
Design and Manipulation of Polygonal Models in a Haptic,
Stereoscopic Virtual Environment

Jing Hua
Wayne State University
jinghua@cs.wayne.edu

Ye Duan
University of Missouri at Columbia

duanye@missouri.edu

Hong Qin
Stony Brook University

qin@cs.sunysb.edu

Abstract

This paper presents a flexible, scalable framework for in-
teractive hands-on shape design in a haptic, stereoscopic
virtual environment. The framework is founded upon the
concept of PDE-based geometric surface flow. Given an in-
put polygonal mesh, a user can interactively define implicit
functions around regions of interest of the mesh model, and
the locally or globally affected regions of the model will
automatically deform according to the underlying partial
differential equations and reconstruct the implicitly defined
shape. During the model deformation process, the model
can always maintain its regularity and can properly mod-
ify its topology when collisions between different parts of
the model occur. With augmented haptics functionality and
stereoscopic display, our system provides a more intuitive
interface, which allows users to directly manipulate 3D
polygonal objects with hands.

1. Introduction

Modeling in virtual reality environments has been
quickly emerging as an indispensable tool for solv-
ing a wide variety of design problems, such as fast virtual
prototyping, virtual assembly and disassembly. Direct op-
erations on virtual objects with a 2D mouse are not as
natural and intuitive as interaction via a hand-based mech-
anism. The advent of haptic devices enables a hand-based
mechanism for intuitive, manual interactions within vir-
tual environments towards realistic tactile exploration and
manipulation. Even though there is much research work
on this topic [6][16][9], they primarily focused on inte-
grating haptics technologies with current design systems
and methodologies. Less effort has been spent on find-
ing a good computational model to facilitate haptics-based
design. As for geometric modeling, polygonal mod-
els have recently become prevalent in graphics, anima-
tion, and game applications. In general, direct mesh-based

shape design can be roughly classified into either sta-
tic, geometric techniques, or dynamic, physics-based
techniques. Essentially, static, geometric algorithms of-
ten require a lot of user interventions that are tedious and
laborious, while physics-based algorithms are more intu-
itive for the user to manipulate. Nonetheless, conventional
physical simulation (based on Lagrangian mechanics) is
relatively slow and does not scale well to large-scale mod-
els.

In this paper, we propose to facilitate hands-on 3D shape
design in a haptic, stereoscopic environment based on PDE
surface flow. Users can manipulate a model looking at the
stereoscopic image of the model and feeling its haptic sen-
sation in the environment. In essence, PDE surface flow
as a new powerful design technique can lead to a gen-
eral, physically intuitive framework. The shape deforma-
tion behaviors are controlled by general PDEs. Users can di-
rectly manipulate the models without many low-level, man-
ual operations. Another appealing property of PDE sur-
face flow is its efficiency (i.e., all the computations can be
conducted locally). In contrast to the Lagrangian mechan-
ics, the proposed surface flow technique does not have the
second-order term for elasticity behavior simulation, which
is demonstrated not necessary for interactive mesh-based
shape design. Hence, in principle it is very suitable for the
processing of very large-scale polygonal meshes in a hap-
tic, stereoscopic environment. Furthermore, the surface flow
formulation provides a unified framework that can take ad-
vantage of both the implicit function based shape modeling
and dynamic, force-based shape design. The haptic force
can be easily plugged into the evolution equation of the sur-
face flow to guide its deformation. The surface flow also
has self-adaptive improvement capability, which makes the
model capture users’ haptics-based deformation accurately
and maintain the model quality on the fly simultaneously.

We have developed a haptics and stereoscopy based
hands-on shape design system, which tightly couples the
principle of haptic modeling with the concept of PDE-based
geometric surface flow and permits users to directly work
on meshes with hands. Force feedback provides additional



sensory cues to designers. However, according to our ex-
periments most users oftentimes have difficulties to deter-
mine the depth information of the haptics cursor through the
2D monitor screen. An implementation of stereoscopic vi-
sual feedback in an immersive VR environment would def-
initely help those users to gain a much better understanding
of the 3D shape geometry and perform the direct geometric
deformation through user immersion. The use of haptics in
a stereoscopic environment promises to increase the band-
width of information exchange between designers and the
virtual world. Our prototype system provides a suite of intu-
itive, easy-to-use toolkits that enables users to perform a va-
riety of haptics-based mesh editing operations with stereo-
scopic visual feedback. This tactile exploration can afford
designers to gain a richer understanding on the 3D nature of
virtual solids.

2. Prior Work

Extensive literature exists in interactive mesh generation.
For example,Skin [10] presented a particle-based surface
representation with which a user can interactively sculpt
free-form surfaces. It resembled blobby modeling in the
constructive approach. Zeleznik, Herndon, and Hughes [20]
showed how a gesture-based modeler could be used to sim-
plify conventional CSG-like shape creation and how sketch-
based methods can facilitate the rapid creation of approxi-
mated shapes. Teddy [8] further extended this to more gen-
eral, free-form models, receiving much of its power from
its “inflation” operation and from an elegant collection of
gestures for attaching additional parts to a shape, cutting
a shape, deforming it, etc. However, these approaches can
only provide very rough shapes. Our approach allows users
to take advantage of current existing mesh models and cre-
ate new models via the available, easy-to-use haptic toolkits
in our system.

As for haptics-based computing, a good introduction
to haptic rendering can be found in [16]. Salisbury and
his colleagues developed the PHANToM haptic interface,
which has resulted in many haptic rendering algorithms.
Morgenbesser and Srinivasan [11] pioneered the concept
of force shading. Salisbury and Tarr [15] presented the re-
search work for haptic rendering of simple implicit surfaces.
Kim et al. [9] presented a rather different implicit-based
haptic rendering technique. Avila and Sobierajski [1] used
the PHANToM in a haptic scientific visualization process.
Thompsonet al. [19] derived efficient intersection tech-
niques that permit direct haptic rendering of NURBS sur-
faces.

Despite the widespread application of haptics in visual
computing areas, haptics-based interaction was mainly ap-
plied to touching compliant objects (i.e., haptic rendering).
Whereas, haptic modeling allows designers to directly ma-

nipulate objects with force feedback for the purpose of mod-
eling or deforming objects. [6] presented a touch-enabled
3D model design and texture painting system based on
subdivision surfaces. Hua and Qin [7] developed a hap-
tic interface that permits direct manipulation of volumet-
ric objects. Balakrishnan et al. [2] developedShapeTape,
a curve and surface manipulation technique that can sense
user-steered bending and twisting motions of the rubber
tape. TheFreeFormmodeling system presented by Sens-
Able Technologies enables users to easily create products
with touch. However, this is purely a haptic enhancement
for traditional system. The haptic feedback is not based on
the real dynamics of modeled objects. Duanet al. [5] pre-
sented a haptic sculpting system based on the PDE-based
surface flow. Our paper is based on the previous work and
further extends the framework, enhancing it with new sta-
ble solver and further developing a new VR-based interface.

Different from the existing published results, our current
work is directly based on mesh representations that are ex-
tremely popular. The specific goal of our research is to in-
tegrate the principle of haptic modeling with the concept
of PDE-based geometric surface flow and provides users an
intuitive system for directly designing polygonal objects in
virtual environments.

3. Overview

3.1. User Interface

Figure 1. A haptic, stereoscopicworking environ-
ment.

A SensAble Technologies’s PHANToM is employed as
a haptic device for haptic input and force feedback. The
haptic device is attached to a low-end PC. Another dual-
processor XEON PC with a NVIDIA’s GeForce4 graph-
ics card is used for simulation. An immersive workbench
from Fakespace Inc. is used for stereoscopic display. Figure
1 shows the haptic user interface. The illustration of hard-
ware configuration is shown in Figure 2.



Figure 2. The system configuration.

3.2. System Overview

Our prototype system allows the user to directly edit the
polygonal objects by sculpting and deforming with a haptic
interface. The user sees the model being edited, the tool be-
ing used, and a menu that can be operated using either the
haptic tool or a mouse with stereoscopic display. Each type
of model manipulation is indicated by a different tool. When
a sculpting tool is used to interact the object, either a force
field or a scalar field will be generated accordingly, which
will evolve the polygonal surface to achieve appropriate de-
formations according to the simulation of PDE-based geo-
metric surface flow. In case of using force-based tools, the
computed force will feedback to users simultaneously to ob-
tain haptic feeling, which allows users to reach toward an
object, feel the physical presence of its shape, and sculpt it
with force feedback. The feedback forces are computed di-
rectly based on the object representation and the user’s ac-
tions. Figure 2 shows the flow of multithreads for surface
evolution simulation and haptics computation, respectively,
where thick arrows represent data flow. The surface evo-
lution simulation and haptics computation are weakly syn-
chronized since the haptics computation is much faster than
the surface evolution simulation and the force update rate
has to run at above 1kHz. The weak synchronization is im-
plemented through using the same object representation.

4. PDE-Based Surface Flow

The deformation of the model is governed by a non-
linear initial-value partial differential equation (PDE):

∂S(p)
∂t

= F(t,k,k′, f · · ·)U(p, t), (1)

S(p,0) = S0(p),

whereF is the speed function,t is the time parameter,k and
k′ are the surface curvature and its derivative at the pointp,
andf is the external force.S0(p) is the initial shape of the
model.U is the unit direction vector. In this paper, Equa-
tion 1 is explicitly simulated using the following iterative
equation:

S(p, t +∆t) = S(p, t)+F(p, t)U(p, t)∆t, (2)

whereF(p, t) is the speed function in Equation 1. Com-
paring with implicit level-set based simulation, explicit sur-
face flow simulation allows the user to directly interact with
the polygonal models without any intermediate conversion
steps. In order to ensure the robust simulation of the PDE-
based surface, we have to consider issues such as, model
regularity, simulation step size, etc. Refer to [5] for more
detail.

In order to represent shapes of arbitrary topology, the
model must be able to change its topology properly when-
ever a collision with other parts of the model is detected.
In this paper, we use a simple distance-based collision de-
tection algorithm. Since the user is always actively involved
during the deformation process, we assume that the topol-
ogy modification occurs only under “good” conditions (i.e.
there is no singularities). Our simple algorithm proves to
be sufficient for our experiments. Collision detection is
done hierarchically in two different levels: coarser-level and
finer-level. Coarser-level collision detection is mainly for
the purpose of collision exclusion.

We employ a novel method called “lazy merging” to han-
dle topology modification. The basic idea is that whenever a
collision occurs between two non-neighboring vertices (i.e.,
they become too close to each other), the two vertices will
be freezed immediately (i.e., not allowed to move). Topol-
ogy modification will happen later when all the vertices of
the model become non-active, or a merge operation is en-



forced by the user. There are two steps in the topology
merging operation: (1)Merging-Vertices Clustering, and (2)
Contour Stitching. Figure 3 shows an illustration.

(a) (b)

(c) (d)

(e)

Figure 3. Topology modification. (a) Collisions
are detected between two clusters of vertices,
the interior edges are shown as gray lines and
the interior vertices are shown as gray circles,
the boundary edges are shown as dark lines and
the boundary vertices are shown as dark circles.
(b) The interior regions of the two merging clus-
ters of vertices are removed, and the remain-
ing boundary vertices are put into two separate
linked lists A and B, respectively. (c) The two
linked lists of merging vertices are put into corre-
spondence. The longest edge A2A3 of linked list
A is subdivided so that there are equal numbers
of nodes in the two lists of merging vertices. (d)
The corresponding vertices between the two lists
of vertices are connected. (e) Each of the newly
created quadrilaterals is split into two triangles.

The model-relaxation operations can quickly smooth out
any artifacts that may result from the matching procedure
once the topology merge has been completed.

In our system the basic force can be used by the user to
grab the surface point on the polygonal object and an in-
put force will be generated based on the user’s action. We
employ the Hooke’s law to generate the force,

f = k(pcurs−psur f), (3)

wherepsur f is the surface point on the mesh which the user
initially picks up, pcurs is the haptics cursor that the user

controls to deform the mesh, andk is a positive spring con-
stant. Usually the longer force vector, (psur f −pcursor), the
user’s action introduces, the larger external force will be
generated. The generated force will be used in the simu-
lation of surface flow (Equation 1) to evolve the mesh sur-
face. Simultaneously, an equal but opposite force,−f, will
feed back to the user through the haptic device to get the
haptic feeling.

Furthermore, our system provides a wide range of filter-
ing functions such as Gaussian, spherical function,`(d), to
distribute the force into a set of mesh points in the nearby
region.`(d) also controls the region of influence, where the
surface evolution occurs. Therefore, the force at a surface
pointq is

fq = `(‖q−psur f‖)f. (4)

The computed forcefq is used in Equation 1. Together
with geometric measures, such as the curvature, and the
derivative of the curvature, it can produce a local motion
that explicitly creates a desired global or regional behav-
ior of the surface.

We implement the compressive force to help rendering
and modify the surface properties. The compressive force at
q is along the surface normalnp at the closest surface point
p,

fn =
{

λ(q−p) ·np, if(q−p) ·np < 0,
0, otherwise,

(5)

whereq denotes the position of the haptics cursor, andp de-
notes the closest pointp on the polygonal surface toq. From
the above equation, we can see that if the haptics cursor is
running out of the polygonal object, the compressive force
is equal to zero. Similar to the above basic force, an equal
but opposite force,−fn will be fed back to the user through
the haptic device to let the user feel the resistance when the
haptics cursor is trying to running inside the polygonal ob-
ject.

Using the compressive force, we can easily define the
friction force as follows,

fs = −µ‖fn‖
vp

‖vp‖
, (6)

wherefn is the compressive force when the haptics cursor
is at positions, vp is the projection of the velocity of the
haptics cursor ats onto the tangent plane of the closest sur-
face pointp. The friction force is a passive force purely for
haptic rendering purpose. Therefore, it only feed back to the
user and it is not considered in the surface evolution process.



(a) (b) (c) (d) (e)

Figure 4. The crowned mannequin.

(a) (b) (c) (d) (e) (f)

Figure 5. The mannequin holed and wired.

5. Mesh Editing Operations

5.1. Blending and Drilling

Blending operation is conducted by doing a Boolean-
like union operation between the embedding distance field
of the mesh model and the user-defined distance field. The
distance field can be created by the combination of simple
primitives such as cylinders, spheres, etc, or it can be di-
rectly defined by volumetric datasets. For example, the in-
put of Figure 4 (see also the color page in the appendix) is a
polygonal model of a mannequin head. The user placed an
implicit torus (shown in cyan color) on the top of the head
(Figure 4(a)) and a union operation is selected. The locally
affected regions of the head are marked as active (shown
in red in Figure 4(a)), and will grow (Figure 4(b)) and fi-
nally stop (Figure 4(c)). Figure 5(e) shows another exam-
ple. Here, a volumetric dataset of a spring is placed on the
back of the mannequin head model, and the affected region
of the model will deform according to the distance field de-
fined by the volumetric spring dataset. Figure 5(f) shows the
modified shape. Note that the mannequin head model is not
a closed model (it has a big opening in the neck), level-set
methods can not directly work on such kind of model.

Drilling operation is implemented in a similar fashion
as the blending operation. Here, instead of a union opera-
tion, a subtraction is conducted between the embedding dis-
tance field of the mesh model and the user-defined distance
field. For example, in Figure 5 (see also the color page in

the appendix), the user wants to subtract an implicitly de-
fined cylinder from the top of the head (Figure 5(a)). The
locally affected region of the head (shown in red in Fig-
ure 5(a)) will shrink (Figure 5(b)) and change the topology
(Figure 5(c)). Finally the normal diffusion flow proposed by
Ohtakeet al. [12] is applied to recover the sharp edges of
the model (Figure 5(d)).

5.2. Force-Based Shape Manipulation

The user can apply forces through haptic device to di-
rectly manipulate the polygonal objects. The force is the
basic force of Equation 3 and Equation 4 defined in the pre-
vious Section. The computed forcefq is then plugged into
the right hand side of Equation 1 to guide the deformation
of the model. Here, the speed functionF of Equation 1 be-
comes̀ (‖q−psur f‖)‖f‖, the unit direction vector isf

‖f‖ .
There are five main steps during a typical interactive de-

sign process:

1. The user selects a region of the model to be deformed
by placing the haptics cursor around it.

2. The user applies force through the haptic device.

3. The corresponding region of the model deforms ac-
cording to Equation 1, Equation 3, and Equation 4.

4. The system automatically conducts the collision de-
tection operations. If there is a collision occurring be-
tween different parts of the model, the user will need



to decide whether or not to allow the system to change
the topology of model.

5. The system automatically performs the model relax-
ation operations [5] to maintain the model regularity
and smoothness.

These five steps will keep repeating until a user-desired
shape has been obtained. Force-based shape manipulation
enables the user to easily conduct a variety of mesh editing
tasks such as extrusion, carving, drilling, etc.

5.3. Free-Form Sketching

Our system supports haptics-based free-form sketching
for mesh manipulation. The user can draw some free hand
strokes using the haptic device, either directly on the mesh
or stem from the mesh. Strokes are then densely sampled by
the system as a combination of Gaussian blobs that are as-
signed evenly at each point or as a collection of points and
are converted to distance functions by methods such as the
Fast Tagging algorithm [21]. Simultaneously, the affected
regions of the underlying mesh model will automatically
deform according to the corresponding scalar fields gener-
ated by the strokes. During these operations, the user can
feel the force feedback and observe the shape deformation
at the same time.

The PDE used here is the simplified version of the
weighted minimal surface flow proposed by Caselles et al.
[3]:

∂S
∂t

= (gv+g‖H‖)N, (7)

where,H is the mean curvature of the surface,N is the unit
normal of the surface, andv is a constant speed.g is the non-
increasing, non-negative weight function that will stop the
deformation of the model when it reaches the object bound-
ary, and is defined as the commonly used 3D edge detec-
tor:

g(S) =
1

1+‖∇(I(S))‖2 , (8)

where,I is the volumetric density function and∇ is the gra-
dient function.

To calculate the mean curvatureH of the surface, we em-
ploy the discrete curvature estimator proposed by Desbrun
et al. [4]:

H =
∑ j∈N1(i)(cotα j +cotβ j)(xi −x j)

∑ j∈N1(i)(cotα j +cotβ j)
, (9)

wherex j is one of the vertex at the one-neighborhood of
xi . α j andβ j are the two angles opposite the edge connect-
ing the two verticesxi andx j , andH is the mean curvature
vector at vertexxi .

For example, in Figure 4(d), the user iteratively sketch-
ing two strokes on the mesh using the haptic device. The

Gaussian blobs are assigned evenly at each sampling point.
The blob field is shown in cyan color. Figure 4(e) shows
the final shape of the model. Note that the non-trivial topol-
ogy has been correctly represented.

5.4. Mesh cutting and pasting

5.4.1. Mesh cutting and blendingOur system supports
implicit function aided mesh cutting, blending and pasting
operations. In this paper, mesh cutting is conducted by im-
plicit primitives because of their convenient inside/outside
properties. For example, the head of the cow (Figure 6(a))
and the head of the pig (Figure 6(b)) are cut by two im-
plicit spheres, respectively. The body of the cow and the
head of the pig are then aligned together by scaling, trans-
lation and rotation (Figure 6(c)), and the two parts are con-
nected together by the contour stitching method (see also
the color page in the appendix). Finally, the reconnected re-
gions are smoothed out by the following mean curvature
flow [4, 13, 17, 18]:

∂s
∂t

= HN, (10)

S(0) = S0.

H is the mean curvature of the surface, andN is the unit nor-
mal of the surfaceS. Only the reconnected regions of the
model will deform, and the deformation will stop when the
mean curvature becomes zero (i.e., the velocity is zero). The
mesh relaxation operators such as the tangential Laplacian
operator and the three mesh optimization operations are
also employed during the deformation. The final smoothed
shape is shown in wireframe view and in rendered view in
Figure 6(e) and Figure 6(f), respectively.

5.4.2. Mesh pastingMesh pasting means directly past-
ing a mesh (source mesh) on the interior regions of another
mesh (target mesh), and reconnecting them. This is differ-
ent from mesh blending, where two meshes with open con-
tours are connected together. For example, in Figure 7, the
source mesh is the head of the dog (Figure 7(a)), the tar-
get mesh is the ellipsoid. The user first put the source mesh
in the proximity of regions of interest of the target mesh.
The boundary vertices of the source mesh are then pro-
jected onto the target mesh along its tangential normal di-
rection (Figure 7(b)). This is done by the ray-triangle inter-
section method frequently used in the computational geom-
etry community. In the interest of the space, we will omit the
details here, please refer to the book written by O’Rourke
[14] for more details. To reconnect the source mesh with the
target mesh, we locally refine the target mesh several times
by triangle quadrisection several times so that each triangle
of the target mesh contains at most one source mesh ver-
tex (Figure 7(c)). Then, the boundary vertices of the source
mesh are connected with the target mesh (Figure 7(d)) by a



(a) (b) (c)

(d) (e) (f)

Figure 6. Mesh cutting and blending: (a)-(b) The head of the cow and the head of the pig are cut by implicit
spheres. (c) The head of the pig and the body of the cow are aligned together. (d) The two parts are blended
together by contour stitching. (e)-(f) The reconnected regions are smoothed out by mean curvature flow.

(a) (b) (c) (d) (e)

Figure 7. Dog-head egg.

new mesh snapping method that we propose in this paper.
We will explain the new mesh snapping method in the fol-
lowing paragraph. To maintain the manifold geometry, the
regions of the target mesh that are enclosed by the bound-
ary vertices of the source mesh will be removed. Finally,
the reconnected region will be smoothed out (Figure 7(e))
by the aforementioned mean curvature flow (Section 5.4.1)
and mesh relaxation operators.

5.4.3. Mesh snappingIn this paper, we proposed a new
mesh snapping method to reconnect the boundary vertices
of one mesh (the source mesh) with the corresponding ver-
tices of another mesh (the target mesh). Before the recon-
nection, all the boundary vertices of the source mesh need
to be projected onto the target mesh and are put into a linked
list. In addition, the target mesh may need to be locally re-
fined several times through triangle quadrisection so that
each triangle of the target mesh contains at most one source
mesh vertex.

Figure 8 shows an illustration of the mesh snapping
method. Here, the vertices of the source mesh are shown
in dark circles. The edges of the source mesh are shown in
dark lines (both solid and dotted). The edges of the target
mesh are shown as gray solid lines. Starting from the first
vertex (shown in gray-colored circle in Figure 8(a)) in the
linked list of the source mesh vertices, find its closest vertex
on the target mesh (shown in small white circle), snap it to
the position of the first source mesh vertex and merge these
two vertices. Now (Figure 8(b)) the second vertex (shown
in gray-colored circle) in the linked list becomes the current
vertex. Check whether it is located in the 2-neighborhood of
the previous source mesh vertex. If yes, then snap the clos-
est one-neighborhood vertex (shown in small white circle)
of the previous source mesh vertex to the current vertex and
merge them (Figure 8(c)). Otherwise (Figure 8(c)-(d)), in-
sert a new source mesh vertex in the middle between the
current source mesh vertex and the previous source mesh
vertex. Repeat the above steps (Figure 8(e)) until all the



source mesh vertices on the linked list are merged with the
target mesh (Figure 8(f)). The linked list of the boundary
vertices of the source mesh can be either open or closed. If
the linked list is open (as shown in Figure 8), then a non-
manifold patch is attached onto the target mesh. Otherwise,
if the linked list is a closed list, then after the source mesh is
attached onto the target mesh, either the regions of the tar-
get mesh that are enclosed by the boundary vertices of the
source mesh or the regions of the target mesh that are out-
side the target mesh will be removed (e.g. Figure 7(e)).

(a) (b)

(c) (d)

(e) (f)

Figure 8. Merge the boundary vertices of the
sourcemesh vertices with the corresponding ver-
tices on the target mesh by mesh snapping. The
source mesh vertices are shown in shaded cir-
cles, the source mesh edges are shown in dark
colors (both solid and dotted lines), and the tar-
get mesh edges are shown in gray-colored lines.
In each subfigure, the gray-colored circle is the
current source mesh vertex that is merging with
its corresponding vertex (small white circle) on
the target mesh. (a) A chain of source mesh ver-
tices has been projected onto the target mesh.
(b)-(e) Merge the chain of source mesh vertices
with the target mesh iteratively by mesh snap-
ping. (f) The chain of source mesh vertices has
been merged with the target mesh.

We can also paste a source mesh with the detailed vi-
sual information onto a target mesh. For example, in Figure
9, the source mesh is generated from a color image (Fig-
ure 9(a)) by treating the intensity function of the image as
the height function of the mesh. The target mesh is a polyg-
onal model of an apple (Figure 9(b)). To preserve the de-
tails, the source mesh is first decomposed into a base mesh
plus a detail (height information) stored at each vertex. Only

the base mesh will be projected onto the target mesh, and
the details will be added back on each vertex along its cur-
rent vertex normal direction (Figure 9(c)). Note that the tar-
get mesh is locally dense-sampled to accommodate the high
resolution of the source mesh. Figure 9(d) shows the ren-
dered view of the final pasted model.

(a) (b)

(c) (d)

Figure 9. The big apple: I love New York.

6. Implementation and Results

Haptics-based applications demand high update rates,
therefore it is both desirable and necessary to employ multi-
processor computers to accelerate computation. We develop
multi-threaded implementation and parallel algorithms in
order to take advantage of parallel computational archi-
tecture for performance improvement (see Figure 2). The
haptics, graphics, and simulation computations are each as-
signed one thread. Haptics computations usually do not re-
quire more than a single processor because the calcula-
tions are simple and must be performed approximately 1000
times per second. By having a dedicated CPU, the thread
that controls the haptics needs not to compete with the com-
putationally intensive simulation thread. By contrast, if the
haptics calculations and physical simulations are performed
on the same CPU, it is very likely that the haptics thread
will not be allocated enough CPU time to guarantee the de-
sired update rate of 1000 Hz. This results in buzzing, jerk-
ing, I/O latency, and other phenomena that interfere with
tactile-based input/output. Therefore, we separate the force
computation from the evolution of the polygonal model.
By spreading the computational and graphics loads to sep-
arate processors, we free the haptics station to process user
input/output exclusively. Graphical computations are also



normally assigned a single thread. Many computations re-
lated to display are now implemented in hardware and can
be performed very quickly. The software is often respon-
sible only for sending the instructions to the hardware to
execute. In addition, since most graphics hardware boards
are single-pipelined, in practice it may be less effective for
more than a single thread of execution to access the graph-
ics hardware at any given moment.

Evaluating the usefulness of haptic feedback is a very
important step to provide helpful simulated sense of touch
to users. Based on a qualitative approach, we perform a se-
ries of perceptual experiments to evaluate performance of
those haptic tools in virtual sculpting tasks. After experi-
encing different haptic tools, the users all gave positive re-
sponses. As we all know, the polygonal objects do not have
associated physical properties that can be used to derive
faithful haptic feedback. However, the haptic tools that we
provide is found useful and allows users to easily gain richer
understanding of the 3D nature of the modeled polygonal
objects. The interactions between the tools and models are
much easier to control comparing with those interactions
without haptics. The desired deformation of the polygonal
object is easy to achieve with the available tools. The inter-
face is found to be intuitive and easy to understand.

7. Conclusion

We have presented hands-on shape design in a haptic,
stereoscopic environment founded upon PDE-based geo-
metric surface flow. By facilitating haptics functionality and
stereoscopic display, our system maximizes the potentials
offered by PDE based surface flow, haptic interactions, and
stereoscopic rendering. It provides an intuitive interface and
allows users to directly manipulate 3D polygonal objects
with hands. We have also observed that the flow-based ap-
proach has some very appealing potentials on accomplish-
ing parallel design tasks that are simultaneously performed
by several designers. Therefore, we plan to further extend
current system into a network-based collaborative design
framework in the future.

References

[1] R. S. Avila and L. M. Sobierajski. A haptic interaction
method for volume visualization. InProceedings of the 7th
IEEE Visualization ’96, pages 197–204, 1996.

[2] R. Balakrishnan, G. Fitzmaurice, G. Kurtenbach, and
K. Singh. Exploring interactive curve and surface manipula-
tion using a bend and twist sensitive input strip. InProceed-
ings of the 1999 ACM Symposium on Interactive 3D Graph-
ics, pages 111–118, 1999.

[3] V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert. Minimal
surfaces based object segmentation.IEEE Trans. on Pattern
Analysis and Machine Intelligence, 19:394–398, 1997.

[4] M. Desbrun, M. Meyer, P. schroder, and A. H. Barr. Im-
plicit fairing of irregular meshes using diffusion and curva-
ture flow. InSIGGRAPH ’99 Proceedings, pages 317–324.

[5] Y. Duan, J. Hua, and H. Qin. Hapticflow: PDE-based mesh
editing with haptics. InProceedings of IEEE Computer Ani-
mation and Social Agents, pages 193–200, 2004.

[6] M. Foskey, M. A. Otaduy, and M. C. Lin. Artnova: Touch-
enabled 3d model design. InProceedings of IEEE Virtual
Reality, pages 119–126, 2002.

[7] J. Hua and H. Qin. Haptics-based volumetric modeling us-
ing dynamic spline-based implicit functions. InProceedings
of IEEE Symposium on Volume Visualization and Graphics
2002, pages 55–64, 2002.

[8] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A skeching
interface for 3D freeform design. InSIGGRAPH ’99 Pro-
ceedings, pages 409–416, 1999.

[9] L. Kim, A. Kyrikou, G. S. Sukhatme, and M. Desbrun. An
implicit-based haptic rendering technique. InProceeedings
of the IEEE/RSJ International Conference on Intelligent Ro-
bots, 2002.

[10] L. Markosian, J. M. Cohen, T. Crulli, and J. Hughes. Skin:
A constructive approach to modeling free-form shapes. In
SIGGRAPH ’99 Proceedings, pages 393–400, 1999.

[11] H. B. Morgenbesser and M. A. Srinivasan. Force shading
for haptic perception. InProceedings of ASME International
Mechanical Engineering Congress and Exposition, Dynamic
Systems and Control Division, pages 407–412, 1996.

[12] Y. Ohtake, A. Belyaev, and A. Pasko. Dynamic meshes for
accurate polygonization of implicit surfaces with sharp fea-
tures. InProceedings of Shape Modeling International 2001,
pages 74–81, 2001.

[13] Y. Ohtake, A. G. Belyaev, and I. A. Bogaevski. Mesh regu-
larization and adaptive smoothing.Computer Aided Design,
33(4):789–800, 2001.

[14] J. O’Rourke.Computation geometry in C. Cambridge Uni-
versity Press, 1998.

[15] J. K. Salisbury and C. Tarr. Haptic rendering of surfaces
defined by implicit functions. InProceedings of the ASME
Sixth Annual Symposium on Haptic Interfaces for Virtual En-
vironment and Teleoperator Systems, pages 15–21, 1997.

[16] K. Salisbury, D. Brocki, T. Massiet, N. Swarupf, and
C. Zillest. Haptic rendering: programming touch with vir-
tual objects. InProceedings of the 1995 Symposium on In-
teractive 3D Graphics, pages 123–130, 1995.

[17] G. Sapiro.Geometric Partial Differential Equations and Im-
age Analysis. Cambridge University Press, 2001.

[18] J. A. Sethian.Level Set Methods and Fast Marching Meth-
ods. Cambridge University Press, second edition, 1999.

[19] T. V. Thompson, D. E. Johnson, , and E. Cohen. Direct haptic
rendering of sculptured models. InProceedings of the Sym-
posium on Interactive 3D Graphics, pages 167–176, 1997.

[20] R. C. Zeleznik, K. Herndon, and J. Hughes. Sketch: An in-
terface for sketching 3D scences. InSIGGRAPH ’96 Pro-
ceedings, pages 163–170, 1996.

[21] H. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruc-
tion and deformation using the level set method. InProc.
Of the IEEE Workshop on Variational and Level Set Meth-
ods in Computer Vision, pages 194–201, 2001.



(a) (b) (c) (d) (e)

Figure 4. The crowned mannequin.

(a) (b) (c) (d) (e) (f)

Figure 5. The mannequin holed and wired.

(a) (b) (c)

(d) (e) (f)

Figure 6. Mesh cutting and blending: (a)-(b) The head of the cow and the head of the pig are cut by implicit
spheres. (c) The head of the pig and the body of the cow are aligned together. (d) The two parts are blended
together by contour stitching. (e)-(f) The reconnected regions are smoothed out by mean curvature flow.


