

The objective of this registration step is to estimate the displacement field u∗ : Ω̄ → R
2 between T and

R such that they are aligned as much as possible. Since the breasts compressed during mammography usually
undergo large deformation (> 5%), our framework follows nonlinear elastic theory and governs u by:







A(u) = −∇ · (I + ∇u)(λtr(E(u))I + 2µE(u)) = f
u = u0 on Γd

(I + ∇u)(λtr(E(u))I + 2µE(u)) = g0 on Γn

(1)

in which St. Venant-Kirchhoff elastic material is assumed and Green-St. Venant strain tensor E(u) is written
in its second order:

E(u) =
1

2
(∇φT∇φ − I) =

1

2
(∇uT + ∇u + ∇uT∇u) (2)

The body force f does not exist in this step. And λ and µ are lame coefficient related to elastic properties.

Due to the nature of registration problems, both Dirichlet and Neumann conditions in Equation.(1) are
dropped, and replaced by a bunches of discretized geometric constraints.10 Such constraints in our framework
consist of two set of control points P and Q, selected from R and T respectively. The majority of the control
points come from the breast skin contours and their correspondences are established following the approach
proposed by Wirth.13 Furthermore, salient anatomical structures(vessels branches, nipple, etc.) and pathological
points(microcalcification, etc.) are ideal to serve as auxiliary control points. Different from the control points
automatically matched on the breast contour using arc-length parametrization, the interior points need to be
manually selected and corresponded to each other in our current implementation. Note that such process can be
automated by incorporating the technique proposed by Paquerault et al .14 An example of the control points
selected from both the template and reference images is shown in Figure.3(b)(c).

The geometric constraints given by P and Q are formulated as follows:

φ(pi) = qi pi ∈ P,qi ∈ Q, i = 1, . . . , |P| (3)



Where the pi and qi are corresponding points. These constraints can be viewed as a bunch of displacement
vectors from R to T .

To solve Equation.(1), we linearize it with Newton’s Method ,15 thus the solution can be approximated
incrementally by:

A(un+1) ≈ A(un) + A′(un)δun = fn + δfn (4)

δfn = fn+1 − fn = A(un+1) − A(un)

δun = un+1 − un

in which the total displacement field u is iteratively updated with the increment of δun, which in turn is the
solution of:

A′(un)δun = fn (5)

Finally we discretize Equation.(5) in our TBFEM model and solve it in the approximate space V̂ :=
span{B1, B2, . . . , BN}, where Bi denotes the triangular B-spline shape function. After applying Galerkin

Method ,16 we achieve its discretizaton form written by:

N
∑

k=1

δûn
k

∫

Ω

3
∑

i,j,p,q=1

âijpq(u
n)∂Bk∂Bldx = 0 l = 1, . . . , N (6)

in which δûn =
∑N

k=1
δûn

i Bi and âijpq denotes a FEM discretization operator, the detail of which is available
in.16 The equation above is ill-conditioned unless combined with constraints given in Equation.(3). Suppose
that there are total M steps in the elastic deformation, the constraints contributed to the deformation at the
nth step are:

N
∑

j=1

Bj(pi)δû
n
j =

1

M − n + 1
(qi − un(pi)) i = 1, . . . , |P| (7)

In essence, the constraints above progressively drag the control points in R to their corresponding location in T .
A linear-interpolation scheme is employed here to predict the position of control points of the next time step.
Note that alternative schemes can be incorporated as well.

Substituting Equation.(7) into Equation.(5), we can get a constrained linear problem:

Mn∆Un = 0
s.t. C∆Un = D(Un)

Un+1 = Un + ∆Un and U0 = 0 (8)

In current implementation, we first convert the problem above to an unconstrained system by using Null-space

project technique,17 then solve it by Conjugate Gradient method(CG). Note that if there is only one time-step
assumed for the simulation, the deformation will degenerate to a linear elastic one.

2.2. REFINEMENT WITH INTENSITY DIFFERENCE MINIMIZATION

Let the displacement field obtained in the previous step be u∗, the deformed T denoted by T ′(x) = T (x + u∗)
which is in rough alignment with R. To further improve the registration results, we perturb T ′ with an additional
displacement field v by minimizing a intensity-based metric, which measures the sum of squared difference (SSD)
between T ′ and R:

E(T ′,R;v) = α
1

2

∫

Ω

‖T ′(x + v) −R(x)‖2dx (9)

where α weighs the contribution of E .

Similar to Equation.(1), the governing PDE in this step can be written as:

A(v) = −∇ · (λtr(E(v))I + 2µE(v)) = f (10)
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Figure 3. (a) The triangulated registration domain Ω, where the feature line is highlighted between the pectoral muscles
and breast tissue. (b)(c) 8 interior and 29 contour control points in template and reference images respectively.

Note that we assume linear elasticity here because only small deformations are allowed in the second step. Thus,
the second order strain tensor is dropped and A becomes a linear differential operator. Instead of using geometric
constraints, we incorporate artificial body forces derived from the minimization of E . In addition, we pin the
images at both the upper and lower left corners to avoid unnecessary floating. Consequently, Equation.(10) is
discretized to:

M0V = F(V) (11)

where F(V) denotes the virtual body force, whose elements are:

(F(V))i = α

∫

Ω

(T (x + v) −R(x))∇T (x + v)Bidx (12)

Note that the stiffness matrix M0 is identical to that in Equation.(8) at the previous registration step. A gradient
descent like algorithm is employed to solve it:

M0∆n+1 = F(Vn) (13)

Vn+1 = h∆ + (1 − h)V (14)

associated with a small positive value h. The iteration stops when a predefined threshold ǫ is met:

E(T ,R;Vn+1)

E(T ,R;Vn)
< ǫ

3. EXPERIMENT AND RESULTS

Two temporal pairs of 2D X-ray mammograms in MLO views obtained with one year interval (see Figure.4 and
Figure.5) are used to test the registration framework proposed in this paper. All of the mammograms have
size of 2294 × 1914, resolution of 94.1µm and 12-bit intensity depth. In the experiment, the images are resized
to 1147 × 957 and their resolution is therefore reduced to 188µm. To suppress the noise as well as speedup
the registration process, a gaussian filter with a kernel of 200 pixels is applied to the mammograms before the
registration.

The breast region is automatically segmented from each image based on a threshold which is the value of the
gray-level corresponding to the first peak in the smoothed histogram of the image. Our registration domain is
then defined over the breast region, which is further delaunay-triangulated with pre-identified sharp features as
geometric constraints.18

For both pair of temporal mammograms, we approximate the underlying displacement field using second
order triangular B-splines, in which sharp features are naturally accommodated. A simple heterogeneous model



Case Study TBFEM with TBFEM without 2nd-order Lagrange
(Image registration) sharp feature modeling sharp feature modeling triangular FEM

Case-1 1st-step registration 86.41% 86.29% 85.93%
2nd-step registration 86.45% 86.32% 85.97%

Case-2 1st-step registration 94.69% 94.66% 94.56%
2nd-step registration 94.72% 94.69% 94.58%

Table 1. The registration quality is measured by the post-registration improvement between template image T and
reference image R, which is formulated as (|T − R|2 − |T∗ − R|2)/|T − R|2 where T∗ denotes the new T after the
registration is conducted. In Case-1, there are 2514 DOFs with 600 triangular elements, and for Case-2, there are 2600
DOFs with 619 triangles.

is incorporated with TBFEM to model different elastic material in mammograms. The Young’s Modules of
E = 104 and E = 102 are assigned to pectoral muscles and breast region respectively to model stiff and soft
tissue. These values are chosen empirically and only their ratio matters in the first registration step, in which
there are no Neumann conditions involved.19 Since it is learnt from previous researches that the breasts are
highly compressible, we choose poisson rate ν as 10−10.

During first registration step, control points are selected automatically on the parameterized breast skin
contours and manually from the breast interior region. 29 pairs of contour points and 8 pairs of interior points
are picked for the first experimental case, while 33 and 6 pairs respectively for the second. The total nonlinear
deformation is divided into 20 time steps; In the second step, the regularization term, weighted by the Young’s
Module E, counteracts the artificial image forces, whose magnitude is controlled by the coefficient α. Choosing
correct values for these registration parameters is essential to the success of our algorithm. In our case studies, we
empirically set α to 10−3 and h to 10−2, and receive satisfactory results as well as adequate numerical stabilities.
The registration result of both experiments are illustrated in Figure.4. and Figure.5.

To evaluate our approach, we quantitatively compare it with two other similar registration methods. One
of them is also based on TBFEM but without sharp features modeling (i.e.knots are all fixed), the other uses
second order Lagrange triangular elements instead. The experimental results are documented in Table.1 where the
registration qualities are measured by the post-registration improvement between template and reference images.
It is noticeable that the pre-registration disparity is mainly reduced in the deformation step while the second
registration step makes only small contribution to the final result. The reason is that the salient information
provided by X-ray mammograms are apt to trap the intensity-based optimization within local minima. We also
find that the registration quality in our framework can be improved by incorporation of prior knowledge of feature
lines. However, these improvements seem small in Table.1 because of the massive pre-registration error between
template and reference images. Compared with conventional triangular FEM (Lagrange triangular FEM) with
the same degree of freedom (DOF) and degree of order, TBFEM can delineate the recovered deformation field
more accurately, and thus is superior in our simulation-based registration framework.

Our algorithm was implemented with MSVC++. The experiment was performed on a platform with 2.8GHz
CPU and 1G RAM. Each step of nonlinear elastic deformation takes up to 10 seconds. While during the
refinement stage, each iteration costs about 3 minutes which stops after 20 steps or so.

4. CONCLUSION AND FUTURE WORK

In this paper, we presented a simulation-based registration framework for temporal pair of 2D x-ray mammo-
grams. A novel triangular B-spline finite element method(TBFEM) is incorporated to accurately model the
recovered deformation, as well as the sharp features between different tissue properties using the technique of
knots collapsing. Our registration algorithm employs a two-stepped scheme: the massive disparities between
temporal mammograms are first reduced through a nonlinear elastic simulation; then the mapping between
template and reference images is further refined according to intensity-based information. The results of our
experiment have also shown that the TBFEM incorporated with our framework is superior to traditional FEM
method by improving registration quality considerably.



(a) (b) (c) (d)

Figure 4. Image registration of Case-1 study (a) Template Image T (b) Reference Image R (c) Pre-registered error (d)
Post-registered error after two-step registration technique is applied

(a) (b) (c) (d)

Figure 5. Image registration of Case-2 study (a) Template Image T (b) Reference Image R (c) Pre-registered error (d)
Post-registered error after two-step registration technique is applied

Our current simulation-based registration method only considers tow dimensional mammograms, which may
fail if a lot of out-of-plane motion generated are produced the mammography. To extend current TBFEM
into three dimension can simulate the behavior of the breast more accurately, which is the focus of our future
work. Advanced measurement of intensity similarities or dissimilarities(e.g.mutual information and normalized
correlation), need to be incorporated for better tumor detection. Although we only coupled a simple heterogenous
elastic model with current TBFEM, triangular B-splines is capable of modeling much more sophisticated material
distribution.20 Nevertheless, the work presented in this paper gives the first successful application of TBFEM
in medical imaging. Due to its unique and favorable features, such as flexible triangular domain, space-varying
smoothness, etc, TBFEM is a promising tool for modeling of imaging data, simulation of human bodies and
many other clinical tasks in the future.
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