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Abstract

Proportional data (normalized histograms)
have been frequently occurring in various ar-
eas, and they could be mathematically ab-
stracted as points residing in a geometric sim-
plex. A proper distance metric on this sim-
plex is of importance in many applications
including classification and information re-
trieval. In this paper, we develop a novel
framework to learn an optimal metric on the
simplex. Major features of our approach in-
clude: 1) its flexibility to handle correlations
among bins/dimensions; 2) widespread ap-
plicability without being limited to ad hoc
backgrounds; and 3) a “real” global solu-
tion in contrast to existing traditional lo-
cal approaches. The technical essence of our
approach is to fit a parametric distribution
to the observed empirical data in the sim-
plex. The distribution is parameterized by
affinities between simplex vertices, which is
learned via maximizing likelihood of observed
data. Then, these affinities induce a metric
on the simplex, defined as the earth mover’s
distance equipped with ground distances de-
rived from simplex vertex affinities.

1. Introduction and Motivation

Proportional data (normalized histograms) have been
widely used in diverse areas for scientific studies and
investigation. Examining types of proportional data,
bins of the histograms could be: 1) intrinsically dis-
crete, as in the bag-of-words representation of text
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(Salton, 1983); or 2) arisen from uniform tessellation
or clustering of some continuous space, such as color
histogram (Swain, 1991) or bag-of-keypoints represen-
tation of images (Csurka, 2004), or 3) mixtures of some
basic components from a lower level representation, re-
sulted from methods such as SVD (Deerwester, 1990)
and discrete PCA (Buntine, 2004).

From a geometric point of view, normalized histograms
could be considered as data points residing in a sim-
plex. In many applications including data classifica-
tion, visual recognition, and information retrieval, dis-
tances between histograms (i.e., documents, images,
etc.) are oftentimes necessary measurements. A dis-
tance metric on the simplex could be defined in var-
ious ways. In this paper, we advocate that the met-
ric should be adapted to observed distribution of data
points therein, because the latter one reveals the un-
derlying “true” structure of the simplex. As a math-
ematical abstraction of this intuition, we propose a
novel framework to characterize an optimal metric on
the simplex via exploiting affinities/distances between
simplex vertices.

An intuitive illustration of our approach is shown in
Figure 1, where Histogram 1 originally has roughly the
same distance to Histograms 2 and 3 (e.g., measured
by L1 metric). A different metric could be induced by
drawing closer two vertices of the 2-simplex (triangle).
Under the new metric, Histogram 1 is much closer to
Histogram 3 than to Histogram 2.

One could use either bin-by-bin or cross-bin compar-
ison to calculate distance between histograms. The
former assumes the bins being independent, such as
Lk metric, histogram intersection, or Kullback-Leibler
divergence. The latter, such as the earth mover’s dis-
tance (EMD) (Rubner, 2000), needs inter-bin relation-
ships (a.k.a. ground distances) to be specified. For ex-
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Figure 1. Metric on a 2-simplex induced by distances be-
tween simplex vertices.

ample, if the bins correspond to tessellations of some
continuous space, neighboring bins are assumed to be
more correlated; or if the bins correspond to clusters
resulted from vector quantization, distances between
bins are set to be the distances between corresponding
cluster centers.

However, it is questionable that whether these strate-
gies yield a good metric on the simplex. Bins being
independent is an over-simplified assumption in many
situations. Besides, Euclidean metric is not optimal in
color space and feature space (Wyszecki, 1982; Omer,
2006), in the sense that it does not resemble percep-
tual distance of human beings; hence, using it to de-
cide inter-bin distances is unjustified. Furthermore,
in many situations, we could hardly even quantify re-
lationship between histogram bins. For example, if
the bins correspond to English words, although there
were endeavors to represent words in some quantita-
tive space (Schütze, 1993), explicitly quantifying their
relationships can hardly be objective.

Due to these difficulties, our approach abandons any
over-simplified assumption or background-specific in-
formation, and learns inter-bin distances directly from
examples of histograms. This gives rise to special fea-
tures of our approach: not being restricted to any ad
hoc background condition, and being easily applicable
to a variety of areas with a similar data representation.

The necessity of adapting distance metric to data point
distribution in a space has long been recognized by
researchers. A variety of linear/non-linear dimension-
ality reduction techniques could be viewed as implic-
itly addressing this issue. Metric on the learned low-
dimensional manifold is actually “adapted” to data
point distribution in the original high-dimensional
space. When distribution of data points exhibits so-
phisticated non-linear patterns, traditional techniques

compromise to characterize global structure of data via
accumulating information locally, either by preserving
geodesic distance (Tenenbaum, 2000)1 or fitting local
linear structures (Roweis, 2000).

As a major contribution of our framework, in contrast
to “think globally, fit locally” (Roweis, 2000), we pro-
pose to “think globally, fit globally”. Fitting globally
inevitably confront us with the difficulty of character-
izing sophisticated patterns of data point distribution
in a unified parametric form, which is generally in-
tractable in N -dimensional space. However, by nor-
malization, data points are mapped onto a (N − 1)-
simplex, on which we can devise a parametric distri-
bution that indeed exhibits such flexibility.

The distribution bridges “aggregation” patterns of
data points and “aggregation” patterns of simplex ver-
tices. Specifically, it is a Dirichlet mixture in a re-
stricted form, parameterized by affinities between sim-
plex vertices. These affinities are learned via maxi-
mizing likelihood of observed data. Then, an induced
metric on the simplex is characterized by the earth
mover’s distance (EMD) (Rubner, 2000), equipped
with ground distances derived from those learned sim-
plex vertex affinities. Optimality of the induced metric
is validated on a variety of data representations.

1.1. Related Work

Lebanon (2003) addressed the metric learning prob-
lem on a simplex. Their approach chooses an op-
timal metric from a parametric family that maxi-
mizes the inverse volume of the observation (equiv-
alent to maximum likelihood from a statistical per-
spective). And the parametric family is constructed
as pull-back metrics of the Fisher information metric
on the simplex, under a parametric family of transfor-
mations from the simplex to itself. The transforma-
tions are essentially independent scalings of individual
vertices/dimensions, hence their approach does not di-
rectly handle correlations among dimensions.

Omer (2006) also formalized the idea of adapting dis-
tance metric to data point distribution, but in an ex-
plicit form. They defined the “bottleneck affinity” be-
tween two pixel features, based on feature point den-
sity along the straight line connecting them. This ap-
proach essentially judges whether the two points re-
side in a same “cluster”, in which case they should be
drawn closer. However, their method has a “narrow”
sight (restricted to a straight line) in contrast to the

1Although Isomap is regarded as a “global” method,
it accumulates information locally to characterize geodesic
distance.
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integrated global vision of our solution.

A broad class of techniques (Blei, 2003; Buntine, 2004;
Deerwester, 1990; Gehler, 2006; Hofmann, 2001; Mar-
lin, 2004; Welling, 2004) provided us with a hierarchi-
cal representation where a low-dimensional high-level
simplex2 is embedded (possibly in a probabilistic man-
ner) in the original simplex3. Thus our framework
could be built on the former one, where redundancy of
the representation is largely reduced.

Blei (2006) used the logistic normal distribution as
a component of their correlated topic model derived
from LDA (Blei, 2003). The logistic normal distribu-
tion has a covariance structure among simplex vertices,
which is similar to our model.

The distribution we devised could be viewed as a
Dirichlet mixture in a restricted form. Dirichlet mix-
ture model was addressed by researchers in a vari-
ety of areas including bioscience (Sjolander, 1996),
text modeling (Yamamoto, 2005), and image analysis
(Bouguila, 2006). However, none of these work ad-
dressed the relationship between simplex vertex affini-
ties and Dirichlet mixture parameters, which is fully
exploited in this paper.

2. Mathematical Preliminaries

A normalized histogram

d = (d1, d2, · · · , dN ), di ≥ 0
N∑

i=1

di = 1 (1)

resides in a (N − 1)-simplex, which is a N − 1 dimen-
sional area in N dimensional space. Each vertex of the
(N − 1)-simplex represents a histogram with value 1
in one bin and 0 in the others.

Although the following two concepts are quite straight-
forward, we give formal definitions due to their signif-
icance in articulating properties of our model.

Definition 1 (Sub-simplex) V̂ is a sub-simplex of
a (N − 1)-simplex arisen from V ⊆ {1, 2, · · · , N}, if

V̂ = {d | di ≥ 0 ,

N∑
i=1

di = 1 , di = 0 for i /∈ V } (2)

Definition 2 (Generalized principal sub-matrix)
For a symmetric matrix Λ of order N , its general-
ized principle sub-matrix is obtained by eliminating
i-th row and i-th column, for all i /∈ V , where
V ⊆ {1, 2, · · · , N}.

2It is referred as “topic-simplex” in (Blei, 2003)
3It is referred as “word-simplex” in (Blei, 2003)

3. Dirichlet Aggregation

3.1. Vertex Affinities of Simplex

A commonly used distribution on a simplex is the
Dirichlet distribution,

P(d|α) =
Γ(

∑N
i=1 αi)∏N

i=1 Γ(αi)

N∏
i=1

dαi−1
i (3)

It has N parameters α1, α2, · · · , αN , each associated
with one vertex of the simplex. A property of Dirichlet
distribution is that

E(di|α) =
αi∑N
i=1 αi

(4)

which means that each αi controls “aggregation” of
mass near the corresponding vertex (see Figure 2).

Figure 2. Contour lines of the Dirichlet distribution on a
2-simplex (triangle). Outer area has higher probability
density. Top left: α1 = 0.7, α2 = α3 = 0.1. Top right:
α1 = α2 = 0.7, α3 = 0.1. Bottom: α1 = α2 = α3 = 0.1.

A crucial limitation of Dirichlet distribution is easily
revealed. Consider affinities between 4 English words:
“economy”, “market”, “geography”, and “terrain”, as
in Figure 3. Intuitively, “economy” and “market” are
somewhat close to each other; so do “geography” and
“terrain”; yet the two couples are relatively far apart.
Suppose we have collected a number of documents con-
taining some of these words, thus each document could
be represented as a point (histogram) in the 3-simplex
(tetrahedron). Mass in such a 3-simplex should be
intuitively predicted to be concentrated near the sub-
simplex (edge) connecting “economy” and “market”,
and also the sub-simplex connecting “geography” and
“terrain”. This phenomenon, in principle, can not be
modeled by a Dirichlet distribution. Because all words
are considered to be equally important in such a set-
ting, 4 parameters of the Dirichlet distribution need



Dirichlet Aggregation: Unsupervised Learning towards an Optimal Metric for Proportional Data

to be all identical, which yields a undesirable trivial
symmetric distribution.

"economy"

"market"

"terrain"

"geography"document

Figure 3. A toy example of 4 English words leads to an
expected distribution of documents.

In real applications, we may have to deal with even
higher dimensional representations and the simplex
vertices could exhibit sophisticated aggregation pat-
terns. In order to achieve sufficient flexibility, we ex-
plicitly address affinities between vertices of the sim-
plex. Consider the following matrix:

Λ =

⎛
⎜⎜⎜⎝

λ11 λ12 . . . λ1N

λ21 λ22 . . . λ2N

...
...

. . .
...

λN1 λN2 . . . λNN

⎞
⎟⎟⎟⎠ (5)

with λij ∈ [0, 1] indicating affinity between vertex i
and j. Naturally we add two restrictions to these quan-
tities:

λij = 1 for i = j (6)

λij = λji, for i, j = 1, 2, · · · , N (7)

We define a distribution on the simplex parameterized
by Λ,

P(d|Λ) =
N∑

i=1

Γ(
∑N

j=1 λij)

N
∏N

j=1 Γ(λij)

N∏
j=1

d
λij−1
j (8)

To see its relationship to the Dirichlet distribution,
consider the following restriction instead of (6) and
(7).

λ1i = λ2i = · · · = λNi = αi, (9)

Obviously, (8) degenerates to the Dirichlet distribution
(3) under the restriction (9).

To exploit properties of distribution (8), we first con-
sider two extreme cases:

Extreme Case 1:

λij = 0, for i �= j (10)

In this case, distribution (8) degenerates to a discrete
distribution on simplex vertices, which means, bins of
the histograms are exclusive. Histograms reside right
at a simplex vertex with probability 1.

Extreme Case 2:

λij = 1, for all i, j (11)

In this case, (8) indicates a uniform distribution on the
simplex, which also has a straightforward explanation.
All the histogram bins are intrinsically identical, and
any mixture ratio is equally preferred.

With the definitions in Section 2, it is obvious that
each sub-simplex is in correspondence with a general-
ized principle sub-matrix of the parameter matrix (5).
Both are coming from a certain sub-set V of simplex
vertices. This connection provides us with a prin-
cipled way to link observed data points with affini-
ties between simplex vertices. When observed data
points “aggregate” near some sub-simplex, increasing
of affinities between relevant simplex vertices is di-
rectly reflected on the corresponding generalized prin-
cipal sub-matrix of the parameter matrix.

To visualize the phenomenon of Dirichlet aggregation.
We use a low dimensional illustration resembling the
4-word toy example we have discussed. Let the pa-
rameter matrix

Λ =

⎛
⎜⎜⎝

1 0.7 0.1 0.1
0.7 1 0.1 0.1
0.1 0.1 1 0.6
0.1 0.1 0.6 1

⎞
⎟⎟⎠ (12)

We sampled 1000 points from such a distribution (see
Figure 4). Two generalized principal sub-matrices of
the parameter matrix corresponding to sub-simplex
“1-2” and sub-simplex “3-4” exhibit high values. In
accord with “aggregation” of the simplex vertices,
data points in the 3-simplex “aggregate” near the sub-
simplex “1-2” and the sub-simplex “3-4”.

3.2. Induced Metric

As we have stated, our framework aims to defining a
metric on the simplex, adapted to distribution of data
points therein. This intuition becomes straightforward
in the low-dimensional case in Figure 4. The underly-
ing “true” distance between a pair of data points re-
siding near sub-simplex “1-2” should be smaller than
that of a pair residing near sub-simplex “2-3” with the
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Figure 4. 1000 points sampled from the distribution (8)
with parameter matrix (12). Note that it resembles the
imaginary distribution in Figure 3.

same Euclidean distance, because the former essen-
tially reside in a same “cluster”. In other words, the
simplex needs to be warped such that the sub-simplex
“1-2” and “3-4” are shrinking, resembling the simplex
in Figure 3. In higher dimensions, the warping could
exhibit diverse sophisticated patterns, which are well
captured because of the flexibility of distribution (8).

Realization of the warping is achieved by EMD with
ground distance between the i-th and j-th bin set
to be − log λij , where λij is the learned affinity be-
tween corresponding simplex vertices. EMD between
two histograms is the overall work of transporting
mass in order to make them identical. Equivalently,
we can perceive it as the overall work of moving a
point (histogram) to another in the simplex (the path
corresponds to intermediate states of the transporta-
tion process). Hence, in Figure 4, EMD with learned
ground distances actually warps the simplex, such that
moving a point near the edge “1-2” needs less effort
than moving a point near the edge “2-3”. Further-
more, for normalized histograms, with the same overall
mass 1, Rubner (2000) proved that EMD is a true met-
ric. In our framework, it is a true metric induced by
affinities between simplex vertices. For brevity, read-
ers are referred to (Rubner, 2000) for more details of
EMD.

Computing EMD involves solving a linear program-
ming problem, with O(N2) time complexity, which
makes it difficult to directly apply our approach to
efficiency demanding and large scale applications. We
leave this issue to further research.

3.3. Parameter Estimation

Without enforcing the restrictions (6) and (7), dis-
tribution (8) could be viewed as a Dirichlet mixture
model with N equally weighted components:

P(d|Λ) =
1
N

N∑
i=1

Pi(d|Λ) (13)

where each Pi is a Dirichlet distribution.

Estimating parameters of a Dirichlet distribution was
thoroughly discussed by Minka (2003). We employed
a modified Newton iteration in our EM-like algorithm.

During the E-step, we compute the probability density
at each dj , j = 1, · · · ,M , under all Pi, based on the
current estimation of Λ. Let wij = Pi(dj |Λ). And for
each i, we normalize wij such that

∑M
j=1 wij = 1.

During the M-step, parameters of each Pi are esti-
mated using dj (j = 1, · · · ,M) re-weighted by wij .

Newton iteration is modified as follows. To estimate
parameters of Pi: 1) whenever averaging dj or log dj ,
re-weight them by wij ; 2) during initialization, set
λii = 1 to meet the restriction we have imposed;
3) when calculating H−1g (inverted Hessian times gra-
dient), set (H−1g)i = 0, such that λii is not changed
during Newton iteration. For brevity, readers are re-
ferred to (Minka, 2003) for more details of estimating
Dirichlet parameters. After each M-step, we add a
regularization step (set both to their average) to force
λij = λji.

Initially, we set λij = 1 for i = j, and 0 < λij � 1
(this value has so little effect on the results, according
to our experiments) for i �= j. This could be viewed
as placing a kernel at each vertex of the simplex.

It is noticeable that the restriction λij ≤ 1 is not guar-
anteed in our algorithm. Actually it rarely exceeds 1
in practice. And when λij exceeds 1, vertex i and j
are indeed extremely correlated (actually they were al-
most identical “topics” in our experiments). In these
situations, we simply treat λij as 1 for subsequent pro-
cedures. Actually, the ground distance between rele-
vant vertices would be 0, i.e. they are merged and the
dimensionality of the simplex is reduced by 1.

4. Experimental Results

4.1. Reuters-21578 Corpus

We tested our model on the widely used corpus
Reuters-215784. All documents must undergo pre-

4The corpus is from http://ai-
nlp.info.uniroma2.it/moschitti/corpora.htm.



Dirichlet Aggregation: Unsupervised Learning towards an Optimal Metric for Proportional Data

processing steps including removing stop words and
rare words. After pre-processing, the corpus has 22556
unique words, 12897 documents, and 90 categories
(plus one category labelled “unknown”). One docu-
ment could exhibit multiple category labels. Each doc-
ument is represented by a count histogram of words.

The dimensionality of the representation is then re-
duced by LDA (Blei, 2003), after which each docu-
ment is represented by a histogram of topic propor-
tions. Note that our model is equally applicable on
representations obtained by other methods (Buntine,
2004; Deerwester, 1990; Gehler, 2006; Hofmann, 2001;
Marlin, 2004; Welling, 2004).

For a “query” document5, we rank all other documents
in the corpus by their distances to the query. A docu-
ment is marked as “correct” iff it has at least one same
category label with the query. P-R plots averaged over
the whole corpus are shown in Figure 5.
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Figure 5. P-R curves on Reuters database. 50-topic rep-
resentation obtained by LDA. “DA” appearing in legend
stands for Dirichlet aggregation. Note that the first two
curves are almost overlapping with each other.

We make use of Jeffrey divergence6 (Puzicha, 1997)
and L1 metric for comparison purpose. In addition,
we try other methods such as cosine similarity and
L2 metric. They generally perform no better than
these two methods. Moreover, it can be proved that
EMD with a constant ground distance is equivalent to
L1 metric (allowing a constant scaling factor, which
equals to the ground distance). Therefore, we can as-

5Documents with the category label “unknown” are not
used as query.

6A modified symmetric and more robust version of
Kullback-Leibler divergence.
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Figure 6. Area under P-R curve vs. representation dimen-
sion on Reuters database.

sert that the significant improvement was brought by
our learned inter-vertex affinities, but not EMD.

To validate performance of Dirichlet aggregation un-
der different representation dimensions, we work on a
considerable range of LDA latent dimensions (number
of “topics”), and we have observed a steadily superior
performance of Dirichlet aggregation. (see Figure 6).

4.2. The Caltech4 Database

The Caltech4 database is a subset of the Caltech101
database (Li Fei-Fei, 2004). It consists of 2233 im-
ages, 4 categories: faces, motorcycles, airplanes, and
leopards, with considerable intra-class variations. All
images are converted to gray scale. We first com-
pute 128-dimensional SIFT (Lowe, 2004) descriptors
on detected keypoints of all images. Vector quantiza-
tion (VQ) is then applied to all these descriptors, after
which every image is represented by a count histogram
of visual-words (cluster centers).

We test our model on two different representations:
1) 2000 visual-words are obtained by VQ and then
we apply LDA, after which each image is represented
by a histogram of “visual-topics”; 2) 100 visual-words
are obtained by VQ, and each image is represented
by a histogram of visual-words. Note that the latter
is consistent with case 2 discussed in the beginning
of this paper. For the former representation, we also
try several different LDA latent dimensions. Dirichlet
aggregation performs well in all these situations. (see
Figures 7, 8, 9).
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Figure 7. P-R curves on Caltech4 database. 40-topic rep-
resentation obtained by LDA.

5. Conclusion and Discussion

In this paper, we have proposed a novel framework,
Dirichlet aggregation, to learn an optimal metric on a
simplex, by exploiting “aggregation” patterns of data
points and “aggregation” patterns of simplex vertices,
which are too complicated to be simply modeled as
deterministic clusters. The induced metric is a true
metric, and yields a considerable improvement for re-
trieval performance. Our approach performs steadily
well on both text and images, and on a wide range of
representation dimensions, which indicates that there
could be other potential applications of Dirichlet ag-
gregation in various areas, as long as we have a basic
representation of normalized histograms.

In our experiments, the P-R curves of our learned met-
ric are superior mainly for intermediate recalls, yet not
so much for high recalls7(see Figures 5, 7). However,
an exception is observed in Figure 9, in which P-R
curve of our learned metric outperforms others even
for high recalls.

These phenomena could be explained as follows: al-
though the overall “shape” of the simplex is warped
in an optimal way, “micro-structure” in “peripheral”
areas (near low-dimensional sub-simplexes) of the sim-
plex is largely preserved. A crucial difference be-
tween visual-word-histogram representation (Figure 9)
and “topic”-histogram representation (Figure 5, 7) is
that: in the latter case, a Dirichlet prior had been
imposed on the topic-simplex by LDA, hence points

7This phenomenon is also significant in all other plots
we are unable to show due to page limitation
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Figure 8. Area under P-R curve vs. representation dimen-
sion on Caltech4 database.

(histograms) mainly reside in “peripheral” areas of the
simplex (i.e., near edges, triangles, etc.), where most
bins have a value close to zero. High recalls of the P-R
curve is determined by points that reside “very” close
to each other. If two histograms are “indeed” very
similar, especially when their mass are concentrated in
two or three bins, their distance would be very small
no matter how we measure it. Nonetheless, difference
for intermediate recalls (see Figures 5, 7, 9) indicates
that points with moderate distances are always rear-
ranged in an optimal way by our learned metric. In
the case of Figure 9, histograms distribute more uni-
formly in the simplex, and superiority of the metric
learned by Dirichlet aggregation is even significant for
histograms of high similarity.
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