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Abstract

The recent non-uniform subdivision approach extends tra-
ditional uniform subdivision schemes with variable rules, of-
fering additional shape parameters (such as knot spacings)
for feature control. Despite its flexibility, shape modifica-
tion based on non-uniform subdivision usually requires de-
signers to interactively adjust a large number of degrees of
freedom (DOFs) to achieve the desired shapes, which can
often be laborious. This paper extends the principle of vari-
ational subdivision and integrates the non-uniform subdivi-
sion schemes with powerful physics-based shape sculpting
techniques, providing a universal method for arbitrary sub-
division schemes with adjustable rules. The subdivision con-
trol points and knot spacings evolve in response to the shape
deformation resulting from the numerical integration of La-
grangian dynamics equation or the optimization of shape en-
ergy functional. Thus, our system allows users to manipu-
late the desired shape in a direct and intuitive fashion. In
addition, we propose a novel and efficient discrete functional
evaluation method for polygonal meshes or point cloud of ar-
bitrary topology based on implicit functions, in which no pa-
rameterization is needed. Finally, we develop a simple pro-
totype sculpting system demonstrating many advantages of
our novel physics-based, non-uniform subdivision modeling
system.

Keyword: Computer graphics, CAD, Physics-based model-
ing, subdivision.

1 Introduction and Motivation

Recently, subdivision has been widely studied and ex-
ploited in graphical modeling systems because it provides a
simple and uniform method for representing free-form sur-
faces with arbitrary topology to a certain degree of continuity
without such cumbersome operations as trimming and patch-
ing. A recent extension to the conventional uniform subdivi-
sion scheme is the non-uniform subdivision scheme, which
offers users the possibility of feature control. Typical fea-

tures include sharp edges and sharp corners.
Despite the flexibility of subdivision schemes, existing

subdivision sculpting systems (which are primarily based on
manually manipulating the control vertices and directly spec-
ifying sharp features to each individual edge) are subject to
some modeling difficulties: models for real-world objects of-
ten have an extremely large number of control points, caus-
ing manual editing and animation of a huge control mesh to
be clumsy and laborious; models in CAD and animation are
often subject to a set of aesthetic and engineering criteria,
and meeting these criteria by indirectly moving the underly-
ing control parameters may not be intuitive and effective; and
design requirements from various application areas are often
shape-oriented instead of control point oriented.

Physics-based modeling provides an effective solution to
these difficulties by combining geometric objects with real-
world physical attributes such as mass distribution, external
forces, internal energy, etc. In our physics-based subdivi-
sion modeling environment, the shape control parameters are
governed by physical laws and are determined through the
numerical integration of dynamic equations. Thus, the new
system incorporates not only the geometric features, but also
physics-based properties to streamline the task of shape con-
struction and modification.

Although physics-based modeling of subdivision surfaces
has been available in recent years, existing methods primarily
focus on the control points [7]. To fully realize the represen-
tation potential of non-uniform subdivision schemes, there
has yet to emerge a systematic approach to take the non-
uniform subdivision rules into the physics-based modeling
framework. In this paper, we further incorporate the non-
uniform subdivision rules, quantified as non-negative real
values called knot spacings, into the generalized coordinates
of a universal dynamic subdivision system. By employing
subdivision knot spacings, more accurate control of surface
curvature and shape features becomes possible.

2 Research Contributions

In this paper, we generalize Dynamic Subdivision Sur-
faces [7] to non-uniform subdivision schemes. The further



incorporation of non-uniform subdivision rules to the already
powerful physics-based subdivision sculpting tools makes
possible much finer control of surface details such as nor-
mal, curvature, and more importantly, sharp features. This
paper focuses mainly on non-uniform Catmull-Clark subdi-
vision surfaces. However, the fundamental algorithms can be
generalized to many other non-uniform subdivision schemes
without any additional difficulty.

In our system, the user-specified physical properties (in-
cluding mass density, damping distribution, external simu-
lated forces, and energy functionals, as well as other phys-
ical and geometric constraints) govern the evolution of the
dynamic Lagrangian equation. Among them, the potential
energy functionals play a central role in the determination of
the final surface shape. The energy functionals have the ca-
pability of quantifying user-centered aesthetic criteria, qual-
itative constraints, and functional requirements, serving as
a basic sculpting toolkit for a large variety of applications,
and providing a direct shape manipulation “language” to
describe complicated models in an intuitive fashion, while
avoiding the bewildering indirect manipulation of the under-
lying shape variables. This paper systematically discusses
a number of commonly used functionals. Several primitive
functionals are implemented in our system. We show that a
weighted combination of this select set of primitive function-
als can meet a large variety of requirements in many applica-
tions.

Moreover, we propose a discrete functional evaluation al-
gorithm based on implicit surface approximation. Our new
approach eliminates the need to find a local isometric param-
eterization of the surface.

3 Background

Our system is inspired by prior work. In this section, we
discuss uniform and non-uniform recursive subdivision [11],
variational subdivision [16, 3], D-NURBS [9], dynamic re-
cursive subdivision [7] and our previous work.

Subdivision defines a curve or surface as the limit of a
sequence of successively refined polygons or polyhedral
meshes, respectively. Subdivision was first introduced as
a fast curve rendering tool. Doo and Sabin and Catmull
and Clark first initiated the use of recursive subdivision as a
smooth surface definition method which overcomes the rigid
topological limitation of tensor-product splines. Early subdi-
vision schemes can be considered as a generalization to the
well known spline-based knot-insertion algorithm. Later on,
other forms of subdivision rules independent of splines were
proposed. Fig. 1 presents the results of applying the Catmull-
Clark subdivision scheme to generate a bicycle saddle.

Modeling through the use of subdivision can overcome
many difficulties inherent to other modeling techniques.
Here we summarize some of its important advantages:

1. Topological Generality: The generated surface is smooth

Figure 1. Uniform Catmull-Clark subdivision.

everywhere, and no specific valence limitations are imposed
on vertices.

2. Multiresolution: Because of its recursive refinement struc-
ture, subdivision intrinsically supports level-of-detail render-
ing, multi-resolution editing, and other hierarchical algo-
rithms.

3. Uniformity of Representation: Subdivision bridges the gap
between discrete polygonal meshes and continuous spline
patches. Many algorithms for either representation can find
their applicability in subdivision settings.

4. Properties Inherited from Splines: Also, many other fea-
tures of splines and polygonal meshes, such as local support,
affine invariance, continuity, simplicity, etc, are inherited by
subdivision.

Non-Uniform Recursive Subdivision Surfaces (NURSSes)
are extensions of the non-uniform tensor product B-spline
surfaces to arbitrary topological settings [11], analogous to
the way that Doo-Sabin and Catmull-Clark surfaces are the
generalization of uniform B-spline surfaces. The incorpora-
tion of non-uniform knot spacings to subdivision rules pro-
vides extra modeling capabilities to express features like
creases and cusps, and the degree of sharpness of these fea-
tures. The use of variable subdivision rules to model spe-
cial features can be dated back to Hoppe and DeRose, et al
[2]. Other similar tagging algorithms were subsequently pro-
posed. Similar to Doo-Sabin and Catmull-Clark’s schemes,
NURSSes are based on non-uniform B-spline knot insertion
algorithms. However, the knot spacings in the non-uniform
subdivision scheme can be independently chosen, and they
need not to satisfy a tensor product structure in which the
knot spacings in the same row or column must take the same
value. Fig. 2 shows the application of non-uniform Catmull-
Clark subdivision to the same mesh as in Fig. 1 with various
knot spacings attached. We can observe that small knot spac-
ings tend to attract the limit surface toward that edge.

Variational Subdivision is based on the idea that one subdi-
vision step can be considered as a topological splitting opera-
tion where new vertices are introduced to increase the degree
of freedom, followed by a smoothing operation where the
vertices are shifted in order to increase the overall smooth-
ness [3]. Many existing subdivision rules are designed such
that a particular quadratic energy functional can be mini-
mized. Variational subdivision aims at finding a systematic
approach toward the determination of subdivision rules when



Figure 2. Non-uniform Catmull-Clark subdivision
(knot spacings: red=1.00, blue=0.01).

given the quadratic form of an energy functional.
Kobbelt [3] and Mallet [5] proposed an interpolatory vari-

ational scheme. Warren and Weimer extended the variational
approach to approximating subdivision schemes which min-
imize arbitrary quadratic functionals, details of which can be
found in [13]. The idea of using energy functionals to derive
the subdivision rules can be extended to much more gener-
alized cases where neither the energy form needs to be con-
fined in quadratic form, nor do the subdivision rules need to
be stationary. This generalized form leads to one inspiration
of our physics-based modeling framework.

Physics-based Modeling incorporates physical properties
into the shape geometry, allowing the physical laws to gov-
ern the deformation of the shape to meet desired global and
local modeling criteria and other geometric constraints in or-
der to facilitate the interactive modeling process in an intu-
itive fashion. Free-form deformable models were first in-
troduced to computer graphics by Terzopoulos et al [12].
Terzopoulos, Fleischer, Celniker, Gossard, Bloor, Wilson,
Welch, Witkin and many others established the foundations
of physics-based modeling through energy functional opti-
mization subject to hard or soft geometric constraints. Qin
and Terzopoulos [9, 10] developed the dynamic NURBS (D-
NURBS), in which, the NURBS geometry, married with
time, mass, force, and potential energy functionals, dynami-
cally evolves through the time integration of the Lagrangian
equation. Mandal and Qin [7] further applied Lagragian dy-
namics to subdivision models, providing the dynamic sub-
division. Physics-based modeling alleviates the laborious
shape manipulation process by indirectly positioning and
moving a large number of shape variables, and provides an
intuitive framework for real- world geometry description and
modification.

Automatic NURBS Knot Determination [15] was devel-
oped to facilitate the automatic determination of non-uniform
knot vectors as well as other control variables for NURBS
curves and surfaces through the unified methodology of
energy minimization, variational principles, and numerical
techniques. To incorporate non-uniform knots into our op-
timization framework, we systematically transform general
NURBS geometry into a set of geometrically equivalent ra-
tional Bézier splines. Thus, we facilitate the mathematical
derivation of NURBS Jacobian matrix through both symbolic

and numerical computation. Within our energy optimization
methodology, the system can allow users to interactively ma-
nipulate NURBS geometry in an intuitive fashion via a large
variety of sculpting tools (e.g., geometric constraints, energy
functionals) without worrying about how to set up control
points, non-unity weights, and/or non-uniform knots. This
paper aims at extending the knot-varying D-NURBS frame-
work to more powerful and topology-flexible non-uniform
subdivision schemes.

4 Definitions for Non-uniform Recursive Sub-
division

Non-Uniform Recursive Subdivision Surfaces
(NURSSes) are extensions of non-uniform B-spline
surfaces to arbitrary topology and arbitrary knot spacing
settings. Non-uniform B-splines have the capability to
model discontinuity by multiple knots. In non-uniform re-
cursive subdivision schemes, the non-negative knot spacings
attached to each edge take the place of non-decreasing knot
vectors, and no longer need to be in a strict tensor product
configuration.

In the interest of space, we refer readers to [11] for the
definition of non-uniform Catmull-Clark and Doo-Sabin sub-
divisions.

5 Physics-based Sculpting Algorithms and
Formulations

Having extended the representing flexibility of traditional
uniform subdivision schemes by marrying them with non-
uniform knot spacings, we further alleviate the labor of shape
manipulation by incorporating physics information such as
time, mass, force, and strain energy into the non-uniform
subdivision formulation. In this section, we present the
physics-based, dynamic non-uniform subdivision formula-
tion and relevant numerical algorithms.

5.1 Dynamic Non-uniform Subdivision

Allowing the knot spacings to change makes it extremely
difficult to find an analytic formulation for the limit surface.
We iteratively subdivide our initial control polygon to a satis-
factory level (normally 3–4 levels since the geometric com-
ponents proliferate exponentially), and view each vertex at
the finest-level as a particle. The geometry of the finest-level
surface, along with its attached physical attributes, comprises
the particle system with which we are concerned (see Fig. 3).

A particle system can be characterized by the position
si(t), velocity ṡi(t), mass µi and damping γi of each par-
ticle i, along with the inner potential energy E(s0, · · · , sn),
simply denoted as E(s). Among these symbols, the over-
struck dot denotes a time derivative. We can now formulate



Figure 3. Subdivision surface as a particle system.

the standard dynamics of this particle system as:

µis̈i + γiṡi +
∂E(s)

∂si

= fa
i , ∀i, (1)

where fa
i refers to external applied force, and ∂E(s)/∂si can

be denoted as −f
p
i , i.e., the potential induced force.

Prior to further discussion, we first clarify some terminol-
ogy. We refer to the finest-level points as particles, and the
coarsest level points (the initial mesh vertices) in our subdivi-
sion hierarchy as control points. The evolution of our subdi-
vision surface over time can be uniquely characterized by the
behavior of its control points pi and knot spacings ti, which
in dynamics are collectively called generalized coordinates,
denoted as gi. Now, we treat these generalized coordinates
as time variables, i.e., as functions of time gi(t). We can ex-
ploit Lagrangian dynamics to derive the equation governing
the dynamic behavior of this set of generalized coordinates.
The matrix form of Lagrangian work-energy equation is

Mg̈ + Dġ +
∂E(g)

∂g
= fa − Bġ, (2)

where M is called mass matrix which can be derived as

M =
∑

i

µiJ
>
i Ji, (3)

where µi is the mass of particle i, and Ji is the Jacobian of
si with respect to its generalized coordinates gi, that is,

Ji =
(

∂si

∂p0

· · · ∂si

∂pn

∂si

∂t0
· · · ∂si

∂tk

)

. (4)

Similarly, the damping matrix D is defined as

D =
∑

i

γiJ
>
i Ji, (5)

with γi as the damping coefficient. The generalized force
vector, obtained through the principle of virtual work [1]
done by the applied force distribution fi(t) is

fa =
∑

i

J>
i fi(t). (6)

Unfortunately, the Jacobian is not constant over time. This
results in variable M, D and an additional non-zero matrix,

B(g) =
∑

i

µiJ
>
i J̇i.

The potential energy E(g) can adopt a large variety of func-
tionals that result in different behaviors of our physics-based
non-uniform subdivision. We will discuss this issue in the
following subsections.

5.2 Numerical Integration of Lagrangian Equation

We can discretize the time-continuous Lagrangian equa-
tion in (2) to a finite difference equation. Note that, B is Ṁ,

(Dt +
Mt−2∆t − 4Mt−∆t + 3Mt

2∆t
)
gt+∆t − gt−∆t

2∆t

+Mt ·
gt+∆t − 2gt + gt−∆t

∆t2
+

∂E(gt)

∂g
= fa, (7)

where the superscript denotes evaluation of g at the time in-
dicated.

In the equation, gt+∆t is the unknown to be solved in each
iterative step. We do not use (Mt+∆t − Mt−∆t)/2∆t to
approximate Ṁ because we employ a forward method.

This equation will lead to an algebraic equation,

Agt+∆t + b = 0, (8)

where A and b are functions of previous state gt−2∆t, gt−∆t

and gt. The equation gives the current state gt+∆t. Thus
the motion evolves along the time axis. The value of ∆t is
assigned in consideration of the tradeoff between accuracy
and speed.

We can use Gaussian elimination method or conjugate
gradient method to solve (8). For the latter case, (8) is equiv-
alent to minimizing g>A>Ag − 2b>Ag.

5.3 Energy Optimization

One disadvantage is that the incorporation of non-uniform
knot spacings results in a non-stationary Jacobian throughout
the dynamic evolution. We can not use any precomputation
of the matrices as in [7]. This impairs the performance con-
siderably.

Note that the equilibrium state of the our dynamic system
in (2) can be simplified as:

∂E(g)

∂g
= fa|t=∞

⇔
∂(E(g) − g · fa|t=∞

)

∂g
= 0. (9)

It turns out to be a standard optimization problem of mini-
mizing E(g) − g · fa|t=∞

.
Many mature optimization solvers can be employed for

our system with satisfactory efficiency. Unlike variational
subdivision, which is a level-by-level optimization, we only



take the first level control points and knot spacings as gen-
eralized dynamic coordinates. A more advanced methodol-
ogy, where the kth level control points and knots can also be
incorporated into our generalized coordinates, can be easily
constructed (see [6]).

6 Discrete Energy Functionals for Subdivision
Surface

The energy functionals, along with the external forces,
will determine the final shape of our model, while other
physics-based parameters such as mass distribution, and
damping coefficients, only affect the in-between animation
in the dynamic process of shape evolution.

In our system, many sculpting tools are implemented by
specifying a proper energy functional. This energy functional
is not necessary to have a strict physical meaning. A typical
energy functional can be in the form of an integral of surface
normal, curvature, differential area, the variation of curva-
ture, etc. over the interested surface region:

∫∫

Ω

F [s]dS. (10)

For parametric surfaces, the integral is defined on a rectan-
gular parametric domain, and can be evaluated by Gaussian
quadrature or other forms of sampling schemes. The inte-
grand can be easily constructed as an analytic combination
of its partial derivatives with respect to the parameters [15],

Now we shall calculate energy functionals on subdivision
surfaces with variable rules. Traditional uniform Catmull-
Clark surfaces can be seen as a collection of B-spline patches.
In [8], a systematic approach was proposed to transform
Catmull-Clark surfaces to B-spline surface patches, each of
which is defined over a parametric domain [0, 1]2, with spe-
cial consideration made for patches near extraordinary ver-
tices. This transformation allows the straightforward use
of the parametric surface energy functionals developed for
B-splines. Unfortunately, non-uniform subdivision surfaces
and many non-B-spline subdivision schemes (such as Butter-
fly subdivision) can not follow this approach, due to the dif-
ficulties involved in finding an analytic formulation for the
limit surface over rectangular domain patches. Mandal and
Qin [6] developed a mutilevel structure using the recursively
subdivided surface to approximate the limit surface, similar
to the particle system developed in this paper. In this paper,
however, we develop a more accurate and generalized for-
mulation for normal, curvature and other forms of energies,
as well as provide a universal methodology for energy func-
tional construction.

6.1 Membrane Energy and Thin Plate Energy

The most frequently used energy functionals in geometric
surface modeling are the first order strain energy (membrane

energy) and curvature energy:

Emem(s) =
1

2
k

∫∫

Ω

ε2 dS, (11)

Ecurv(s) =
1

2
k

∫∫

Ω

κ2
1 + κ2

2 dS, (12)

where ε is the strain and κ1, κ2 are the two principal curva-
tures. For surface with isometric parameterization, assuming
exerted small displacement or bending, they can be expressed
as:

Emem(s) =
1

2
k

∫∫

Ω

s2
u + s2

v dudv, (13)

Ecurv(s) =
1

2
k

∫∫

Ω

s2
uu + 2suv + s2

vv dS. (14)

The latter is also called thin plate energy. As we have pointed
out, parameterization-independent forms of these formula-
tions over discretized meshes are necessary for our particle
system, as we do not want to construct an explicit local pa-
rameterization.

(a) (b)

(c) (d)

Figure 4. Mass-spring network resisting stretching,
shearing and bending.

A practically effective and efficient method of approxi-
mating internal energy is by using mass-spring model, in
which each mass point is connected by springs with its near-
est neighbors. Ordinarily, the springs are directly assigned
to the edges in the finest subdivided surface, (see 4(a)). If
the finest-level configuration is not triangular based, diago-
nal springs may be needed to resist shearing, (see Fig. 4(b)).
Another method for imposing shearing energy in rectangular
settings is to introduce angular springs, as shown in Fig. 4(c).
Angular springs resist the change in angle between each pair
of adjacent edges.

The expression for the membrane tension energy can be
discretely defined as:

Emem =
1

2

∑

i,j

kij (vi − vj)
2, (15)



where the summation is defined over all edges eij = −−→vivj .
When the rest length is not small enough, the typical formula
of spring energy may be helpful:

Emem =
1

2

∑

i,j

kij (|vi − vj | − rij)
2, (16)

where the summation is defined over all edges eij = −−→vivj ,
and rij is the rest length. The angular spring energy is de-
fined as:

Eang =
1

2

∑

i,j

αij∆θ2
ij , (17)

where summation is defined over all adjacent edge pairs
(eiej) = (−−→vivk,−−−→vjvk), and ∆θij is the displacement of the
angle between these two adjacent edges. If the angular dis-
placement is infinitesimal, we can derive the following ex-
pression for ∆θij :

∆θij =
cosφij − cos θij

sinφij

, (18)

where φij and θij are the angles before and after deforma-
tion, respectively. Note that:

|ei||ej | cos θij = ei ·ej =
1

2
(vi +vj −2vk)2−

1

2
e2

i −
1

2
e2

j .

(19)
In many literatures, (vi+vj−2vk)2 is used to impose shear-
ing strain. This approach works well for those ei and ej

pairs which have strong stretching stiffness and are isomet-
ric. However, experiments show that it still effectively works
well even in circumstances of larger stretching deformation.

The bending energy is directly related to the change of to-
tal curvature, κ2

1 + κ2
2. One way to impose curvature energy

is by introducing another set of angular springs, as shown in
Fig. 4(d). This approach only provides a rough approxima-
tion of the total curvature, as it also includes some shearing
energy, and only works when the edge lengths are near iso-
metric.

As we have mentioned, our pseudo-physical properties
can also accommodate geometric constraints. A satisfac-
tory evaluation of the normal, curvature and other geometric
quantities is critical in applications such as minimizing the
variation of curvature. Before we introduce them, we present
a novel efficient algorithm for discrete evaluation of normal
and curvature through implicit surface approximation.

6.2 Discrete Normal and Curvature Evaluation
through Implicit Surface Approximation

Normal and curvature evaluations serve as the basic
building blocks for many geometric and physical energy
functionals. Traditionally, the discrete curvature approx-
imation involves the introduction of an isometric local
parameterization[4, 14]. A typical procedure includes:

1. Define a neighborhood for each vertex.
2. Choose a parameterization for the neighborhood.
3. Find the approximating polynomial.
4. Evaluate normal/curvature.

An isometric local parameterization entails finding a local
tangent plane, and mapping the surface points to this tan-
gent plane. In this paper, we introduce a novel implicit func-
tion based approach to the discrete computation of the normal
and curvature at a surface point. Within this new approach,
the step of parameterization is no longer necessary. Instead,
our approximating surface is defined by an isosurface of a
quadratic implicit function. We will show that our approach
is no more expensive than that developed in [4].

N
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Figure 5. Approximating implicit surface.

To best convey our idea, we compute the normal and cur-
vature at a point p0, in Fig. 5, for instance.

First, we choose the neighborhood of vertex p0. De-
pending on our accuracy requirement, we can choose its 1-
neighbors, i.e., the solid points p0, p2, p4, p5, p6 and p8, or
2-neighbors p0, · · · ,p15.

Then, we construct an implicit surface f(x, y, z) = 0
approximating p0 and its neighbors. The form of f can
be linear or higher order polynomials. The basic point is
that, the number of unknown coefficients in f should be
no more than that of p’s. If we assume f is a sphere, i.e.,
f(x, y, z) = x2 + y2 + z2 − 2x0x − 2y0y − 2z0z − c = 0,
at least 4 vertices are required. We construct the following
equations:

fi(xi, yi, zi) = 0, ∀pi. (20)

We have a set of linear equations:

Ad = c; d ≡ (x0, y0, z0, c)
>, (21)

where d collects all the unknown coefficients. We can solve
this typically over-constrained linear system by least square
fitting:

A>Ad = A>c. (22)

Now we are able to calculate the normal n, Gaussian curva-



ture K, and mean curvature H by











n(p0) = 1

D
∇f(p0)

K(p0) = 1

D2 n
>M∗n,

H(p0) = 1

2D
n>Hn

(23)

where D = |∇f(p0)|, M is the Hessian matrix of f , M∗

is the adjoint of M, and H = M − trace(M)I, details of
which can be found in Appendix A.

Generally, we can assume f is a quadratic surface:

ax2 + by2 + cz2 +dxy +eyz +fzx+gx+hy + iz + j = 0.

Since d = 0 is a trivial solution, a non-trivial solution needs
to be figured out as the eigenvector of matrix A>A cor-
responding to the least eigenvalue. Since the eigenvector
problem for a 10 × 10 matrix is expensive, we prefer a lin-
ear equation. At least one more condition about the coef-
ficients is required to obtain a non-trivial linear equation.
Based on the knowledge of the shape, different choices can
be made. We can assume a = 1 if we know a 6= 0, or
a + b + c + d + e + f = 1, if we know it is not a plane.

The following procedure provides a robust algorithm to
finding such a condition.

1. Translate p0 · · ·pn such that p0 = 0.
2. Assume f interpolate p0 = 0, thus j = 0.
3. Find a tentative normal ñ at p0. Since ∇f(p0 =

0) = (g, h, i)>, (g, h, i)> ≈ ñ.
4. Assign 1.0 to one of g or h or i with the maximum

absolute tentative value.
5. Solve the remaining equation of only 8 unknowns.

A simple cross-product between two adjacent edges can
provide a good tentative normal. The cost of the above pro-
cedure is negligible, with a good by-product of reducing the
number of unknowns to 8.

When the implicit function f is a polynomial, all those
quantities in Eqn. 23 are not expensive to compute. For the
quadratic case, evaluating M and M∗ needs 0 and 12 multi-
plications, respectively. This method can be easily general-
ized to point cloud and other structures.

If we view the discrete energy functionals defined in the
preceding subsection as “qualitative” functionals, the im-
plicit surface approximating algorithm provides a precise ap-
proach to the discrete evaluation of the surface normal, cur-
vature and other quantities. In comparison with other discrete
curvature evaluation approaches, this method is clean, com-
pact, and efficient.

6.3 General Functionals

Our system provides a general modeling environment in
the sense that it can accommodate a diverse set of energy
functionals for applications of different purposes. We list
some of the commonly used energy functionals implemented

in our system. A linear combination of these functionals
may address most practical requirements emerging in current
modeling literature. In the following list are discretized ver-
sions of their corresponding continuous forms to polygonal
meshes. v′

i, e′i and f ′
i represent the original vertex vi, edge

ei and face fi before deformation, respectively.

1. Membrane Strain Energy:

Ehetero =
∑

i

ki|ei|
2, (24)

Eiso =
∑

i





1

n(fi)

∑

ej∈fi

|ej |
2

|e′j |
2



S(f ′
i), (25)

where n(f) denotes the valence of face f , S(f ′) is the area
of face f before deformation. S(f ′) can also be replaced
by S(f). Ehetero is roughly equivalent to the integral in
Eqn. 13 with a heterometric parameterization proportional to
the original edge length; while Eiso provides a good approx-
imation to the integral with an isometric parameterization.

2. Spring Energy:

Esp =
∑

i

(|ei| − ri)
2, (26)

where ri is the rest length of edge ei.

3. Integral of Principal Curvatures κ1 and κ2:

Ecurv =
∑

i

(c1 κ2
1 + c2 κ1κ2 + c3 κ2

2) S(f ′
i). (27)

Some frequently used forms are the total curvature κ2
1 + κ2

2,
Gaussian curvature κ1κ2, squared mean curvature 1

4
(κ1 +

κ2)
2. An averaging process over a face can be similarly ap-

plied as in Eqn. 25.

4. Curvature Preserving over a Region:

Ecurvprsv =
∑

i

|K(vi) − K(v′
i)|

2, (28)

where K(vi) denotes the total curvature at point vi. This
functional conveys the idea of shape preserving. A hierarchi-
cal implementation of this tool would allow for as-rigid-as-
possible transformation.

5. Surface Area Preserving over a Region:

Earea = |S0 −
∑

i

S(fi)|
2. (29)

S0 is the designated area and S0 = 0 results in area mini-
mization.

6. Variation of Local Surface Area:

Erub =
∑

i

|S(fi) − S(f ′
i)|

2, (30)

where S(f ′
i) denotes the original area of face fi. This for-

mula allows the simulation of the behavior of rubber.

7. Normal and Position Control of a Face Point:



Enorm =
∑

i

ki|n(vi) − n0
i |

2, (31)

Epos =
∑

i

ki|vi − v0
i |

2. (32)

These two functionals can be thought of as imposing external
angular or line springs connecting surface points to a desig-
nated direction n0

i or position v0
i , respectively.

8. Least Motion and Uniform Distribution of Control Points:

Elm =
∑

i

ki|pi − p′
i|

2, (33)

Eud =
∑

i

ki|ei|
2. (34)

Instead of being defined on the limit surface, these two func-
tionals are defined on the initial control mesh to impose ad-
ditional constraints for under-determined systems (refer to
[15]).

7 Numerical Method

7.1 Numerical Jacobian

Many subdivision schemes are generalization of splines.
For spline-based schemes, analytic formulation of the limit
surface can be found near regular points. Generally, non-
spline subdivision and NURSSes do not have such property.
The calculation of their Jacobian must resort to numerical
methods, and can be expensive. Basically, the numerical Ja-
cobian formulation,

∂sj

∂gi

=
sj(g + ∆gi) − sj(g − ∆gi)

2∆gi

can give an adequately satisfactory approximation with error
bound O(∆g2

i ). We employ a level-by-level updating ap-
proach to calculate the perturbed surface. Note that, when
perturbing a shape variable, only a part of the surface in each
level needs to be updated. This local control property of
subdivision surfaces can drastically reduce the computational
expense for gradient evaluation.

(Level 2) (Level 3) (Level 6)

Figure 6. Updating propagation on Catmull-Clark
subdivision surface.

An updating propagation method is employed in our sys-
tem. All the updated vertices in each level of mesh are

marked. As we have mentioned, most functionals take the
form of an integral, the discrete functional evaluation proce-
dure can use these marks to decide the region that needs re-
computing. For Catmull-Clark surfaces, the updated area on
the limit surface is about 4 times the updated area in Level 2
after perturbing a control point or knot spacing, as illustrated
in Fig. 6.

7.2 Imposing Positive Knot Spacing Constraint

In NURSSes, because negative knot spacings result in un-
desirable shape (due to zero denominator in weight calcula-
tion), it is necessary to constrain the knot spacings to be non-
negative. To simplify the system implementation, we further
require all the knot spacings to be larger than a small posi-
tive number ε. We design the following algorithm to enforce
this positive knot spacing constraint in our dynamic model-
ing system, which is much better than the penalty functional
method in terms of performance.

1. At each integral step of solving Equation (7)
2. For all knot spacings ki ∈ gt

3. If ki < ε and fp
i + fa

i < 0 Set fp
i + fa

i = 0

4. Calculate the new gt+∆t

5. For all knot spacings ki ∈ gt+∆t

6. If ki < ε Set ki = ε

7. Continue to the next step.

We have also proposed procedures to efficiently impose
non-negative knot spacing constraint into our energy func-
tional optimization framework. In the interest of space, we
refer readers to [15] for details.

8 Energy-based Modeling Tools

This section outlines the typical physics-based procedures
in our geometric modeling system. We also document a set
of popular energy functionals we developed, which can be
combined to address a large variety of modeling and design
applications.

1. Material Painting: In our dynamic modeling system,
the geometric surfaces are treated as physical thin plates, in
which physical properties are not necessarily uniformly dis-
tributed. The non-uniform geometric and physical proper-
ties allow extra modeling flexibility such as confining phys-
ical tools to a small surface region, and characterizing non-
uniform deformation.

2. Spring-based Tools: In our system, we use springs to
implement external forces applied to a surface point. The
quadratic nature of springs reduces the probability of diver-
gence.

3. Angular Spring Tools for Normal Control: Users can
specify a new normal direction at an arbitrary surface point,
and the system subsequently figures out the corresponding
changes to its underlying control points and knot spacings.



Since knot spacings are very sensitive to normal change, we
employ a two-stage algorithm in which the control points are
resolved before knot spacings to handle numerical instability.
This process can be repeated several times.

4. Area-based Tools: Our area-based toolkit provides two
forms of area functionals: a global area preservation func-
tional and a differential area preservation functional. Global
area preservation is not sensitive to area “flowing” from one
surface patch to another. Essentially, local area preservation
functional provides an approach to approximating rubber-
like materials, which respond to the squeeze in one direction
by protruding in another. In addition, our area preserving
tools support deflation and inflation operations. Area mini-
mization is merely a special case of deflating to zero.

5. Curvature-based Tools: Our system supports functionals
of Gaussian curvature and mean curvature, built on our im-
plicit surface approximating algorithm. The total curvature
functional characterizes the resistance to bending forces. By
minimizing curvature change of a surface region over time,
we are able to preserve the local shape under certain bound-
ary conditions. Variation of curvature with respect to space
coordinates is also supported by means of linear approxima-
tion or quadratic approximation.

9 Experiments

In the color-plate of this paper, we present several repre-
sentative examples, each of which takes a weighted combi-
nation of the above techniques. In real applications, a single
functional oftentimes may not achieve our goals for graphical
modeling. By combining them together, we can get function-
als much closer to the real-world physics. Note that, system-
atic approaches toward robust and efficient functionals is still
an open issue. Note that, in all knot spacing maps, the knot
spacings have been linearly interpolated onto faces, and red
stands for knot spacings which are bigger than one, while
green stands for knot spacings which are smaller than one.
The initial (before deformed) shapes are assumed unity-knot
spacing distribution everywhere.

Fig. 9 presents the manipulation of a hand through the use
of springs, differential area preserving tools and membrane
energy functionals. Note that, (a) defines the initial control
mesh. We only allow a subset of the control points to move at
any time, which are marked in green. In (b) we exert force to
the thumb tip in the direction towards the central red point,
with differential area preserving functional enforced in the
surface region in green, and the whole hand under membrane
tension. After the deformation performed in (b), the thumb
reaches the central red point without losing its shape. Simi-
larly applying this procedure to three of the other fingers as
illustrated (d), we have the desired model in (e). For larger
control meshes, the application of a much more expensive
constraint to curvature preserving is also necessary, instead
of only area-preserving. The manipulation process from (d)

to (e) takes 371 seconds on a 1GHz PC. Finally, (f) shows the
knot spacing map of (e).

The characters in Fig. 10 are made by force (spring) tools
subject to differential area preservation and strain energy
minimization constraints. Each character has 24–30 control
points. The bottom figure shows the knot spacing map.

Fig. 11 shows that material properties influence the evo-
lution of the shape over time considerably. In (a), the green
points in the top figure are allowed to move. The middle
rod with smaller stiffness coefficient in the dark area yields
more deformation, while the bottom rod with stronger stiff-
ness transmits the spring force to its neighbor area. In (b),
the whole rod is subject to differential area preserving con-
straints. Essentially, this makes a good approximation of rub-
ber.

Fig. 12 shows the application of the total curvature min-
imization tool to subdivision surface in (a). (b) is the initial
control polygon. We only allow the side points (green points)
to be movable as illustrated in (c). After becoming curvature
minimization, the movable control points reach their new po-
sitions, as shown in (d). In (e), the new shape looks much
more flat. (f) and (g) present the curvature maps of (a) and
(e), respectively. In the curvature maps, red color denotes
higher total curvature, while green represents lower total cur-
vature. (h) shows the knot spacing map of the deformed
shape in (e). Note that, the shape in (c), (d) and (h) have
been rotated by about 45 degrees to give a better side view.
This example takes 154 seconds on a 1GHz PC.

10 Data Structure and Implementation

Figure 7. The face splitting property of Catmull-
Clark surface.

Our system adopts a finite element data structure, based
on the fact that the limit surface can be divided into a collec-
tion of smooth polygonal patches, each of which originates
from recursively splitting a corresponding face in the orig-
inal control mesh, and is determined by a finite number of
control points within the vicinity of this face, as illustrated in
Fig. 7 (with relevant control points encircled for each patch
in the leftmost figure). We treat each of these smooth surface
patches as an element. Within the finite element data struc-
ture, we have the flexibility to assign different mass, damp-
ing, energy functionals, applied forces and other properties



on an element base. In addition, we have (taking M for in-
stance)

M =
∑

j

Mj =
∑

j

∑

i∈Ej

µiJ
>
i Ji, (35)

where j runs through all the elements. In Mj , only the en-
tries relevant to the finite number of control vertices and knot
spacings of patch j are non-zero, which compose a subma-
trix. Thus, we can derive a parallel structure as illustrated in
Fig. 8. The matrices M, D, applied force vector fa and the
gradient of the potential fp can be evaluated patch-by-patch
before they are assembled (summed) together. Each patch
holds pointers to a set of generalized coordinates, as well as
its local geometric and physical properties.

Generalized Coordinates

Element DOFs

Geometric and
Physical Information

Element DOFs

Geometric and
Physical Information

Element DOFs

Geometric and
Physical Information

Functional
Evaluator

Jacobian
Evaluator

Functional
Evaluator

Jacobian
Evaluator

Functional
Evaluator

Jacobian
Evaluator

Element
Matrix M ,D
Generator

Functional
Gradient

Generator

Element
Matrix M ,D
Generator

Functional
Gradient

Generator

Element
Matrix M ,D
Generator

Functional
Gradient

Generator

Element
Matrix M ,D

Element
Matrix M ,D Element

Matrix M ,D

Do Summation over
All Submatrices

+
+

+

Matrix M ,D

Potential Force
and Applied Force

Figure 8. FEM-based data structure and data flow.

11 Conclusions

In this paper, we have presented a new dynamic surface
sculpting system based on the non-uniform subdivision sur-
face. By incorporating the non-uniform subdivision rules
into our dynamic framework, we have greatly enhanced the
modeling capability of the prior dynamic subdivision sys-
tem. Within our novel physics-based modeling framework,
the subdivision control points as well as their associated non-
uniform subdivision rules (knot spacings) dynamically re-
spond to the user-specified mass distribution, damping co-
efficients, applied forces, energy functionals, and other phys-
ical and geometric constraints through the integration of the
Lagrangian equation in an intuitive and predictable manner.
We have developed a unified approach for efficient evalua-
tion of subdivision surface Jacobian, energy functional gra-

dient, with respect to both control points and knot spacings
based on a discrete particle system. We have also proposed a
systematic procedure constructing energy functionals, which
play a central role in the determination of the final surface
shape. A variety of basic energy functionals are discussed
and compared. We demonstrated that a combination of these
primitive functionals can be relevant to a large variety of ap-
plications. Based on the implicit surface approximation, a
novel normal and curvature evaluation algorithm has been
proposed, which avoids any local isometric parameterization
and thus simplifies the approach proposed in [4].

We have also built a prototype interactive sculpting sys-
tem based on our new dynamic non-uniform subdivision for-
mulation and demonstrated that many applications benefit
from the flexibility of variable rules control. This unified dy-
namic non-uniform subdivision sculpting system will exhibit
its great potential in the realm of geometric modeling, virtual
environment, engineering design, etc.
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A Implicit Normal and Curvature

In this section, we derive the formulation of normal and curva-
ture evaluation for an implicit surface f(x, y, z) = 0. Assuming
p = (x, y, z)> is a point on the implicit surface, we can construct
a parameterization for this implicit surface as:

p(u, v) =
(

x y z
)>

=
(

u v z(u, v)
)>

.

The differentials of each component satisfy,

fxdx + fydy + fzdz = 0.

Thus,


























∂p

∂u

∣

∣

u,v
=

(

∂x/∂u
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∂z/∂u

)

=

(

1

0

−fx/fz

)
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∂v

∣

∣

u,v
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0

1
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,

(36)

and
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(

0 0 ∂2z/∂u2
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∂2
p

∂u∂v

∣

∣

∣

u,v

=
(

0 0 ∂2z/∂u∂v
)>

∂2
p

∂v2

∣

∣

∣

u,v

=
(

0 0 ∂2z/∂v2
)>

,

(37)

where
∂2z

∂u2
= −∂(fx/fz)

∂u
= −

∂fx

∂u
fz − ∂fz

∂u
fx

f2
z

=



−(fxxxu + fxyyu + fxzzu)fz + (fzxxu + fzyyu + fzzzu)fx

f2
z

.

Further, we have














∂2z
∂u2 = −

fxxf2

z−2fxzfxfz+fzzf2

x

f3
z

∂2z
∂v2 = −

fyyf2

z−2fyzfyfz+fzzf2

y

f3
z

∂2z
∂u∂v

= −
fxyf2

z−fxzfyfz−fyzfxfz+fzzfxfy

f3
z

.

(38)

We can derive the coefficients of the first fundamental form

E = |pu|2 = 1 + f2

x/f2

z ,
F = pu · pv = fxfy/f2

z ,

G = |pv|2 = 1 + f2

y /f2

z ,

(39)

and
√

EG − F 2 =
√

1 + f2
x/f2

z + f2
y /f2

z . (40)

Denote D =
√

f2
x + f2

y + f2
z . The coefficients of the second fun-

damental form are:

e = det(puu,pu,pv)/
√

EG − F 2 =
−(fxxf2

z − 2fxzfxfz + fzzf2

x)/(f2

z D)

f = det(puv,pu,pv)/
√

EG − F 2 =
−(fxyf2

z − fxzfyfz − fyzfxfz + fzzfxfy)/(f2

z D)

g = det(pvv,pu,pv)/
√

EG − F 2 =
−(fyyf2

z − 2fyzfyfz + fzzf2

y )/(f2

z D).
(41)

The Hessian matrix of f is

M =

(

fxx fxy fxz

fxy fyy fyz

fxz fyz fzz

)

. (42)

And its adjoint matrix M∗ =
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, (43)

where |X| represents the determinant of X. We can observe it is a
symmetric matrix. Now we can derive

eg − f2 =
1

f2
z D2

(

fx fy fz

)

· M∗ ·
(

fx fy fz

)>

.

The Gaussian curvature at point p is

K(p) = (eg − f2)/(EG − F 2) =

1

D4

(

fx fy fz

)

· M∗ ·
(

fx fy fz

)>

. (44)

Define H = M − (fxx + fyy + fzz)I. Similarly we can get the
mean curvature at point p as

H(p) =
1

2
(eG − 2fF + gE)/(EG − F 2) =

1

2D3

(

fx fy fz

)

· H ·
(

fx fy fz

)>

. (45)

The normal of a surface point p is obviously:

n =
1

D

(

fx fy fz

)>

. (46)

In summary,
K(p) =

1

D2
n
> · M∗ · n (47)

H(p) =
1

2D
n
> · H · n. (48)
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(a) (b) (c) (d) (e) (f)

Figure 9. This figure demonstrates the manipulation of a hand through the use of springs, differential area
preserving tools, and membrane energy functionals.

(a) (b)

Figure 10. These characters are made by using force tools
subject to differential area preservation and strain energy
minimization constraints.

Figure 11. The material properties influence the shape
evolution over time considerably.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. This figure shows the ap-
plication of the total curvature min-
imization tool to a subdivision sur-
face. Note that (c), (d), and (h) are
rotated by about 45 degrees to give
a clear side view.


