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Abstract—Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to

model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model

implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and

implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to

flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate

PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-

based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric

geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure

geometric models.

Index Terms—PDE techniques, geometric modeling, solid models, implicit models, free-form deformation, shape blending.

Ç

1 INTRODUCTION AND MOTIVATION

GEOMETRIC modeling is fundamental for visual comput-
ing because it provides shape representation and

manipulation for geometric objects. Different from surface
modeling techniques that are extensively used to define
geometric shapes, solid modeling provides a geometrically
unambiguous and topologically consistent representation
for 3D objects with interior geometry. It greatly enhances
existing surface modeling techniques. Popular solid model-
ing techniques [1], [2] include: constructive solid geometry
(CSG), boundary representation (B-rep), cell decomposition,
and free-form parametric solids, etc. The CSG approach
exploits semi-algebraic sets and Boolean operations on
simple primitives, such as cubes, spheres, cylinders, etc., to
construct complex solid models. The B-rep technique
typically defines a solid object via a set of boundary
surfaces with extra topological information. The cell
decomposition method usually uses 2D cross-sectional
slices or cubical units (e.g., voxels) to approximate
complicated solids with hierarchically structured octree
schemes. Free-form solid modeling techniques use free-
form splines such as B-splines, Hermite splines, and
NURBS, to define solid objects that combine the benefits
of free-form boundary surfaces and interior geometry in a
unified framework.

On the other hand, parametric PDE models define

geometric objects as solutions of certain partial differential

equations with only a few boundary conditions [3], [4], [5],
[6], [7]. In particular, trivariate PDEs can also be used to
define parametric solid objects [8], [9]. In comparison with
conventional geometric modeling techniques, PDE models
have many advantages:

. The behavior of a PDE object is governed by
boundary-value differential equations. Geometric
models with high-order continuity requirements
can be readily defined through high-order PDEs.

. In principle, PDE objects can be reconstructed from a
small set of boundary conditions. Their interior
information will be automatically recovered by
solving given PDEs. Hence, PDE models require
fewer parameters than free-form solids.

. In particular, PDE solids have the advantage of several
conventional solid modeling techniques, such as
spline-based behavior, boundary surface representa-
tions, and underlying parameterization for (general-
ized) cell decomposition in the interior. Therefore,
they have the potential to integrate CSG, B-rep, and
cell decomposition into a single framework.

. Parametric PDEs offer mapping between parametric
and physical space. Hence, such PDEs, especially
trivariate PDEs, can provide natural free-form
deformation (FFD) operations for embedded objects
inside the PDE models.

. PDE objects can unify both geometric and physical
aspects for real-world models. Various heteroge-
neous requirements can be enforced and satisfied
simultaneously.

In addition, PDEs are also be used to model implicit
solids because implicit models have the advantage of
representing arbitrary topological objects as level sets of
certain scalar functions [10].

However, both parametric techniques and implicit models
have their own strengths and limits. For example, parametric
models provide explicit shape descriptions that are missing
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from implicit representations, but parametric techniques
have difficulties with shape blending and collision detection,
which, in contrast, can be easily achieved by implicit
functions. Therefore, a unified approach offering advantages
of both categories will be more desirable for arbitrary
geometric modeling purposes. Moreover, the previous
mentioned techniques mostly focus on pure geometric
models. To simulate real-world objects, it’s better to incorpo-
rate material and physical properties such as density into
geometric representations. Because many material attributes
can be synthesized by scalar values, implicit functions will be
ideal candidates to model these physical properties. There-
fore, by integrating implicit models with geometric repre-
sentations, one can possibly achieve more realistic simulation
of real-world models. Since the PDE formulations for
parametric and implicit PDE solids have similar forms, we
propose an integrated PDE modeling framework which
unites parametric and implicit PDEs so that it can simulta-
neously model geometric and material attributes including
shape and intensity distributions for geometric objects. The
PDE formulation is an integration of trivariate parametric
PDEs that govern the geometric solid shape which can further
be treated as the FFD deforming space and implicit elliptic
PDEs that model its scalar intensity field. It can be viewed as a
4D formulation that extends the traditional 3D geometry by
another dimension for possible physical material properties.

Our framework provides powerful modeling techniques
such as free-form and direct manipulation, arbitrary shape
blending, and intensity-based deformation for geometric
objects with parametric geometry and implicit intensity
distributions. The integration of implicit and parametric
PDE techniques can inherit modeling advantages of both
techniques while compensating each other’s limitations. It
offers an intuitive shape design and manipulation environ-
ment to model geometric objects with arbitrary topology.

2 PRIOR WORK

Parametric PDEs were first employed by Bloor et al. for
surface blending, free-form surface design, solid modeling,
functional design, and interactive surface sculpting [4], [5],
[6], [8]. The geometric objects are defined as solutions of
given parametric PDEs with very few parameters, such as
boundary-value conditions and blending coefficients asso-
ciated with the equations. In the past several years, we [11],
[12], [13] presented a physics-based PDE surface modeling
technique that facilitated direct manipulation and inter-
active sculpting of physics-based PDE surfaces and dis-
placements. These techniques allow PDE surfaces of diverse
types of topology to be defined through general, flexible
boundary constraints and operations such as trimming,
merging, manipulating of isoparametric curves and/or
arbitrary curve networks, editing user-specified subsur-
faces, etc. The PDE techniques can also model surface
displacements to manipulate existing parametric surface
objects and facilitate the data exchange between PDE
surfaces with other parametric surface models.

Later on, by expanding the coverage of parametric PDE
techniques to trivariate solids, we [9] employed trivariate
elliptic PDEs to model parametric solid geometry with
physical properties. PDE solids can be defined by more

flexible boundary constraints, including boundary surfaces
or a set of boundary curve networks. Our PDE solid
modeling system provides solid manipulations through
boundary surface sculpting, as well as local control and
trimming operations using simple CSG tools and user-
specified data sets to obtain arbitrary topological shapes.
The interactive solid sculpting and manipulation are
accomplished by integrating PDE solids with physics-based
modeling techniques with intuitive editing toolkits.
Furthermore, since a trivariate parametric PDE provides a
mapping between the parametric and physical space, it can
be used as an FFD scheme.

In essence, an FFD scheme involves a mappixng from the
3D parametric domain to the physical domain through a
certain trivariate function. The trivariate function provides a
parameterization for the shape to define its position in the
space. When the space is deformed, the embedded shape is
deformed according to its parameterization. FFD can be
applied to arbitrary geometric objects since the embedding
space is independent of the geometric representation and
topological structure of embedded targets. There are
various FFD schemes that use splines [14], [15], [16],
subdivision volumes [17], implicit functions [18], [19], etc.
Despite of flexible topological coverage of geometric
models, FFD has difficulty in supporting direct manipula-
tion of solid objects in general.

Another way to define objects with arbitrary topology is
using implicit functions. To take advantage of both PDE
techniques and implicit models, we [20], [21] proposed
using elliptic implicit PDEs for arbitrary shape design,
reconstruction, recovery, blending, and manipulation.

To further explore the potential of PDE techniques for
arbitrary shape modeling with features and functionalities,
we propose an integrated formulation that incorporates
parametric and implicit PDEs to model four-dimensional
objects containing three-dimensional geometric shape in-
formation plus a one-dimensional material attribute such as
intensity distribution. It offers more general direct and free-
form modeling functionalities for objects. This unified
framework will forge ahead toward the realization of the
full potential of PDE techniques in geometric modeling.

3 INTEGRATED PDE FORMULATION FOR

GEOMETRIC OBJECTS WITH INTENSITY

In order to model both the geometry and intensity material
attributes of an object simultaneously, we propose a unified
formulation by integrating the trivariate parametric and
implicit PDEs into an elliptic PDE defined over parametric
u, v, w space. Equation (1) is a fourth-order formulation:

a2 @
2

@u2
þ b2 @

2

@v2
þ c2 @2

@w2

� �2

Pðu; v; wÞ ¼ 0; ð1Þ

where Pðu; v; wÞ ¼ ½Xðu; v; wÞ; dðu; v; wÞ�>, Xðu; v; wÞ ¼ ½xðu;
v; wÞ yðu; v; wÞ zðu; v; wÞ�> defines PDE solid coordinates
in 3D physical space, dðu; v; wÞ represents corresponding
intensity field, aðu; v; wÞ, bðu; v; wÞ, and cðu; v; wÞ are
blending coefficient functions that control contributions
from u, v, w directions. To provide more degrees of freedom
when modeling integrated PDE objects, we allow blending
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coefficient functions to have different controls on geometry
and intensity attributes, i.e., the coefficient functions can be

defined as follows:

aðu; v; wÞ ¼
�gðu; v; wÞ 0

0 �dðu; v; wÞ

� �
;

bðu; v; wÞ ¼
�gðu; v; wÞ 0

0 �dðu; v; wÞ

� �
;

cðu; v; wÞ ¼
�gðu; v; wÞ 0

0 �dðu; v; wÞ

� �
:

Furthermore, we also use a second-order equation (2) for
better time performance with less continuity requirements

because, although higher order PDEs provide higher

geometric continuity, they also require a longer time to
obtain a solution than lower order equations.

a2 @
2

@u2
þ b2 @

2

@v2
þ c2 @2

@w2

� �
Pðu; v; wÞ ¼ 0: ð2Þ

Note that there are special cases that the integrated

equations can reduce to either parametric geometric models
or implicit intensity formulations. For example, when the

intensity distribution across the entire parametric space has

a constant value, (1) is reduced to a trivariate parametric
equation only defining PDE solid geometry:

�2
g

@2

@u2
þ �2

g

@2

@v2
þ �2

g

@2

@w2

� �2

Xðu; v; wÞ ¼ 0: ð3Þ

Similarly, when the mapping between the parametric space
of u, v, w and the physical space of x, y, z becomes identical,

(1) becomes the implicit PDE for the intensity field similar
to the PDE introduced in [20], [21]:

�2
d

@2

@u2
þ �2

d

@2

@v2
þ �2

d

@2

@w2

� �2

dðu; v; wÞ ¼ 0: ð4Þ

With this type of formulation, we can model solid shape

geometry and material properties such as intensity distribu-
tion in a single framework which provides modeling

advantages of both parametric models and implicit functions.

3.1 Boundary Conditions for Integrated PDE Solids

The integrated PDE formulations are elliptic PDEs that

define the geometry and intensity of PDE solid objects with
the corresponding boundary conditions. The parametric

domain is a cubic space of u, v, w covered by six boundary
surfaces. Usually, information on these surfaces is provided

to define a PDE solid, especially the geometric shape. The

resulting geometric object obtained by solving the equation
will interpolate these boundary surfaces and recover the

interior region surrounded by these surfaces. On the other
hand, we allow different types of boundary constraints to

define the intensity distribution because it is not the location
but the intensity value at the location that determines the

implicit shape. In this paper, we restrain u, v, w to vary

between 0 and 1 because reparametrization from arbitrary
span ½a; b� can be easily obtained.

The six geometric boundary surfaces defining three

surface pairs bounding the PDE solid are in the form of (5):

Xð0; v; wÞ ¼ U0ðv; wÞ;
Xð1; v; wÞ ¼ U1ðv; wÞ;
Xðu; 0; wÞ ¼ V0ðu;wÞ;
Xðu; 1; wÞ ¼ V1ðu;wÞ;
Xðu; v; 0Þ ¼W0ðu; vÞ;
Xðu; v; 1Þ ¼W1ðu; vÞ:

ð5Þ

These surfaces share corresponding boundary curves with

each other. More generally, we can give a set of surfaces

along the three parametric directions inside the solid

space, like cross-sectional lattices to define a PDE solid.

This type of generalized boundary constraints has the

form of Xðui; v; wÞ ¼ Uiðv; wÞ, Xðu; vj; wÞ ¼ Vjðv; wÞ, or

Xðu; v; wkÞ ¼Wkðv; wÞ.
Furthermore, because any isoparametric surface with a

given value of u, v, or w inside the solid geometry is a PDE

surface, we also use a bivariate PDE surface formulation

with the same order of the trivariate equation to model

boundary surfaces, which can be derived from a set of

boundary curves. Therefore, a PDE solid geometry can also

be defined by a set of boundary curve networks. For

example, the PDE boundary surface formulation for a

fourth-order PDE solid can have the following form:

a2
1

@2

@u2
1

þ a2
2

@2

@u2
2

� �2

Xðu1; u2Þ ¼ 0; ð6Þ

where ðu1; u2Þ 2 fðu; vÞ; ðu;wÞ; ðv; wÞg. The boundary surface

formulation for second-order PDE solids has a similar form:

a2
1

@2

@u2
1

þ a2
2

@2

@u2
2

� �
Xðu1; u2Þ ¼ 0: ð7Þ

The boundary curves to define a PDE solid can be

defined as follows:

Xðu; vi; wjÞ ¼ UijðuÞ;
Xðuk; v; wlÞ ¼ VklðvÞ;
Xður; vs; wÞ ¼WrsðwÞ:

ð8Þ

Such general and arbitrary boundary conditions give

users more flexibility to design solid shapes with fewer

parameters and are capable of modeling solids that must

pass through a set of curves as general constraints.
Besides the boundary constraints for PDE solid geo-

metric shapes, we need to define the corresponding

intensity distributions. The simplest way is to set the

intensity values to be constant throughout the solid space.

Then, the defined PDE solids can be treated as pure

geometric objects. Users can also use certain implicit

functions to assign intensity values for the solids. In

addition, the intensity material distribution can be defined

by boundary constraints. Besides the traditional boundary

conditions that contain information at boundaries of the

parametric working space, we also allow generalized

implicit boundary constraints such as iso-surfaces/curves

and volumetric data sets, etc. Refer to [21] for more details

about boundary conditions for implicit PDEs.
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3.2 Numerical Simulation

There are various techniques that can be used to solve
parametric PDEs. Although analytic techniques offer
accurate and fast solutions for PDEs with certain boundary
conditions, they cannot provide satisfying results from
more general constraints. In contrast, numerical techniques
can guarantee solutions for PDEs, especially when addi-
tional constraints are enforced. Among many matured
numerical techniques, we resort to the finite-difference
method (FDM) and iterative techniques for linear equations
because they are simple, easy to implement, and suitable for
various general and additional constraints in the solid
working space. To improve the system performance, we
also employ a multigrid subdivision method starting from
coarse resolution and refining to finer grids.

The FDM first divides the parametric space into discrete
grids along parametric directions, then, for each grid point,
the partial derivatives in the equation are replaced by finite
difference approximations. By collecting the finite difference
equations at the grid points, we can transform a continuous
PDE into an algebraic equation system. This system can then
be solved numerically either through a direct procedure or an
iterative process for an approximate solution.

We use the central-difference scheme to approximate

partial derivatives in the trivariate PDE by dividing theu, v,w

domain into l, m, and n discretized points (Fig. 1), respec-

tively. Using (3) as an example, given a a grid point ði; j; kÞ, the

second and fourth-order partial derivatives of X,
@2Xi;j;k

@u2 ,
@4Xi;j;k

@u4 , and
@4Xi;j;k

@u2@v2 at fi; j; kg can be approximated by:

@2Xi;j;k

@u2
¼ Xi�1;j;k þXiþ1;j;k � 2Xi;j;k

ð�uÞ2
;

@4Xi;j;k

@u4
¼ Xi�2;j;k þXiþ2;j;k � 4Xi�1;j;k � 4Xiþ1;j;k þ 6Xi;j;k

ð�uÞ4
;

@4Xi;j;k

@u2@v2
¼

Xi�1;j�1;kþXi�1;jþ1;kþXiþ1;j�1;kþXiþ1;jþ1;k

ð�uÞ2ð�vÞ2 þ
�2Xi�1;j;k�2Xiþ1;j;k�2Xi;j�1;k�2Xi;jþ1;kþ4Xi;j;k

ð�uÞ2ð�vÞ2 :

Other partial derivatives along the v and w directions can be
computed similarly.

After replacing the partial derivatives by their finite-
difference approximations at discretized grid points, (3) can
be rewritten as:

AX ¼ z; ð9Þ

where A is a discretized differential operator in ðl�m�
nÞ � ðl�m� nÞ matrix form and each row in A consists of
coefficients of the difference equation for its corresponding
grid point. A is also controlled by the coefficient functions.

X ¼ X0;0;0 X0;0;1 � � � Xl�1;m�1;n�1½ �>

and

z ¼ z0 z1 � � � zðl�1Þ�ðm�1Þ�ðn�1Þ
� �>

:

More detailed information about A can be found in [21].
Similarly, (4) can be approximated by

Bd ¼ e; ð10Þ

as well as the second-order equations.
By putting these together, we get an approximation for (1):

MP ¼ f : ð11Þ

Note that a PDE solid is open along all of the u, v, and w
directions, so the computation of partial derivatives near to
the six boundary surfaces requires a forward/backward
difference approximation scheme. Arbitrary boundary
conditions can be easily enforced using FDM by formulat-
ing the boundary conditions as linear equations and
incorporating them into the finite difference equation
system. Note that, despite certain combinations of con-
straint imposition shown in our experiments, in general this
type of elliptic PDEs allow boundary conditions to be
explicitly formulated in arbitrary form. This permits
designers to choose (various) constraints based on diverse
designing tasks.

3.3 Multigrid Iterative Approximation

The approximate difference equations form an algebraic
equation system which can be easily solved by either direct
methods or iterative methods and is suitable for parallel
computing. For high resolution of domain discretization,
the number of difference equations will increase dramati-
cally, which indicates iterative solvers are more realistic
choices than direct methods.

The iterative methods make use of the structure of the
sparse matrix on the left-hand side of the finite-difference
equation system. Using (9) as an example, the matrix A is
split into two parts

A ¼ Ad �Ar; ð12Þ

where Ad consists of the diagonal elements of A and zeros
everywhere else, Ar is the remainder. Then, (9) becomes

AdX ¼ ArXþ z: ð13Þ

The iterative methods start from choosing an initial guess
Xð0Þ and then solving the equations successively by
iterating XðsÞ from

AdX
ðsÞ ¼ ArX

ðs�1Þ þ z: ð14Þ

Given boundary conditions, one can compute an initial
guess of the PDE solid by linear interpolations based on
given constraints. The iteration will stop at XðsÞ for an
approximate solution when the difference between con-
secutive iterating results XðsÞ and Xðs�1Þ is less than a
threshold.
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Fig. 1. The point discretization of part of a PDE solid.



Certain variants of iterative techniques exist [22]. In this

paper, we employ the Gauss-Seidel iteration, which applies

the iteration result at a grid point to the right-hand side of

(14) as soon as it becomes available. To further speed up the

converging rate of Gauss-Seidel iteration, the error factor

characterized by the difference between the approximation

and the real solution is considered. This leads to the method

of Successive Over-Relaxation (SOR) iteration.
The large number of sample points of a PDE surface/

solid results in the slow convergence of iterative techniques.

The multigrid approximation based on simple subdivision

schemes is used to improve the computation performance.

When solving the PDE solid geometry, since there are two

types of boundary conditions, i.e., curve network and

surfaces, different multigrid approximation schemes are

employed to handle these two types of boundary con-

straints, respectively.
If boundary conditions for solid geometry are curve

networks, boundary surfaces shall first be computed based

on the PDE surface formulation. This can be done by

starting with a small number of sample points at the

coarsest resolution of the PDE boundary surfaces and the

approximate PDE surfaces can be easily derived after

several iterations. Then, the corresponding PDE solid is

solved. Users can refine the coarse boundary mesh through

subdivision and use the new subdivided mesh as an initial

guess for subsequent iteration steps. The finer resolution is

then computed iteratively to achieve a more accurate and

smoother solution of boundary PDE surfaces as well as the

PDE solid. For further refinement over the finest resolution,

the multigrid approximation starts with the up-sampling of

all boundary curves through the use of a four-point

interpolatory subdivision scheme [23] in order to guarantee

the smoothness requirement of refined curves.
If boundary conditions are connected surfaces, the

approximation scheme should be slightly modified. The
process starts with the coarsest resolution of boundary
surfaces through down-sampling to obtain a coarse solution
of the solid. Then, during the refining process, more points
are sampled over boundary surfaces until it reaches the
finest resolution. After that, the subdivision process may
continue to reach even finer resolution. In this scenario, the
given boundary surfaces are considered as constrained PDE
surfaces, requiring four curves as boundary conditions and
the originally defined surface sample points as hard
constraints. Then, the four-point interpolatory subdivision
scheme is used to subdivide boundary curves and compute
unknown surface points by solving the surface PDE subject
to the subdivided boundary curves and original surface
points as hard constraints.

4 INTERACTIVE EDITING TOOLKITS FOR FREE-FORM

GEOMETRIC PDE OBJECTS

Our PDE modeling system provides direct manipulations

and regional operations for PDE solid models as well as

free-form deformation of arbitrary objects by embedding

them into PDE solids.

4.1 Defining PDE Solid Geometry

The PDE solid geometry can be defined by either boundary
surfaces or boundary curves. At first, users must specify the
boundary type, i.e., predefined surfaces, or connected
boundary curve network for the PDE solid.

For predefined boundary surfaces, the system can obtain
the already defined surfaces that form the outline of PDE
solid. Then, using these surfaces as boundary conditions,
the system can recover the interior information of the PDE
solid bounded by these surfaces as the solution of (9). Fig. 2
shows two examples. We put some data sets in the PDE
solids to illustrate their inside structures.

If a curve network is used as boundary conditions, the
PDE solid can be generated through two steps: first,
generating the boundary surfaces from given curves by
solving (6) or (7); second, solving (9) for the corresponding
PDE solid using the results from the previous step as
boundary constraints. Because every two neighboring
boundary surfaces share one boundary curve, the shared
curves need to be defined in the curve network. The
boundary surfaces can be even defined more precisely by
adding more curves as boundary conditions. Fig. 3 shows
examples of using curve networks to define PDE solids.

4.2 Boundary Manipulation

Users can modify the global shape of a PDE solid through
boundary manipulations. Our system permits users to
directly modify boundary surfaces, then eventually deform
the PDE solid. To modify a PDE solid through boundary
conditions, users first select a boundary surface to be edited,
then use a set of sculpting toolkits that can manipulate
points/curves/regions on a PDE surface to modify the
selected boundary surface. Details about PDE surface
sculpting can be found in [13]. Fig. 4 has two examples of
boundary surface manipulation with curve sculpting.
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Fig. 2. PDE solids generated from given boundary surfaces. (a) and

(c) are two sets of boundary surfaces; (b) and (d) are the corresponding

PDE solids (displayed using transparent color) subject to (a) and (c) with

embedded data sets, respectively.



4.3 Direct Solid Manipulations

One advantage of PDE solids is that the solid interior is
controlled by PDEs without the need for specification on
interior information. PDE solids provide an integrated
scheme that not only expands the B-rep method to cover
the solid interior, but also supports Boolean operations
associated with CSG models. More importantly, with a
finite-difference scheme, users can deform the interior of a
PDE solid by enforcing additional constraints inside the
solid without changing boundary conditions. This can be
done by replacing several equations in (9) by equations
obtained from additional constraints to form a constrained
system:

AcX ¼ zc: ð15Þ

Our system provides a set of interactive operations
inside a PDE solid including trimming, local region
sculpting, and deformation.

4.3.1 Solid Trimming

One of the disadvantages of parametric solids is that it is
difficult to model objects of arbitrary topology. According
to the idea of CSG models, the trimming operation offers an
alternative way to model objects with irregular shape. The
system provides trimming functionalities on a PDE solid for
sculpting of arbitrary topological shapes. First, users can
select regions of interest by specifying the parametric
coordinates of the boundary of the region in a pop-up
dialog (like the one shown in Fig. 17). Then, they can
indicate removing material from the PDE solid either inside
or outside those regions. Furthermore, simple shape
primitives, such as sphere, cube, or cylinder, can be placed
at any position inside the parametric domain as trimming
tools. Again, users just need to specify the type, size, and
position, and Boolean operation type for the desired tool,
then they can move the tool along the u, v, or w directions
using keypads and all of the regions covered by the
navigating path will be chosen/discarded according to the
specified Boolean operations. Such tools allow the CSG
construction of complex objects based on PDE solids. Fig. 5
shows trimming examples.

4.3.2 Geometric Free-Form Deformation

Because the trivariate PDE solid formulation provides a
mapping between the parametric space and physical space
(illustrated in Fig. 6), it’s straightforward to use the PDE
solid for FFD. The parametric space can be viewed as the
original space, and the PDE solid will be the deforming
space bounded by the boundary constraints. Given an
arbitrary data set, its original coordinates can be viewed as
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Fig. 3. Examples of PDE solids subject to boundary curve networks.
(a) Coons-like boundary curves, (b) the corresponding PDE solid,
(c) Gordon-like boundary conditions, and (d) the PDE solid subject to (c).
The PDE solids are displayed using transparent color with embedded
data sets.

Fig. 4. Modifying PDE solids via curve constraints of boundary surfaces.

Fig. 5. Examples using CSG operations to trim PDE solids. The trimmed

parts are shown in red covered by transparent original solids.

Fig. 6. PDE solid geometry from the parametric space to the physical

space.



parametric coordinates after embedding it into the PDE
parametric domain, then, by mapping the parametric space
to the PDE solid space, it can be deformed according to the
shape of the PDE solid. The mapping of embedded data sets
to different PDE solids will result in different deformed
shapes. In essence, this is analogous to the principle of FFD,
where the transformation between the parametric space to
the physical space is governed by an elliptic PDE. The free-
form deformation based on PDE solids can greatly expand
the coverage of PDE solid applications, making it possible
to obtain PDE-governed free-form modeling for arbitrary
topological objects. Fig. 7 shows some examples.

The PDE-governed FFD is different from other FFD
techniques because the deformed space is a PDE solid
whose interior is governed by the PDE. It allows both global
indirect and local direct modification and deformation. We
will further discuss this issue in Section 6.3.

4.3.3 Local Region Manipulation

Traditional PDE models only support boundary manipula-
tions which lead to global deformation throughout the
entire model. It is more desirable to have local editing
functionalities on arbitrary interior regions. This can be
easily done by using the finite-difference solver for PDE
solids. Our system provides a set of toolkits that allow
designers to specify any local regions of a PDE solid, and
only enforces deformations either inside or outside selected
regions. Users can define the region of interests by:
1) interactively specifying a region in ½u; v; w� domain,
2) employing some basic CSG-based tools such as spheres
and cubes to navigate the entire parametric domain to
define the region of interest, or 3) embedding data sets in
the PDE solid space in order to define the particular region.
Subsequently, any changes within the region will not
propagate to outside areas. The localized deformation can
be achieved easily because only those equations corre-
sponding to the points of specified regions will be solved. In
principle, all additional constraints regarding geometric
properties at selected locations can be viewed as certain
types of local deformation. Fig. 8 shows examples of local
deformation.

5 INTENSITY-BASED FREE-FORM MODELING

In contrast to parametric modeling techniques, implicit
models offer a different way to define geometric objects by

level sets of scalar intensity field instead of explicit
locations. Comparing with parametric techniques, implicit
models have several unique properties such as free of
parametric correspondence, easy collision detection, etc.
Since we incorporate the implicit PDE into our integrated
formulation, we can take advantage of implicit models and
obtain more free-form modeling features for arbitrary
objects with intensity attributes. The combination of
parametric and implicit modeling based on PDEs can
potentially be used for arbitrary modeling and deformation
of objects with material properties.

5.1 Initialization

For intensity-based free-form deformation, the system
needs an initial PDE solid space with both geometry
information and intensity distribution throughout the
space. The PDE solid geometry can be defined using
initialization techniques introduced in previous sections.
As for the initial intensity distribution, it can be an arbitrary
intensity function defined over the parametric domain to
maximize the modeling potential of the implicit PDE. In
particular, one possible choice to initialize the intensity field
is using implicit PDEs to calculate intensity distribution of
the working space based on embedded data sets, which
unifies the geometric and intensity properties for the PDE
solid. Other predefined intensity functions or volumetric
data sets can also be used as initial intensity distributions.
Fig. 9 shows some examples. With finite-difference techni-
ques, intensity attributes can be directly manipulated using
certain implicit PDE modeling toolkits introduced in [20],
[21]. When the intensity distribution is obtained by solving
implicit PDEs using assigned intensity values on embedded
objects in the PDE solid space, shape blending operations
can be easily achieved through smooth intensity blending
by implicit PDE techniques.
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Fig. 7. Free-form deformation based on PDE solids. In each figure, the

object on the left is obtained by embedding it into a PDE cube and the

object on the right is obtained from a PDE sphere.

Fig. 8. Direct modification of embedded objects in PDE solids.
(a) Directly modifying a point on an embedded object in the PDE solid,
(b) a deformed object obtained by moving a specified region inside the
PDE solid, and (c) the deforming sequence of objects by rotating
selected PDE solid regions. The red point in (a) and rectangles in (b) and
(c) show the selected parts for modification.



5.2 Isosurface Deformation

From the implicit modeling point of view, the integrated
solid can also be treated as a deformed implicit space. After
the initialization of intensity field for a PDE solid working
space, shape deformation related to both intensity and
geometry can be obtained. If the intensity distribution
represents certain implicit shape, an isosurface of this shape
can be generated using the Marching Cubes [24] at any user
specified intensity value in the parametric domain. The
isosurface can then be treated as an embedded data set for
the parametric PDE solid and all of the editing toolkits for
parametric PDE solids can be employed for further direct
sculpting and free-form deformation for the isosurface.
Using this feature, the system provides geometric FFD and
direct manipulation for implicit objects. Fig. 10 shows an
example.

5.3 Free-Form Shape Blending and Deformation

Shape blending between arbitrary geometric objects are not
easy for explicit models because it is hard to construct
correspondence between the blending parts. However, the
implicit PDE model provides a natural way to blend
implicit objects by embedding objects into the implicit
PDE working space. Arbitrary shape blending can be easily
achieved by the integration of PDE solid geometry and
implicit PDEs. Moreover, it can unify shape blending based
on implicit PDEs and PDE-based FFD for more flexible
shape blending and deformation of arbitrary objects.

To blend arbitrary geometric shapes, the system first
constructs an embedding geometric space for each shape to
be blended and calculates intensity distributions for the
embedding spaces by implicit PDE techniques introduced

in [20], [21]. Then, the embedding geometric spaces and
intensity distributions can be used as boundary constraints
for the blended PDE solid geometry and intensity distribu-
tion, respectively. Solving (11) with these boundary con-
straints will result in a single geometric PDE solid blending
the original shapes with a smoothly blended intensity
distribution for the entire solid working space. The blended
intensity field will provide a smoothly blended intensity
transition between original shapes. With any specific
isovalue, an isosurface for the blended shape can be
reconstructed accordingly. At the same time, the con-
structed PDE solid obtained from the geometric embedding
spaces as boundary constraints offers the blended shape
geometry (Fig. 11). Moreover, because blending operations
are performed based on intensity distributions in the
parametric domain, the system can provide users with
different blended shapes for objects embedded in deformed
PDE solid working space. This allows users to obtain shape
blending and deformation at the same time. It allows more
freedom of shape manipulation for objects with arbitrary
topology. Refer to Fig. 12 and Fig. 13 for examples.

5.4 Intensity-Based Shape Deformation

The geometric shape of an embedded object in the PDE
solid can be deformed by modifying the associated intensity
distribution. When modifying the intensity distribution,
intensity values of the embedded object will be changed
accordingly. Because of the correspondence between in-
tensity values and geometric coordinates, to preserve their
original intensity values in the modified intensity field,
vertices on the object will follow the intensity modifications
to new locations in the working space, which will deform
the object’s geometric shape. We incorporate the implicit
PDE modeling toolkits introduced in [21] into the system to
change the intensity values of the working space in order to
deform embedded objects. The procedure is as follows:
First, by initializing the intensity field of the PDE solid
space, the intensity values of an embedded data set are
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Fig. 9. Examples of intensity initialization of PDE solids. The objects (a)

and (c) are embedded in the PDE solid working space with a color map

of intensity distribution; (b) and (d) are cross-section views of intensity

distributions in the parametric space from the w direction.

Fig. 10. An example for isosurface deformation. (a) A set of scattered

points, (b) implicit isosurface obtained from (a), and (c) and (d) are

deformed isosurfaces in different PDE solids.



obtained. Second, users can modify the intensity distribu-
tion of the solid space and new intensity values of the data
set as well as the gradient information are calculated
according to the modified intensity field. Third, to preserve
the original intensity values of the data set, vertices on the
data set are allowed to move along their intensity gradient
directions to new locations that have their original intensity
values in the modified intensity field. As a result, the
geometric shape of the embedded object is deformed. The
system allows users to change the intensity distribution of
the working space locally in selected regions and keep
intensity values of other parts untouched. This will provide
local implicit deformation of the object. The initial intensity

distribution of the working space can either be constructed
from the embedded data set using implicit PDE techniques
or obtained from an arbitrary implicit function for arbitrary
shape deformation. Fig. 14 and Fig. 15 have corresponding
shape deformation examples of these two cases. In Fig. 15,
the implicit function has the following form:

dðu; v; wÞ ¼ e�ð�uðu�u0Þ2þ�vðv�v0Þ2þ�wðw�w0Þ2Þ:

6 SYSTEM STRUCTURE AND RESULTS

The integrated PDE-based geometric modeling system
offers PDE-based solid shape design from geometric
boundary surfaces or curve network and arbitrary shape
blending, deformation, and direct manipulation based on
objects’ geometric and intensity attributes. It allows users to
manipulate PDE objects by enforcing various local/global
constraints on geometry and intensity properties via
boundary conditions and interior operations. Fig. 16
illustrates the outline of the system architecture.

6.1 Modeling Toolkits

We developed a set of direct manipulation toolkits for solid
objects in the PDE-based modeling system. Fig. 17 shows
the user interface of the system.

Geometric Boundary Representations. Users can inter-
actively input and edit boundary surfaces and curves by
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Fig. 11. An example for shape blending by integrated PDE solid with
intensity. (a) Two objects to be blended, (b) the blended object
embedded in the reconstructed PDE solid, and (c) and (d) are cross-
section views of intensity distributions of (a) and (b) along the w direction
in the parametric domain, respectively.

Fig. 12. An example of PDE-based free-form shape blending and

deformation. (a) A set of embedded objects to be blended in a PDE solid

and (b) the blending result.



selecting the boundary of interests and obtain PDE solids
satisfying these conditions. The system also provides
various manipulation toolkits to deform boundary surfaces
and the solid geometry will be modified accordingly.

Geometric Interior Operations. Users can also work
directly inside the PDE solid space through: 1) interior
deformation with additional constraints inside the solid,
2) trimming specified regions for complex geometry and
arbitrary topology, and 3) free-form deformation based on
the mapping from the 3D parametric domain to physical
space through trivariate PDEs.

Shape Modeling Based on Intensity Fields. We further
integrate scalar intensity properties with PDE solid geometry
for arbitrary shape modeling: 1) implicit PDE-based shape
modeling through free-form deformation and direct manip-
ulation, 2) arbitrary shape blending by integrating geometric
and intensity properties in the working space, and 3) in-
tensity-based shape deformation by changing the intensity
distribution globally/locally in the PDE solid space.

Besides traditional boundary conditions of PDE techni-
ques, the system allows users to specify and enforce a large
variety of additional constraints on a set of points, cross-
sectional curves, and surface areas on boundary surfaces.
These constraints provide more freedom to designers,
making the design process of PDE solids more cost-
effective. The curve-based boundary conditions make it

even easier for designers to achieve the desired shapes of

PDE solids from curve sketches. We use finite-difference

techniques because they are simple, easy to implement, and

suitable for the incorporation of complicated, flexible

constraints. Because of the finite-difference discretization,

the system allows users to enforce additional constraints

directly inside the PDE solid and apply trimming opera-

tions, which facilitate the construction of PDE objects of

arbitrary topology. The direct and free-form modeling

based on PDE solid geometry and intensity distributions

allow arbitrary shape blending and modification function-

alities for the PDE-based geometric modeling system.
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Fig. 13. Another example of PDE-based free-form shape blending and

deformation. (a) Two objects before blending embedded in a PDE solid

and (b) the result after blending.

Fig. 14. An example for PDE-based FFD by intensity changes. (a) An
embedded shape, (b) the deformed object to preserve its original
intensity value in the locally modified intensity field, and (c) and (d) are
corresponding cross-section views of the intensity fields along the
w direction for (a) and (b), respectively.



6.2 Performance

In general, the time and space complexities for the finite-
difference solver will increase with higher resolution as well
as increased accuracy. The multigrid subdivision method
for various levels of refinement achieves anticipated results
in our experiments. As an example, Table 1 shows the time
performance for generating geometric PDE solids on an
Intel Pentium M (1.10 GHz) laptop.

In Table 1, “Grids” stands for the resolution of the
parametric space discretization,“Surfaces” represents a geo-
metric PDE solid example obtained from a set of boundary
surfaces. “Curves” stands for an example obtained from a
boundary curve network. The “�4,” “�2,” and “�s” stand for
the fourth, second order PDE, and the fourth order PDE with
multigrid subdivision, respectively. We use a SOR (succes-
sive over-relaxation) version of Gauss-Seidel iteration. The
multigrid subdivision can greatly improve the performance
of our finite-difference solver. It is possible to obtain finer
resolutions of solid objects using multigrid subdivision in
reasonable time. And, the FFD feature enables our system to
model complex objects in relatively coarse grids. Moreover,
although solving the PDE for the entire parametric space is
time consuming, direct manipulations can be much faster
because only small regions of the solid space are involved. On

the other hand, in recent years, GPUs have been used for
linear algebra operations on sparse matrices with much faster
performance [25]. We are also considering using GPUs to
accelerate the convergence rate of our FDM solver for
interactive manipulation and sculpting.

6.3 Discussion

Our PDE-based geometric modeling system offers a free-
form modeling scheme according to the mapping from
parametric space to the physical space generated by the
trivariate PDE. Comparing with other popular FFD techni-
ques, our method has some unique features. First, the
deformed physical space as the solution of the PDE can be
viewed as a PDE space which satisfies the given equation.
Different from spline-based and subdivision-based FFD
techniques that require 3D control lattices/volumes to
define the deforming space, only boundary surfaces are
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Fig. 15. Examples of PDE-based FFD due to intensity changes. (a) and
(c) are embedded objects, (e) w-direction view of intensity distribution
obtained from function dðu; v; wÞ ¼ e�ð�uðu�u0Þ2þ�vðv�v0Þ2þ�wðw�w0Þ2Þ, (b) and
(d) are deformed objects when modifying dðu; v; wÞ by changing �u, �v,
u0, and v0 shown in (f).

Fig. 16. System architecture.

Fig. 17. Screen shot of the PDE-based geometric modeling system. The

pop-up dialog is brought out to specify trimming tools.



necessary to form the PDE space, and the interior informa-
tion will be recovered and governed by the equation itself.
Second, the PDE scheme also provides a continuous
deforming space by default and modifications of any region
in the space will be smoothly propagated into its neighbor-
hood. Therefore, any object embedded in the PDE space will
follow the continuous geometric distribution inside the
solid space and avoid self-intersection. Third, we also
provide sculpting of arbitrary interior regions for local
deformation and direct manipulation similarly to other FFD
techniques. Unlike most spline-based FFD techniques that
have to modify the control lattices based on the direct
manipulations first and then deform the rest of the object
accordingly, any sculpting operation on local regions in our
PDE model will directly affect neighboring areas according
to the equation. However, because of the nature of FDM
used in our system, interactivity is a concern when
manipulating large regions. For improvement, we consider
using GPUs to obtain interactive operations.

In addition, the incorporation of implicit PDEs for
intensity distribution inherits modeling advantages of
implicit models into our system. Thus, we can provide
modeling functionalities that are difficult for parametric
techniques such as arbitrary shape blending and shape
deformation based on intensity manipulation. Compared to
algebraic shape blending, our method offers local control
and direct interference because our PDE formulation allows
additional constraints directly enforced in local regions.

7 CONCLUSION

We present a novel geometric modeling framework that
integrates PDE solids, surfaces, and implicit PDE models for
general and arbitrary shape modeling including design,
deformation, sculpting, and blending. The integrated model
uses elliptic PDEs to govern both geometric and intensity
properties of solid objects. The PDE solid geometry can be
defined by either boundary surfaces or a set of curves as
generalized boundary conditions governed by PDE surface
formulation. The geometric PDE solid modeling techniques
allow users to manipulate objects satisfying a set of design
criteria and functional requirements with lots of degrees of
freedom. The incorporation of intensity attributes to solid
objects provides modeling advantages of implicit functions to
the integrated PDE model. We developed a set of manipula-
tion toolkits that support both global and local deformation of
PDE solids subject to various constraints. Our PDE-based
geometric modeling system offers PDE-governed boundary
surface manipulations to deform the solid geometry, which

permit users to model and edit boundary PDE surfaces and
the geometric shape of corresponding PDE solid intuitively
with ease. The deformation and trimming operations inside
the solid space provide a natural way of free-form modeling
for objects with arbitrary topology. In addition, users can
manipulate intensity distributions of the PDE solid to obtain
arbitrary shape blending and deformation for embedded
objects. Our unified PDE-based approach greatly expands the
geometric coverage and topological flexibilities of conven-
tional PDE solids and implicit PDE models and improves the
utility of PDE solids for modeling and design applications.
With this integrated framework, it is possible to simulate real
world objects with material properties.
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