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Abstract

This paper presents a novel modeling technique and de-
velops an interactive algorithm that facilitates the auto-
matic determination of non-uniform knot vectors as well
as other control variables for NURBS curves and surfaces
through the unified methodology of energy minimization,
variational principle, and numerical techniques. Many ge-
ometric algorithms have been developed for NURBS during
the past three decades, Recently, the optimization principle
has been widely studied, which affords designers to interac-
tively manipulate NURBS via energy functionals, simulated
forces, qualitative and quantitative constraints, etc. The ex-
isting techniques primarily concentrate on NURBS control
points. In this paper, we further augment our NURBS mod-
eling capabilities by incorporating NURBS’ non-uniform
knot sequence into our shape parameter set. The automatic
determination of NURBS knots will facilitate the realization
of the full geometric potential of NURBS. We also have de-
veloped a modeling framework which supports a large va-
riety of functionals ranging from simple quadratic energy
forms to non-linear curvature-based (or area-based) objec-
tive functionals.
Keywords: NURBS, CAGD, Deformable Models, Con-
straints, Interactive Techniques, Energy Optimization.

1 Introduction and Motivation

During the past two decades, Non-Uniform Rational B-
Splines (NURBS) have gained popularity for shape model-
ing and geometric design and were incorporated into sev-
eral commercial modeling systems [16] mainly because
they have many attractive properties. NURBS offer a uni-
fied mathematical formulation for representing not only
free-form curves and surfaces, but also standard analytic
shapes such as conics, quadrics, and surfaces of revolu-
tion. Through the manipulation of control points, weights,
and/or knots, users can design a vast variety of shapes us-

ing NURBS. Despite NURBS’ power and potential, users
are faced with the tedium of non-intuitively manipulating a
large number of geometric variables. Moreover, a particular
shape can often be represented non-uniquely, with different
values of knots, control points, and weights. The “geomet-
ric redundancy” of NURBS tends to make shape refinement
ad hocand ambiguous.

To ameliorate the geometric design with NURBS, A
wide array of techniques for NURBS manipulation have
been developed [6, 7, 16, 21]. Typical design techniques
include interactive editing, (regular or scattered) data inter-
polation, shape approximation, cross-sectional design, op-
timization, etc. Recently, energy optimization techniques
have been widely studied in shape modeling especially
shape fairing. In a nutshell, energy-based algorithms offer
designers a feasible and powerful solution that can alleviate
the burden of interactively manipulating degrees of freedom
(DOFs) of NURBS and a metric to evaluate the extent to
which the final shape satisfies certain design requirements.

Prior work on energy optimization only focuses on func-
tionals whose variables are either control points or non-
unity weights of NURBS. The computation of functionals
with respect to the additional shape flexibility resulted from
the non-uniform knots is yet to be fully investigated.

Because the knot variation will generally violate the lo-
cal support property of NURBS, this makes the direct eval-
uation of the gradient with respect to knots non-intuitive
in principle. In our modeling algorithms, the NURBS ge-
ometry is systematically transformed into a set of equiv-
alent rational Bezier patches [2]. This idea offers a new
parametrization for the same NURBS shape, in which
NURBS knots no longer affect the domain boundary for a
specific curve/surface patch. Hence, the new formulation
imposes no difficulties for the gradient derivation with re-
spect to knots. Consequently, the geometric modeling po-
tential of NURBS can be fully exploited in an intuitive and
uniform fashion.



2 NURBS Geometry

First, we review the formulation of NURBS curves and
surfaces. We then briefly describe their analytic and geo-
metric properties.

A NURBS curve generalizes the B-spline. It is the ratio-
nal combination of a set of piecewise basis functions withn
control pointspi and associated weightswi:

c(u) =
∑n

i=1 piwiBi,k(u)∑n
i=1 wiBi,k(u)

, (1)

whereu is the parametric variable andBi,k(u)’s are B-
spline basis functions. Assuming basis functions of degree
k−1, a NURBS curve hasn+k knots ti in non-decreasing
sequence:t1 ≤ t2 ≤ . . . ≤ tn+k−1 ≤ tn+k. The basis
functions are defined recursively using non-uniform knots
as

Bi,1(u) =
{

1 for ti ≤ u < ti+1

0 otherwise
,

with

Bi,k(u) =
u− ti

ti+k−1 − ti
Bi,k−1(u)+

ti+k − u

ti+k − ti+1
Bi+1,k−1(u).

The parametric domain istk ≤ u ≤ tn+1. From users’
point of view, the NURBS knots are used to define B-
splines’ basis functionsimplicitly. In many applications,
the end knots are repeated with multiplicityk in order to
interpolate the first and last control pointsp1 andpn.

A NURBS surface is the generalization of a tensor-
product B-spline surface. It is defined over the parametric
variablesu andv as:

s(u, v) =

∑m
i=1

∑n
j=1 pijwijBi,k(u)Bj,l(v)∑m

i=1

∑n
j=1 wijBi,k(u)Bj,l(v)

, (2)

whereBi,k andBj,l are B-spline basis functions of degree
k − 1 andl − 1, respectively.

A NURBS surface hasm × n control pointspij and
weightswij . The number of knots is(m+k)+(n+ l). The
non-decreasing knot sequence can be explicitly expressed
as: t1 ≤ t2 ≤ . . . ≤ tm+k−1 ≤ tm+k along theu-axis
ands1 ≤ s2 ≤ . . . ≤ sn+l−1 ≤ sn+l along thev-axis,
respectively. The parametric domain is:tk ≤ u ≤ tm+1

andsl ≤ v ≤ sn+1. If all the end knots have multiplicityk
andl in theu axis andv axis, respectively, the NURBS sur-
face will interpolate the four corners of the boundary control
points.

In the definitions to NURBS curves and surfaces, we can
notice that only the relative positions of consecutive knots
(i.e., knot intervals) are actually used to determine its ge-
ometry. The translation or scaling operations on knot vector
only re-parameterize the same shape without perturbing its
geometry.

NURBS generalize polynomial-based parametric repre-
sentations for shape modeling. Analogous to B-splines, the
rational basis functions of NURBS sum to unity, they are
infinitely smooth in the interior of a knot interval provided
the denominator is not zero, and at a knot they are at least
Ck−1−r continuous with knot multiplicityr. They inherit
many properties from B-splines, such as the strong convex
hull property, variation diminishing property, local support,
and invariance under affine geometric transformations.

Moreover, NURBS have additional properties. NURBS
offer a unified mathematical framework for both implicit
and parametric polynomial forms. In principle, they can
representanalytic functions such as conics and quadrics
precisely, as well as free-form shapes.

NURBS include weights as extra degrees of freedom
which influence their local shape. NURBS are attracted
toward a control point if the corresponding weight is in-
creased and it is pushed away from a control point if the
weight is decreased. If a weight is zero, the corresponding
rational basis function is also zero and its control point does
not affect the NURBS shape.

3 Modeling Techniques and Energy-based
Tools

This section outlines the typical optimization approaches
in geometric modeling and documents a set of popular en-
ergy functionals we developed, which are commonly used
in a large variety of modeling and design applications.

3.1 Optimization Approach

Directly manipulating a variety of NURBS shape vari-
ables is non-intuitive and laborious. To ameliorate the ge-
ometric design with NURBS, researchers have been widely
employing the energy optimization techniques in shape
modeling, geometric design, and interactive graphics. In
a nutshell, an energy optimization approach includes two
steps: (1) formulating modeling requirements of the object
shape in terms of energy functionals and (2) seeking a solu-
tion which minimizes a weighed combination of these en-
ergy functionals with appropriate optimization techniques.
Optimization approach offers a unified way for enforcing
both aesthetic criteria (e.g., fairness) and functional require-
ments (e.g., interpolation or continuity constraints). In gen-
eral, user-specified energy functionals can be further de-
composed into a combination of popular functional prim-
itives.

Many mature NURBS modeling techniques such as in-
terpolation and approximation are amenable to the compu-
tational framework of energy-based optimization. For ex-
ample, interpolation algorithms such as cross-sectional de-
sign, skinning operation [8], and scattered data fitting [9,
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5, 20, 1, 14, 15] can be considered as a set of geomet-
ric constraints that the final shape must satisfy. Typical
approximation techniques for NURBS including approx-
imated parametrization, lease-squares fitting, knot reduc-
tion, and hierarchical refinement [11, 19, 18, 10, 3, 4, 17].
can be expressed as the minimization of an error metric:
ε(s).

3.2 Primitive Functionals

Currently, energy functionals in most CAD/CAM appli-
cations can be expressed in terms of a certain combination
of functional primitives. A typical set of these basic func-
tionals include the integral forms of parametric derivatives
(up to ordern), curvature, differential area, the variation of
curvature, etc. Below are a set of commonly used primitives
for NURBS surfaces. Functional primitives for NURBS
curves can be similarly constructed.

• Simple quadratic forms (the subscript stands for partial
derivatives with respect to parameters):

∫ ∫
(c1 s2

u(u, v) + c2 s2
v(u, v))dudv

∫ ∫
(c1 s2

uu(u, v) + c2 s2
uv(u, v) + c3 s2

vv(u, v))dudv

• Principal curvaturesκ1 andκ2:
∫ ∫

(c1 κ2
1(s(u, v)) + c2 κ2

2(s(u, v)))dudv

• Surface area functionA(s(u, v)):
∫ ∫

A(s(u, v))dudv

• Variation of two principal curvaturesκ1 andκ2, where
u1 andu2 representu andv, respectively:

∫ ∫
(
∑

i,j

(
∂κi

∂uj
)2(s(u, v)))dudv

• Variation of surface area:∫ ∫
(
∑

i

(
∂A

∂ui
)2(s(u, v)))dudv

• Functionals that enforce the area-preserving con-
straint, the convex-preserving constraint, etc.

• Torsion-based functionals.

The generic formulation for a constrained functional can
be expressed as: minimizingf(x) (wherex ∈ Rn) subject
to {

ci(x) = 0, i = 1, . . . , k
ci(x) >= 0, i = k + 1, . . . , m

3.3 Least Motion and Uniform Distribution Con-
straints

NURBS are highly redundant in the sense that a spe-
cific shape may be represented by different combinations
of shape control variables. This results in numerical unsta-
bility problem. Least motion constraint can be incorporated
to ensure a unique solution. Essentially, the least motion
constraint affords the change of the shape control variables
to be as small as possible. A typical constraint for the least
motion principle may be expressed as:

∑

i

σi(p∗i − pi)2, (3)

where superscripts∗ denote optimal shape variables. The
least motion constraint can be physically charaterized as
that each generalized coordinate in the DOF vector is vir-
tually connected with its initial position through a spring
whose rest length is zero. The springs’ stiffness distribution
controls different weights for each entity within the sum of
squared distance.

Another useful constraint to ensure numerical stability
is the regularity constraint which requires the knots and/or
control points uniformly distributed when there is a contin-
uous set of local minima (for example, straight line may be
represented by arbitrary vertices on a straight line), please
refer to [12] for details.

The underlying function space over which our function-
als are defined is limited to NURBS space. Thus, energy
functionals over infinite dimensional shape space become
functions of finite dimensional shape control variables:

λ[s(u, v, p1, · · · , pn+k)] = L(p1, · · · , pn+k)

whereu,v are eliminated by the functional operatorλ.

4 Computation of NURBS’ Gradient

The key to most optimization techniques is to effec-
tively derive the gradient of certain functionals and seek
the accurate solution of zero-gradient for the corresponding
functionals. This section details the transformation from
NURBS to a set of rational Bezier splines that aims to facil-
itate the gradient computation of energy functionals.

4.1 Gradient Calculation

Our optimization algorithm is based on Polak-Ribiere’s
Conjugate Gradient (CG) method [22] which computes the
gradient information in order to speed up the convergence.
We now address the concept of re-parametrization and its
effects on NURBS knots.

To simplify notation, we decompose the NURBS DOFs
into three separate vectors:
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pb = {pid}i=1..n,d=1..3 =
[

p>1 · · · p>n
]>

,

pw = {wi}i=1..n =
[

w1 · · · wn

]>
,

pk = {ti}i=1..n+k =
[

t1 · · · tn+k

]>
,

where subscriptd differs thex, y, andz coordinates for each
control point. Let us collect all DOFs into a single vector:

p = {pi}i=1..5n+k =

[{pjd}j=1..n,d=1..3 , {wj}j=1..n , {tj}j=1..n+k] , (4)

The gradient of any generic objective funtionL is now ex-
pressed as:

g =
∂L(pb,pw,pk)

∂p
=

[
∂L/pb ∂L/∂pw ∂L/∂pk

]

It is trivial to evaluate the gradients with respect to
NURBS control points and weights. However, the gradient
evaluation with respect to NURBS knots is rather challeng-
ing. One desirable advantage of our NURBS geometry is its
local control property which allows better editing capabil-
ity. Arbitrary pointc(u), ti < u < ti+1 is only related to a
subset of the knot vectorti−k+1, · · · , ti+k (see Fig. 2). We
move the knotti slowly towards its right neighbor and pass
the u, now c(u) jumps to the adjacent span. In this case,
the relevant control polygon that definesc(u) is modified.
This leads problems in certain applications. For instance,
moving a curve point may not result in a strong change of
the shape, but the point sliding to its nearby patch along the
curve tangent. The point shift from one span to its neighbor-
ing span resulted from the varying knots is counter-intuitive.
It is our hope that each point on NURBS is only a function
of a fixed subset of its control polygon.

4.2 Curve Reparametrization

Note that, because NURBS are a homogeneous repre-
sentation of four-dimensional B-splines, we first describe
our procedure for B-splines. The underlying concept can be
trivially extended to NURBS using homogeneous transfor-
mation.

Consider each knot intervalti ≤ u < ti+1, the curve
spanc(u) is uniquely determined by a subset of control pa-
rameters mentioned above. We can decompose a B-spline
curve as a set of B-spline spans defined on the domain of a
single knot interval (i.e., every two consecutive knots) and
formulate the parametric representation for each span. We
normalize the parameter domain for each span by scaling
and translating the domain[ti, ti+1] for spani to [i, i + 1].
Thus we obtain a new parametrization scheme, for theith

B-spline span, i.e.,c(u), ti ≤ u < ti+1:

c1(û) = c(u) = c(ti + (û− i)(ti+1 − ti)), (5)

wherei ≤ û < i + 1, andû is the new parameter. Concate-
nating all of these curve spans together, we derive a new
parameterization in domain[k, n+1] for the same B-spline
curvec(u), tk ≤ u ≤ tn+1 (see Fig. 1). Moreover, we can
derive the explicit transformation,u = ti+(û−i)(ti+1−ti).
The shape is preserved with the normalized parameter do-
main for each B-spline span. However, we lose theCk−1−r

continuity at integer value on the parametric domain. but
Gk−1−r continuity still holds.

We know a B-spline curve spanc(u), ti ≤ u < ti+1

determined by knotsti−k+1, · · · , ti+k and control polygon
pi−k+1, · · · ,pi is a Bezier curve of the same degree, refer
to [2] for details. The control polygon of this Bezier curve
can be expressed in terms of the preceding B-spline control
polygon and its relevant knots.

Note that, all the Bezier basis functions are defined over
a fixed domain[0, 1]. This leads to another reparametriza-
tion scheme which offers each curve span a fixed bound-
ary independent of knots changing. Here, non-uniform
knots are used to derive the new Bezier control points.
With Bezier representation, it is no longer necessary to re-
evaluate B-spline basis functions after the modification of
knots. In general, this can significantly improve time per-
formance because all Bezier basis functions can be pre-
computed with appropriate sampling density in parameter
domain[0..1].

We now use cubic B-splines to briefly illustrate the trans-
formation technique from B-splines to a set of piecewise
Bezier curves. Detailed derivation can be found in Boehm’s
paper [2]. In Fig. 2, Control polygonp1,p2,p3,p4 and
knot sequencet1, · · · , t8, determines curve spanAD(solid)
defined on parametric domaint4 ≤ u < t5. Control
polygonp2,p3,p4,p5 and knot sequencet2, · · · , t9 deter-
mines curve spanDG (dash) defined on parametric domain
t5 ≤ u < t6. In this example, the Bezier control points
of curve AD and DG are ABCD and DEFG, respec-
tively. The Bezier control polygonABCD and DEFG
can be derived by dividing each edge using certain ratios as
shown in Fig. 2, whereu2, · · · , u6 are knot intervals, i.e.,
ui = ti+1 − ti.

Now, let us focus on the derivation of Bezier
parametrization for the B-spline curve spanc(u), ti ≤ u <
ti+1. Each B-spline point is associated with a correspond-
ing local Bezier parameter, denoted asu′ ∈ [0, 1]. We intro-
duce Bezier global parameter asǔ = i + u′, whereu′ is the
local Bezier parameter, andi is the index of the span where
the point resides.

The cubic B-spline curve spanc(u) is equivalent to a
cubic Bezier curvec′(u′). For the first span,c(u), t4 ≤
u < t5, we have,

c(u) =
4∑

i=1

piBi,4(u) =
4∑

i=1

p′iNi,4(u′),
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Figure 1. Uniformly spaced B-spline curve spans.

where eachp′i is a control point for the corresponding
Bezier form. EachNi,4 is a cubic Bezier basis function
whose domain is[0, 1], andu′ is a local parameter for the
Bezier curve. Bezier control points are algebraic functions
of B-spline controls points and their associated knot.


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Denote the composite transformation matrix of the matrices
in the above equation asM. In general, for arbitrary B-
spline curve span, it is a function of its corresponding subset
of the knot vector.

c(ǔ,p) = [N1,k(u′), · · · , Nk,k(u′)]M(ti−k+1, · · · , ti+k)

· [p>i−k+1, · · · ,p>i
]>

, (6)

where,i is the span index. For simplicity, let us write the
right side of this formula as:N(u′)M(pk)P or simply
NMP. Note that, for each curve span, there is a differ-
entM. Now we can calculate the gradient with respect to
knots.

∂c(ǔ,p)
∂pk

= N(u′)
∂M
∂pk

P

It may be noted that the close-form analytic expression of
∂M/∂pk can be derived though the exact form is extremely
complicated. As four-dimensional homogeneous B-spline,
NURBS curve can be converted into a set of rational Bezier
curves with the same geometry:

c(u) =

∑n
j=0 pjwjBj,k(u)∑n

j=0 wjBj,k(u)
=

N(u′)M(pk){wipi}
N(u′)M(pk){wi}

4.3 Surface Reparametrization

Reparametrization of a B-spline surface can be similarly
derived, following the prior discussion on the curve proce-
dure. For a NURBS surface:

s(u, v) =

∑m
i=0

∑n
j=0 pijwijBi,k(u)Bj,l(v)∑m

i=0

∑n
j=0 wijBi,k(u)Bj,l(v)

, (7)

Again, the generalized coordinates of NURBS surface con-
sist of the control points, weights, and two knot sequences
which can be assembled into vectorspb, pw, ps andpt,
respectively. Finally, we assemble them into a single gener-
alized coordinate vectorp.

Similar to a NURBS curve, a NURBS surface consists a
set of Bezier surface patches. To simplify the complicated
subscripts for the tensor product NURBS surface, we use
individual matrix entity instead of the previous matrix form
in our derivation. We denote each element of matrixM in
(6) asMk

ij({ti}) wherei, j ∈ [1..k]. Let u′ andv′ be the
corresponding Bezier parameters foru andv.

s(u, v,p) =

∑n
i=1

∑m
j=1 pijwijBi,k(u)Bj,l(v)∑n

i=1

∑m
j=1 wijBi,k(u)Bj,l(v)

=

∑k
i=1

∑k
i′=1 Nk

i′(u
′)Mk

i′i(
∑l

j=1

∑l
j′=1 N l

j′(v
′)M l

j′jwijpij)∑k
i=1

∑k
i′=1 Nk

i′(u′)M
k
i′i(

∑l
j=1

∑l
j′=1 N l

j′(v′)M
l
j′jwij)

(8)
whereNk

i′ andN l
j′ are the Bezier basis functions of degree

k andl, respectively,Mk
i′i andM l

j′j are the matrices trans-
forming B-spline control points to Bezier control points for
parameteru andv, respectively, BothM ’s are square ma-
trices whose entities are functions of the relevant knots for
a specific Bezier patch.

5 Numerical Techniques

This section addresses the numerical techniques used in
our modeling software. In particular, we have developed a
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Figure 2. Conversion of a cubic B-spline curve to a set of Bezier curves.

large variety of numerical algorithms for efficient function
evaluation, derivative evaluation, and energy optimization.

5.1 Functionals and gradient Evaluation

In general, allowing NURBS knots to vary makes
NURBS evaluation more time-consuming. We consider the
following numerical aspects:

• NURBS Evaluation. Through reparametrization, ar-
bitrary NURBS curve is transformed to a set of Bezier
curves. Bezier basis functions are Bernstein polyno-
mials with fixed domain[0, 1], we employ the pre-
processing to store all relevant values of Bezier basis
functions in a lookup table in order to speed up the
function evaluation. So, the major run-time computa-
tional cost for NURBS evaluation is due to the calcu-
lation of Bezier control polygon and their weights.

• Functional Evaluation. Functional evaluation mainly
depends on the effective computation of NURBS
derivatives (up to ordern). Because NURBS are
based on homogeneous coordinates, their higher-order
derivatives require many multiplication and division
operations. In our system, only the NURBS value
and its first-order derivative are computed analytically.
However, NURBS area, second-order derivative, cur-
vature, as well as the variation of curvature should be
computed numerically due to their complexities. For
NURBS derivatives with respect to knot vector, we
also turn to numerical approaches. We implemented
a wide range of commonly-used functionals as soft-
ware modules. Users can concentrate on a meaningful

combination of system-supplied functional procedures
in order to achieve their design objectives.

• Numerical Integration . Continuous functionals re-
quires function integration. The closed-form ana-
lytic solution for the integral of arbitrary functions
of NURBS and their derivatives is almost impossi-
ble. In our system, in particular, we take advantages
of different numerical methods for integration which
are applicable to different cases. Among them, Gaus-
sian quadrature [22] is the most accurate and efficient
technique with few sampling points for most function-
als available in our system. Nevertheless, Gaussian
quadrature will be much less appealing to users when
certain singularities such as dis-continuity at NURBS
knots happen. This scenario may be caused by multi-
ple knots concentrated in a very small region. In a nut-
shell, Gaussian quadratures are sampled in the interior
of knot intervals. Function values at two end points of
any knot interval are not taken into consideration dur-
ing the numerical integration. In such cases, we use
Simpson’s quadrature instead, which also samples the
boundary value. Fig. 3 shows a situation where Gaus-
sian quadrature fails to offer a good approximation for
the integral computation of arc-length. The solid dots
on axisx are sampling points of Gaussian quadrature.

5.2 Optimization Techniques

Mathematicians have studied a large variety of ap-
proaches to solving optimization problems of various cat-
egories. The energy optimization problems of NURBS can
be classified as multi-dimensional non-linear constrained
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optimization. In [13], many methods for this type of prob-
lems are analyzed in detail.

Our optimization algorithm is based on Polak-Ribiere’s
Conjugate Gradient (CG) method [22]. In the process
of optimization, there are several hard constraints that
NURBS must satisfy. First, the knot sequence must be non-
decreasing:t1 ≤ t2 ≤ · · · ≤ tn+k. Second, all the weights
have to be non-negative. We modify the CG algorithm to
accomodate these hard constraints.

At each CG iteration, a new direction based on the gra-
dient is generated, and the optimizer sequentially invokes a
line minimizer to obtain the local minimum along that di-
rection. To enforce the hard constraint on knots, we first
adjust the direction vector with respect to knots. If sev-
eral adjacent knots which are very near to each other in-
tend to collide during the numerical procedure, we mod-
ify the direction component of them to their average. A
rigorous analysis of this technique can be derived through
the use of Langrangian multiplier method. After the direc-
tion is adjusted, we set a upper-bound that specifies how
far the line-minimizer can proceed. To enforce the non-
decreasing constraint for NURBS knots, we simply set a
minimum value so that the distance between two adjacent
knots must not fall below this threshold. Assuming the
new adjusted direction isd = {di}, and the knot vector
is Pk = {t1, t2, · · · , tn+k}, we will have to explicitly limit
the depth along this direction as:

min{ (ti+1 − ti − ε)/(di − di+1) }(di−di+1)>0

in order to enforce the geometric constraints for knots and
weights. Similarly, If a weight value becomes very close
to zero and the corresponding gradient with respect to this
weight is negative.

I n i t i a l  C o n t r o l  M e s h

E n e r g y  E v a l u a t o r

G r a d i e n t  E v a l u a t o r

C o n j u g a t e  O p t i m i z e r

O p t i m i z e d  C o n t r o l  M e s h

Figure 4. The system architecture of our
energy-based optimization procedure.

6 System Organization

The major components of our numerical algorithms for
energy-based tools in our system are briefly documented in
Fig.4. The entire system functions through the use of sev-
eral temporal events:
1. Convert a NURBS curve/surface into Bezier patches.
2. Evaluate the scalar functional to be optimized.
3. Numerically evaluate the gradient of this functional by
repeatedly applying Step 2 with perturbed shape variables
(the number of evaluations depending on the required accu-
racy).
4. Employ appropriate multi-dimensional optimization
techniques such as Conjugate Gradient, or Newton’s
method to evolve the shape.
5. Repeat the above procedures till the error bound are sat-
isfied.

7 Results and Discussion

We provide users an interactive shape modeling and
editing system, which can enforce various constraints for
NURBS curves and surfaces in real-time. In the interest
of space, this section explains several application examples
only for NURBS surface design. We use a6 × 6 control
mesh for all the following examples. Without the loss of
generality, the boundary control points and end knots are
fixed for these examples in order to emphasize our novel
tools and its associated ideas.

• Inteactively specify a surface point and manipulate
this surface point directly to arbitrary location in
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Figure 5. The two knot vectors for the NURBS surface appeared in Fig.7(a).
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Figure 6. The two knot vectors for the NURBS surface appeared in Fig.7(g).

3-space.
In Fig. 7, (a) and (b) show two NURBS surfaces before
and after the manipulation of a user-specified point, re-
spectively. Our system allows users to pick any point
(pointed with arrow in the figures) across the entire
NURBS surface and edit its location, normal, and cur-
vature.

• Minimize Guassian and mean curvatures at a user-
specified point on the surface.
Fig.7(c) and Fig.7(d) show two NURBS surface shapes
before and after minimizing the Gaussian curvature
at the user-specified point (pointed by arrow), respec-
tively. Fig.7(e) and Fig.7(f) demonstrate the curvature
maps, of Fig.7(c) and Fig.7(d) respectively, where the
gray color denotes larger Gaussian curvature, the light
color represents larger mean curvature, dark color for
smaller value of both Gaussian and mean curvatures.

• Minimize the curvature variation .
Fig.7(g) shows the sculpting tool that can minimize
the variation of curvature throughout the NURBS area.
The original shape without the minimization of this
energy functional is the same as that in Fig.7(a). We
fix four inner control points near the top (represented
as grey points). Note that, sometimes fixing a subset
of control mesh can be used to specify a rough shape
as an effective initialization process. Other free con-
trol parameters will be determined through the inter-
active specification of appropriate energy functionals.
Fig.7(h) and Fig.7(i) demonstrate the corresponding
curvature maps. We can clearly see the curvature con-
trast across different regions of the NURBS surface.
Note we rotate the shape by an angle in the curvature
maps. Fig.5 and Fig.6 document the knot vectors be-
fore and after the minimization of the variaton of cur-
vature for this example.

• Enforce the area-preserving constraint on any spec-
ified region of interest.
Fig.7(j) shows the result of changing the area value in
Fig.7(a) to a new value subject to the constraint of least
motion. Note that, the control points near the center

aggregate towards each other as this type of motions
will change the area of NURBS surface significantly
in this example.

• Render the NURBS denominator distribution as a
texture map on the NURBS geometry.
Besides knots, our system also supports the auto-
matic determination of time-varying weights. To best
demonstrate this functionality, we use the NURBS de-
nominator distribution as a texture map, or weight
map. Fig.7(k) and Fig.7(l) are two weight maps that
show the two sets of non-unity weights and their vari-
ation due to the surface point manipulation. In this
example, the dard color stands for larger NURBS de-
nominator.

8 Conclusion

We have greatly enhanced the already-powerful model-
ing capabilities of NURBS through the energy-based opti-
mization approach by incorporating non-uniform knots of
NURBS into NURBS generalized coordinates. Our key
contribution is that we have developed a novel modeling
technique that systematically transforms general NURBS
geometry (including both univariate curves and tensor-
product surfaces) into a set of geometrically equivalent ra-
tional Bezier splines in order to facilitate the mathemati-
cal derivation of analytic formulation for NURBS Jacobian
matrix through symbolic computation. The new, improved
NURBS formulation and its modeling framework based on
the principle of energy optimization afford all time-varying
degrees of freedom of NURBS to be controlled by vari-
ous commonly-used energy functionals. Within the frame-
work of energy optimization, the system can allow users to
interactively manipulate NURBS geometry in an intuitive
fashion via a large variety of sculpting tools (e.g., geomet-
ric constraints, energy functionals) without worrying about
how to set up control points, non-unity weights, and/or non-
uniform knots.

We have developed a prototype interactive modeling
system based on the new NURBS formulation and have
demonstrated the flexibility of our models in a variety of
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applications. In particular, we have extended our previous-
developed NURBS system by offering users a wide array of
non-quadratic curvature-based functionals that can be dy-
namically minimized during the sculpting session in real-
time. Our novel formulation as well as its accompanying
system permits NURBS to realize its full modeling poten-
tial in shape modeling, geometric design, and interactive
graphics, greatly enhancing NURBS functionalities in vari-
ous visual computing applications.
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Figure 7. Result Snapshots
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