
www.elsevier.com/locate/gmod

Graphical Models 66 (2004) 181–202
A subdivision-based deformable model
for surface reconstruction of unknown topology

Ye Duana,* and Hong Qinb

a University of Missouri at Columbia, USA
b State University of New York at Stony Brook, USA

Received 1 August 2002; received in revised form 9 April 2004; accepted 21 May 2004
Abstract

This paper presents a surface reconstruction algorithm that can recover correct shape ge-

ometry as well as its unknown topology from both volumetric images and unorganized point

clouds. The algorithm starts from a simple seed model (of genus zero) that can be arbitrarily

initiated within any datasets. The deformable behavior of the model is governed by a locally

defined objective function associated with each vertex of the model. Through the numerical

computation of function optimization, the algorithm can adaptively subdivide the model ge-

ometry, automatically detect self-collision of the model, properly modify its topology (because

of the occurrence of self-collision), continuously evolve the model towards the object bound-

ary, and reduce fitting error and improve fitting quality via global refinement. Commonly used

mesh optimization techniques are employed throughout the geometric deformation and topo-

logical variation to ensure the model both locally smooth and globally well defined. Our ex-

periments have demonstrated that the new modeling algorithm is valuable for iso-surface

extraction in visualization, shape recovery and segmentation in medical imaging, and surface

reconstruction in reverse engineering.

Published by Elsevier Inc.

Keywords: Energy optimization; Geometric and topological representations; Biomedical applications;

Reverse engineering
* Corresponding author.

E-mail address: duanye@missouri.edu (Y. Duan).

1524-0703/$ - see front matter. Published by Elsevier Inc.

doi:10.1016/j.gmod.2004.05.004

mail to: duanye@missouri.edu


182 Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202
1. Introduction

Advances fromnew imagingmodalities such asCT,MRI, andUltrasound aswell as

other 3-D scanning technologies have given rise to massive volumetric and range da-

tasets available in modern computer era. How to extract and reconstruct the shape
of 3-D objects from these datasets accurately and efficiently remains to be both ex-

tremely challenging and significant in visualization, medical imaging, and computer

graphics. One of its important applications that have proven to be essential in numer-

ousmedical and engineering fields is the non-invasive evaluation of an object’s internal

structure. For example, it allows the examination of internal organs without operating

on the patient and the inspection of mechanical parts without destroying the product.

On the other hand, despite the significant advances of modeling techniques and

system functionalities in computer-aided design (CAD) and computer graphics dur-
ing the past 10 years, current state-of-the-art modeling systems are still lacking some

of the unique visual and physical advantages inherent in real-world clay models. As a

result, clay models remain to be irreplaceable especially in the presence of 3-D data

acquisition technology. In particular, they have been extensively used by engineers in

areas such as automotive and aerospace industries. Besides conventional interactive

techniques via editing on CAD models, 3-D laser range scanners offer a powerful,

alternative means of acquiring geometric models. Small or large-scale objects can

be initially sculptured in real world and subsequently scanned into CAD formats
for future applications such as manipulation, analysis, and evaluation. In a nutshell,

3-D scanning technology facilitates the process of reverse engineering, i.e., natural

and manufactured parts can be digitally converted into CAD systems and then being

modified using a range of CAD tools.

At present, many algorithms and techniques have been developed to effectively

deal with the acquired datasets for various modeling and rendering tasks. In general,

existing approaches can be classified into two different categories: they are either

model-less techniques such as direct volume-rendering from voxel datasets or mod-
el-centered techniques such as deformable models. One major rationale for model-

based approaches is that they provide the great potential for users to effectively

interact with the dataset (especially regions of interest) and facilitate other subse-

quent processes such as segmentation, shape representation, matching, and motion

tracking. Moreover, the inherent continuity and smoothness of the model can com-

pensate for the unwanted sampling artifacts such as noise, gaps, and other irregular-

ities on object boundaries. Hence, model-based approaches are more robust,

especially for noise-corrupted datasets. Among the wide spectrum of model-driven
techniques, deformable models [15,29–31] have been extremely popular and success-

ful primarily because they offer a unified and powerful approach that combines the

knowledge from geometry, physics, approximation theory, and functional analysis.

Nevertheless, there are several limitations associated with deformable models that

are currently available. Among them, one of the most severe limitations is that the

topology of the underlying shape either is very simple (such as genus zero) or must

be known a priori (i.e., is determined elsewhere in a separate pre-processing stage)

and remains unchanged throughout the time integration of model deformation.



Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202 183
In this paper, we develop a new modeling algorithm that can recover both the

complicated shape geometry and the arbitrary unknown topology simultaneously

from any datasets. The algorithm provides the user a unified approach that not only

can deal with both volumetric data and range data, but also is efficient, versatile, and

powerful. The underlying model is a subdivision-based deformable model that fur-
ther generalizes the polygonal model of Miller et al. [24,25]. The geometry and the

deformable behavior of the model are governed by the principle of energy minimiza-

tion. When using our algorithm for shape recovery, users can interactively seed a

simple model at the initialization stage, the model will deform and grow towards

the boundary of the modeled dataset in accordance with the local cost function as-

sociated with each vertex of the model. During the process of model deformation,

both global and local/adaptive subdivision operations on the model can be automat-

ically applied whenever necessary to refine the model to an appropriate resolution
and achieve different levels of detail. More importantly, by using a novel distance-

based collision detection scheme, the model can automatically detect self-collision

and modify its topology accordingly. To ensure the recovery of the correct topology

from arbitrary datasets, we develop a novel, yet simple scheme that can prevent in-

ter-penetration in the vicinity of any vertex of the model. This scheme, combined

with mature mesh optimization techniques, has proven to be very effective and

can generate a good, high-quality polygonal mesh that can recover both the

geometry and the arbitrary topology from any complicated dataset through model
deformation.

The rest of the paper is organized as follows. The next section summarizes the im-

portant literatures that are relevant to our work. Section 3 introduces the energy-

based minimization method used in our paper, which is the key mechanism behind

the model-growing step of the algorithm. The other six main steps of our algorithm

are discussed in details in Section 4. Section 5 demonstrates the experimental results

we obtained using our algorithm. Finally, a conclusion is given in Section 6.
2. Background

During recent years, a lot of research has been conducted in the areas of surface

reconstruction, volume segmentation, and iso-surface extraction. The majority of the

published results falls into two groups: (1) static, geometric techniques and (2) dy-

namic, energy-based techniques. The static methods can be further classified as

methods designed for range datasets and methods designed for volumetric datasets.
Among the methods for volumetric datasets, one of the first algorithms was devised

by Fuchs et al. [11]. They developed a means of stitching a series of 2-D contours

together by fitting a triangular strip between adjacent contours. The main drawback

of this approach is that the user must manually identify a contour in every slice that

comprises the object. Later on, Lorenson and Cline [18] developed an algorithm

called marching cubes that has proven very useful for generating a 3-D polygonal

surface from volume data with no connectivity information. In their algorithm, a

cube is bounded by eight pixels located on two adjacent slices. Each vertex is coded



184 Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202
as either inside or outside the object relative to the surface-defining threshold. Based

on the configuration of vertices that lie inside and outside the object, the cube is tri-

angulated. The triangles indicate where the surface passes through the cube. The

technique of marching cubes provides an accurate method for creating 3-D polygo-

nal surfaces from slice data that can then be manipulated and visualized. However,
the marching cubes model records all the details associated with the original data re-

gardless of whether these details are insignificant or sampling artifacts. Also, since

marching cubes generate at least one triangle per voxel through which the surface

passes. This results in an enormous number of extremely small triangles, thus mak-

ing it difficult to interactively render these models.

Among various methods for range datasets, one popular algorithm was proposed

by Hoppe et al. [12–14]. They first use all the input points to define a signed distance

function on R3, and then interpolate and polygonize the zero-set of this function
through the use of the marching-cube algorithm to generate the desirable output

mesh. Another type of approaches uses Voronoi diagram and Delaunay triangula-

tion. For instance, Edelsbrunner and Mucke [10] generalize the mathematical notion

of convex hull to formally define a family of surfaces based on the input point set.

They call the new set of polyhedra a-shapes. A simplex (i.e., edge, triangle, or tetra-

hedron) belongs to the a-shape if it has some circumsphere with interior empty of

sample points, of radius at most a. Therefore, any a-shape consists of a number

of appropriate simplices, which can be considered as modeling primitives for the
a-shape. The overall shape and its natural dimensionality of the point set can be

modified by changing the values of a. Recently, Amenta et al. [1] proposed a new

Voronoi-based algorithm called Crust. Using their method, the parameter can be

computed automatically for the purpose of shape reconstruction.

In the category of dynamic approaches, the most famous one is the snake model

proposed by Kass et al. [15]. A snake is essentially a spline that minimizes the energy

associated with the spline. The total energy of the snake model is contributed from

three different sources: (1) the internal energy of the spline, (2) image forces, and (3)
external constraints. Through the minimization of the spline’s internal energy, the

snake will always remain smooth. The image forces guide the snake toward lines

and edges of interest, while the external constraints allow the user to identify specific

features to model. The original snake model only behaves and deforms on a 2-D

plane, and can only model the topology of simple 2-D objects. Later on, Terzopoulos

et al. [31] generalized the concept of snakes into symmetry-seeking models. They de-

rive a 3-D shape from a 2-D image by modeling an axis-symmetric elastic skin spread

over a flexible spine. Finite element methods are also explored in deformable models
by several researchers, including Cohen and Cohen [5], Terzopoulos and Metaxas

[30], and McInerney and Terzopoulos [22].

Miller et al. [24,25] later proposed a polygon-based deformable model. The behav-

ior of the model is determined by a local cost function associated with each model

vertex. The cost function is a weighted linear combination of three terms: (1) a de-

formation potential that pushes the model vertices towards the object boundary,

(2) an image term that identifies features such as edges and acts against the model

expansion, and (3) a term that constrains the motion of each vertex to remain not



Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202 185
far from the centroid of its neighbors. Similar to the snake model, the topological

variation in Miller et al.’s work is not allowed. The modeled dataset must be homo-

morphic to a sphere. Recently, Qin et al. [20,27] proposed dynamic subdivision sur-

faces for surface reconstruction. Their algorithm allows the direct manipulation of

the limit surfaces defined by the subdivision process on the initial control mesh.
One severe limitation of all aforementioned deformable models is that the topology

must be determined before the geometric deformation, i.e., only geometric aspects of

the underlying dataset are reconstructed through energy-based simulation.

To overcome this limitation, several new deformable models have been

proposed [2,3,6,16,19,23,28,34]. Among them, implicit-function-based methods

[3,19,34] are becoming very popular. The key part of these schemes is the modeling

of an evolving level set of some implicitly defined functions. Despite the advantages

of topological and geometric flexibility, implicit, level-set models are in general
computationally more expensive, and are not very easy for user interaction. In a

different approach, Szeliski et al. [28] use a dynamic, self-organizing oriented par-

ticle system to model the surface boundary of objects. The particles can reconstruct

objects with complex shapes and topologies by ‘‘flowing’’ over the data, extracting

and conforming to meaningful surfaces. A triangulation is then performed which

connects the particles to form a continuous global model that is consistent with

the inferred surface of the underlying object. McInerney and Terzopoulos [23] pro-

posed topological adaptable snake, which is a parametric snake model that has the
power of an implicit formulation. The basic idea is to superimpose a simplicial grid

on the image domain and iteratively reparameterize the geometry of deforming

snakes. Recently, another approach has been chosen by Delingette [6]. He pro-

posed simplex meshes and suggested to use them as a geometric model suitable

for deformation.

Our algorithm is based on a polygonal model with the capability of recursive re-

finements through surface subdivision. It further generalizes the work of Miller et al.

[24,25] and can overcome some limitations of their algorithm. In particular, our tech-
nique is capable of automatically change the model’s topology during the deforma-

tion process. Besides the aforementioned work, two other research advances are also

of relevance. One is the work of Welch and Witkin [32,33]. They use a triangle mesh

to approximate the underlying smooth variational surface for free-form surface de-

sign. Another one is the more recent work called ‘‘skin’’ algorithm proposed by

Marksoian et al. [21]. Their goal is to generate a triangle mesh to approximate the

surface implicitly defined by the ‘‘skeletons.’’

The preliminary results of our work have been published in [7–9]. This paper fur-
ther extends the previous works with several new capabilities. For example, the pre-

viously used topology modification algorithm may not work properly in some rare

cases if the parameters are not set correctly. In this paper, we have significantly

enhanced the topology modification algorithm and now it is much more robust

and efficient. After a collision is detected, a preprocessing step is conducted to align

the two merging parts so that the two parts will face exactly towards each other. This

preprocessing step will ensure the success of the subsequent topology-merge

operation. After the topology-merge operation, a post-processing step will proceed



186 Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202
to smooth out the connecting region. The details of the algorithm will be explained in

Section 4.
3. Energy-based optimization

The deformable behavior of the model is governed by the principle of energy-

based minimization. A locally defined cost function is associated with each vertex

of the polygonal model. The cost function is a weighted linear combination of four

constraints whose objectives are to achieve the desired behaviors in the simulated

model. We shall briefly review these four components in Section 3.1 followed by

the minimization method in Section 3.2.

3.1. Constraint modeling

The energy function Ciðx; y; zÞ associated with the model vertex i at location

ðx; y; zÞ is explicitly formulated as
Ciðx; y; zÞ ¼ a0Dðx; y; zÞ þ a1Bðx; y; zÞ þ a2V ðx; y; zÞ þ a3Aðx; y; zÞ; ð1Þ

where Dðx; y; zÞ is the deformation potential, Bðx; y; zÞ is the boundary constraint,
V ðx; y; zÞ is the curvature constraint, and Aðx; y; zÞ is the angular constraint. In ad-

dition, a0, a1, a2, a3 are the four corresponding non-negative weighting parameters.

3.1.1. Deformation potential

Deformation potential Dðx; y; zÞ offers the mechanism to inflate the model. It de-

fines a scalar field where each position in space is assigned a value based on the frame

of reference. The vertex will move along the direction of the lowest local potential (in

absence of other constraints). To model concave objects, the normal tracking method
is used, i.e., each vertex is attracted to a point located in the vicinity of normal direc-

tion of the polyhedral surface. Fig. 1 shows a 2-D illustration of the normal tracking

method. At the beginning of each deformation, each model vertex P will be assigned

a local focal point Pf . The focal point Pf is located at the normal direction of the ver-

tex P and is a constant distance away from the vertex P . The deformation potential

associated with the vertex P is then computed as the distance between the vertex P
and the focal point Pf . Hence, during each evolving step, every vertex moves in the

general direction of the local surface normal to decrease its deformation potential.
During the refinement process (local and global subdivision) which we will discuss

in details in Section 4, it is possible that new vertices are added to the model on the

opposite side of the data boundary. To move these model vertices to the other side of

the boundary and hence increase the accuracy and quality of the model, the surface

normal used in the deformation potential of these model vertices is defined to point

inwards in the opposite direction. The effect is that a model vertex will migrate to-

wards the true boundary of the object regardless of whether the model vertex is lo-

cated inside or outside the object boundary. Hence, as long as the initial model
intersects the object boundary, i.e., some of the model vertices are inside the object,



Fig. 1. Deformation potential defined by normal tracking (Section 3.1.1).

Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202 187
the remainders are outside the object, the model tends to seek out the true boundary

of the object.

3.1.2. Boundary constraint

Boundary constraint Bðx; y; zÞ affords the mechanism for the model to interact
with the data set and identify the boundary. It is used to counter-balance the defor-

mation potential and will restrict, direct, and counter-act the general progression of

the deformation. Note that, volumetric data and range data are treated separately.

For volumetric data, we make use of a shifted threshold operator
Bðx; y; zÞ ¼ Imageðx; y; zÞ � T if Imageðx; y; zÞP T ;
0 otherwise;

�
ð2Þ
where Imageðx; y; zÞ is the grey-level intensity of the voxel at location ðx; y; zÞ, T is the

threshold value that identifies the object.

When a model point steps over the edge of an object, the algorithm returns a value

that should increase the overall cost of the system. Therefore, the minimization pro-
cess is required to either move the vertex by a smaller amount or not move the vertex

at all. Hence, the vertex will approach the boundary without crossing over it (unless

its neighbors pull it over the edge).

For range data, however, since there are no grids inherited in the underlying data,

the aforementioned method cannot function properly. Instead, we use a distance-

based constraint. For each vertex, the algorithm finds out the closest data point to

the vertex and calculates the distance. If the distance is smaller than the threshold,



188 Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202
the vertex will be marked as non-active and is no longer allowed to move. This mech-

anism will ensure that the model is always inside the range data. The threshold used

here is the sampling rate of the range data. Intuitively, we can consider the sampling

rate as the smallest radius of spheres that are centered at each point of the range data

set and can tightly cover the entire boundary area of the modeled object without hav-
ing any gaps on the surface region.

3.1.3. Curvature constraint

The first two constraints have the ability to grow the model until all the vertices

reach the boundary of the underlying object. During the deformation process, it is

desirable for a vertex not to stray far away from its neighbors. This suggests the

use of curvature constraint V ðx; y; zÞ which is a reasonable approximant of the local

curvature, and it is defined as the ratio of the distance from the current model point
to the centroid of its neighbors over the maximum distance among all the neighbors

of the current model point
V ðx; y; zÞ ¼
jjðx; y; zÞ � 1

n

Pn
j¼1ðxj; yj; zjÞjj

maxj;k jjðxj; yj; zjÞ � ðxk; yk; zkÞjj
; ð3Þ
where ðx; y; zÞ is the position of the current model vertex i, n is the number of

neighbors to the current model vertex, ðxj; yj; zjÞ; ðxk; yk; zkÞ are the positions of the

neighbors of the current model vertex i, where 16 j; k6 n. Curvature constraint

V ðx; y; zÞ also has the effect of keeping the vertices well distributed during the de-

formation process. We will discuss this issue in more details in the next section.

3.1.4. Angular constraint

The fourth constraint—angular constraint Aðx; y; zÞ is used to simulate the effect
of attaching a very stiff spring between any two adjacent faces. Similar to the bound-

ary constraint, the value of angular constraint is either zero or very large. At each

deformation step, all the edges whose two endpoints are on the one-neighborhood

of each vertex are identified, and all the dihedral angles between the two adjacent

faces of these edges are calculated. If the next move of the vertex will cause any of

these dihedral angles to become smaller than the threshold, the angular constraint

will become very large and the vertex is not allowed to move at this deformation cy-

cle. Otherwise, the angular constraint is zero. Angular constraint can effectively keep
any two adjacent faces from being too close to each other. This constraint, used in

concert with the more aggressive stressed-edge resolution approach and the mesh op-

timization techniques that will both be discussed later in this paper, will effectively

prevent the local inter-penetration of adjacent faces.

3.2. Optimization method

An iterative method is employed to numerically compute the minimization of our
cost function explained above. The advantage of this approach is that it is extremely

general and can offer an accurate, stable solution even for very large systems,

therefore, it is well suited for our purpose in surface reconstruction of large datasets.



Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202 189
A vertex of the model will move along the direction of the steepest descent along the

cost surface, which is opposite to the gradient of the cost function Ci. The gradient

ðoCi
ox ;

oCi
oy ;

oCi
oz Þ is numerically approximated using the central difference of the overall

cost function for the current position of the model vertex with a very small pertur-

bation. The amount that a vertex can move is adjusted based upon the current con-
figuration of the cost space. The step size can be reduced several times if the

magnitude of the current step size results in an increase in the cost function. If a step

size is no longer able to reduce the cost of the vertex, then the vertex is not allowed to

move at this step. If a vertex has not moved for a certain number of deformation cy-

cles, the vertex will be marked as non-active and will be excluded from future numer-

ical integrations.
4. Algorithm

The entire pipeline of the modeling algorithm consists of the following seven main

steps:

(1) Model initialization.

(2) Stressed edge resolution.

(3) Model growing.

(4) Local adaptive subdivision.
(5) Mesh optimization.

(6) Collision detection and topology changes.

(7) Global subdivision.

After the model is automatically initialized at step one, the model will start its de-

formation process. It will loop through step two to step six at each deformation cy-

cle. The deformation process stops until the model reaches its equilibrium, i.e., all the

vertices of the model have been marked as non-active. Finally, the model can be

globally subdivided several times until a user-given error criterion is met. Fig. 2
shows the flow chart of the algorithm. We have highlighted the mechanism of model

growing (step 3) in the previous section. In this section, we will detail the other six

steps of the algorithm.

4.1. Model initialization

The seed model may be any kind of closed polyhedra. For simplicity and without

loss of generality, we use a sphere-like polyhedron consisting of 24 triangles of equal
size. The initial position of the seed model can be set interactively by users anywhere

within the data set. For volumetric data, the seed model does not need to be com-

pletely inside the data set. This is because the model will flip the normal tracking di-

rection of the vertex if the vertex is detected to be outside the data set. Furthermore,

for volumetric datasets, the model can be automatically initialized by the system.

This is done in a preprocessing step that will search through the input volume dataset

and find a non-boundary voxel. This voxel is then identified as the initial center po-

sition of the seed model.



Fig. 2. Pipeline of the algorithm (Section 4).

190 Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202
4.2. Stressed edge resolution

One phenomenon which oftentimes appears in a polygon based deformable model
is the local inter-penetration of neighboring faces. Local inter-penetration typically

occurs between two portions of the surface separated by a chain of stressed edges.

In practice, a stressed edge is identified if the dihedral angle of its two adjacent faces

is less than a certain threshold (we use 60� in our experiments). In this paper, we pro-

pose a simple, yet very powerful method that can efficiently solve this problem. At



Fig. 3. Stressed edge resolution (Section 4.2). (A0) Edge BD is marked as stressed edge because the dihe-

dral angle between its two adjacent faces ABD and EBD is less than the threshold. (B0) Edge BD is split at

the middle, and the middle point F of edge BD is connected with vertices A, B, D, and E. (C0) Finally, F is

moved to the middle of vertices A and E.

Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202 191
the beginning of each deformation cycle, all the stressed edges are detected by calcu-

lating the dihedral angle. Then each stressed edge is split into two smaller edges at

the middle point and the middle point is further moved to the middle position of

the two opposite vertices. This is in fact equivalent to an edge flip operation followed
by an edge split operation that will discussed in Section 4.4. Fig. 3 demonstrates our

method of resolving stressed edges.

4.3. Local adaptive subdivision

To control the smoothness of the model and the size of each polygon during the

model-growing phase, we must allow the model to be able to increase its degrees of

freedom during the deformation process. One simple, straightforward technique is
global subdivision, i.e., globally subdivide the model whenever necessary. The draw-

back of the global subdivision approach is that it may generate a lot of unnecessary

vertices on surface regions where a good approximation to the data boundary has al-

ready been achieved. Alternatively, we take advantage of the local adaptive subdivi-

sion approach, i.e., we only need to subdivide active regions that are still growing. A

face is subdivided if its area is larger than a certain user-defined threshold, and more-

over, at least one of its three vertices is still active. The typical subdivision rule is as

follows. The algorithm will introduce a new vertex at the middle position of each old
edge, and connect all the three new vertices. Thus four smaller new faces are generated

from each old face. To maintain subdivision connectivity, all the triangles adjacent to

the current face also need to be subdivided correspondingly. For example, in Fig. 4, to

subdivide the central triangle BDE, all three adjacent triangles ADB, CBE, and DFE

need to be subdivided as well. Each of these three triangles is subdivided into two

smaller ones by splitting the adjacent edge they share with the central triangle BDE.

4.4. Mesh optimization

The algorithm can automatically construct the new subdivision mesh during the

deformation phase. Therefore, it is critical to improve and maintain the mesh quality



Fig. 4. Local adaptive subdivision scheme (Section 4.3).

192 Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202
throughout the process to keep the model both locally smooth and globally well con-

ditioned. In general, three issues must be considered as suggested by Welch and Wit-

kin [32]: (1) how to keep the nodes well distributed; (2) how to keep the triangles well

shaped; and (3) how to keep an appropriate node density.

4.4.1. Nodes distribution

A popular scheme for keeping the nodes well distributed is called Laplacian

Smoothing. It can be implemented by iteratively moving each node to the centroid

of its neighbors. In our algorithm, we decide not to implement this scheme because

of the high numerical cost associated with it. Instead, we rely on the curvature con-

straint V ðx; y; zÞ in our local cost function Ciðx; y; zÞ in Eq. (1) associated with each

vertex to keep vertices from straying too far away from the centroid of their neigh-

boring vertices. We observe that our curvature constraint behaves well in maintain-
ing a good distribution of the nodes.

4.4.2. Triangle shape

A triangulation with nodes well distributed can still have many skinny triangles. It

is well known that the best possible surface triangulation over a set of points with

known topology is the Delaunay triangulation. In addition, a Delaunay triangula-

tion of an arbitrary surface can be incrementally recovered from a valid initial



Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202 193
surface triangulation through edge swapping [4]. We swap an edge if doing so will

increase the minimum angle within its adjacent faces. Repeated applications of this

swap operation always keep increasing the minimum angle and hence result in a Del-

aunay triangulation at the end of the procedure. That is, it maximizes the minimum

angle on all the triangles of the mesh. In practice, an edge is eligible for swapping
only if the dihedral angle between its two adjacent faces is larger than a certain us-

er-defined threshold, i.e., the local surface across the edge is flat enough. Moreover,

an edge is swapped only if its local minimum-angle will be increased by a certain

small minimum (specified by users and/or heuristically determined by the algorithm).

These two conditions can guarantee that the edge-swapping algorithm always func-

tions correctly and terminates eventually.
4.4.3. Nodes density

During the deformation process, some nodes may cluster with each other, and

some other nodes may be too far away from each other. To maintain an appropriate

node density, two other operations are needed here: edge split and edge collapse. An

edge-split is triggered if any two neighbors are too far apart. Similarly, if any node is

too close to each of its neighbors, the node is destroyed using the edge collapse. In

addition, skinny triangles are also eliminated at this step by edge collapsing. All the

three inner-angles of each triangle are calculated. If any one of the three inner-angles

of a triangle is too small, then the triangle containing the inner-angle will be elimi-
nated by collapsing the edge opposite to this inner-angle. To restore a quality mesh,

the edge swapping is always applied after any edge split and edge collapse opera-

tions. Fig. 5 illustrates the three mesh operations.
4.5. Collision detection and topology changes

To recover a shape of arbitrary, unknown topology, the model must be able to

change its topology properly whenever a collision with other parts of the model is
detected. Various kinds of collisions can be considered, such as face-to-face, edge-

to-edge, vertex-to-vertex, edge-to-face, etc. Techniques such as surface–surface inter-

section and trimming have been proposed to solve collision detections. However,

these techniques are usually very time consuming. Instead we use a simple distance

based collision detection scheme that is fast and efficient. We will discuss the collision

detection scheme in Section 4.5.1. After a collision is detected, a topology-merge op-

eration will be triggered. There are five steps in the topology-merge operation:

(1) Shift the two center vertices into the center of its one-neighborhood.
(2) Align the two one-neighborhoods so that they are facing exactly towards each

other.

(3) Put the two one-neighborhoods into correspondence.

(4) Reconnect the two one-neighborhoods.

(5) Smooth out the connecting region by applying the stressed edge resolution

scheme.

Fig. 6 illustrates the whole collision detection and topology change algorithm.



Fig. 5. Mesh optimization operations (Section 4.4).

194 Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202
4.5.1. Collision detection

If the distance of two non-neighboring active vertices is smaller than the thresh-

old, a collision will be identified and a merge-operation is triggered. If the distance

between several pairs of active vertices is smaller than the threshold, the closest pair

of vertices is chosen. For example, in Fig. 6A, because the distance between two ac-

tive vertices A and B is smaller than the threshold, a collision between regions

around vertex A and B is detected and a merge operation is triggered.

4.5.2. Shift the center vertices

To merge the two parts of the model, first, we need to identify and collect all the

one-neighborhood points for each of these two vertices. Then we will shift these two

vertices to the center of its one-neighborhoods by the following formula:
P ¼ 1

n

Xn

i¼1

Qi; ð4Þ
where P is the center vertex and Q1; . . . ;Qn are its n neighboring vertices. This step
will ensure that the two center vertices are in the general position so that the sub-

sequent step of aligning the two one-neighborhoods will proceeds successfully.

4.5.3. Align the two one-neighborhoods

Before the two one-neighborhoods are merged, we will iteratively shift the posi-

tion of the vertices in the two one-neighborhoods so that the two one-neighbor-

hoods are facing exactly towards each other. This is achieved by applying a



Fig. 6. Collision detection and topology change (Section 4.5).

Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202 195
modified version of the normal diffusion flow recently proposed by Ohtake et al.

[26]. To make this paper self-contained, we shall briefly review the normal flow

in the following.

The basic idea of the normal flow is to modify the position of each mesh vertex

such that the normal of each triangle matches with its corresponding target normal

as accurate as possible. For example, in Fig. 7, in order for the triangle normal nðT Þ
becomes closer to the target normal mðT Þ at the centroid C of each triangle T , each
vertex position is updated by the following operator:
Pnew ¼ Pold þ NðPoldÞ;

NðpÞ ¼ 1P
AðT Þ

X
AðT ÞV ðT Þ;

ð5Þ



Fig. 7. Update vertex position using the normal flow (Section 4.5.3).

196 Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202
where V ðT Þ ¼ ½ PC�! � mðT Þ�mðT Þ is the projection of the vector PC
�!

along the mðT Þ
direction, AðT Þ denotes the area of T , and the summations are taken over all P -in-
cident triangles (see Fig. 7).

In our applications, to let the two one-neighborhoods to face towards each other,

we apply the aforementioned normal flow to all the vertices in the one-neighbor-

hoods by defining the target normal mðT Þ at the centers of all the faces in the

one-neighborhoods as the normalized vector pointing from the current center vertex

towards the opposite center vertex. For example in Fig. 6B, the target normal mðT Þ
of the five faces in the one-neighborhood of the center vertex A is the normalized

vector pointing from vertex A to vertex B, same argument holds for the one-neigh-

borhood of center vertex B. A few iterations of the normal flow will quickly align the

two one-neighborhoods to face exactly towards each other (Fig. 6C). Since the faces

in the one-neighborhood will have the same normal vector, they will stay on the same

plane. The planes that contain the two one-neighborhoods will be perpendicular to

the vector connecting the two center vertices A and B.

4.5.4. Put the one-neighborhoods into correspondence

After the two one-neighborhoods are aligned to face each other, these two sets of

one-neighborhood points will be sequenced separately and put into correspondence.

To do so, we use the same procedure as [32]: Iteratively refine the one-neighborhood

who has fewer edges by splitting its longest edge until both of the two one-neighbor-

hoods have the same number of nodes, then choose an alignment that minimizes the

sum of squared distances between corresponding nodes of the two one-neighbor-

hoods. For example, in Fig. 6C, originally the one-neighborhood of vertex A has five
nodes: A1, A2, A3, A4, A5, the one-neighborhood of vertex B has six nodes: B1, B2,

B3, B4, B5, B6. To make these two one-neighborhoods have the same number of

nodes, we first find the longest edge of the one-neighborhood of vertex A, which



Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202 197
is the edge between nodes A1 and A2, and then split this edge into two edges and

insert a new node in between. Finally, we put these two sets of points into correspon-

dence by finding the alignment that minimizes the sum of squared distances between

nodes. In Fig. 6D, point set A1, A2,. . ., A5 are corresponding to B1, B2,. . ., B6,
respectively.

4.5.5. Change the topology

After the two sets of one-neighborhood points are put into correspondence, each

point is connected with its corresponding point in the opposite one-neighborhood.

The two center vertices and all its incident edges are removed (Fig. 6E). The newly

created quadrilaterals are further triangulated by splitting each quadrilateral into

two triangles along one of its diagonals (Fig. 6F).

4.5.6. Smooth out the connecting region

After the topology-merge operation, the stressed edge resolution scheme de-

scribed in Section 4.2 will be employed to smooth out any stressed edges that may

be generated around the connecting region.

4.6. Global subdivision

Once a rough estimation of the topology and geometry of a shape is achieved, the
model can be subdivided several times to improve the fitting accuracy. We choose

Loop’s scheme [17] in our model though other schemes would also achieve this goal.

Fig. 8 shows the Loop’s subdivision scheme. There are two kinds of new vertices gen-

erated at each level of subdivision: edge points and vertex points. Each old edge will

generate a new edge point using the rule shown in Fig. 8A. Each old vertex will gen-

erate a new vertex point using the rule shown in Fig. 8B. By connecting each vertex

point with its two adjacent edge points and connect the three edge points with each
Fig. 8. Subdivision rules for Loop’s scheme (Section 4.6). (A) Edge point rule. (B) Vertex point rule. a ¼ 3
8n

for n > 3, and a ¼ 3
16
for n ¼ 3, n is the valence of the vertex.



198 Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202
other, four smaller triangles are generated from each old triangle. After one level of

global subdivision, the model will deform again based on the cost function explained

above, and will arrive at a more accurate configuration of the shape because we now

have more degrees of freedom for the model. Since the unknown topology of the un-

derlying data set has already been recovered, there is no need for collision detection
at this stage.
5. Experimental results

We have developed an experimental system using C++ and FLTK. Figs. 9–13

show some of the experimental results we have conducted using this system.

Figs. 9–11 demonstrate the surface reconstruction process from volumetric image
data. In these three figures, (A) shows a volume-rendered image of the original vol-

ume datasets. (B and C) Two snapshots of the model during the deformation

process. Red color shows the regions of the model that are still active, while the

non-active regions of the model are colored in blue. (D) Initial estimation of geom-

etry and topology of the model. (E) Refined shape of the model after one level of

global subdivision. By comparing (D) and (E), we can clearly see the improvement

of the fitting accuracy of the model after one level of global subdivision.

Our algorithm also supports multiple-seed model initialization. For example, in
Fig. 11B, four seeds are initialized at four different positions at the same time. Each

model will grow independently (Fig. 11C) and will merge with other models when-

ever a collision is detected (Fig. 11D).

Figs. 12 and 13 illustrate the shape recovery process from range datasets. The in-

put dataset of Fig. 12 is obtained by sampling a subdivision surface with 4348 data

points. The input dataset of Fig. 13 is a real range data of 56,340 data points. The

leftmost figures (Figs. 12A and 13A) are the range data with the seed model inside.

The middle two figures (Figs. 12B and C and 13B and C) are the two snapshots of
the model while they are still growing and deforming. Figs. 12D and 13D are the ini-

tially recovered shapes. Figs. 12E and 13E are the refined shapes. Figs. 13D and E

are shown in wireframe to illustrate the good mesh quality of the model.

Table 1 lists the four weighting coefficients for calculating the local cost function

associated with each vertex using Eq. (1). Table 2 gives the information of the recov-

ered shape, such as the number of vertices, edges for each model, the running time,

and the maximum fitting error. The running time is measured on an AMD K6

475MHZ Notebook PC with 64MB internal memory. The fitting error is calculated
by dividing the distance between the model vertex and object boundary by the diam-

eter of the smallest bounding sphere of the object.

Currently, several parameters need to be set by the user at the start of the

deformation process. They are: (1) the face area threshold for local adaptive

subdivision, (2) the distance threshold for collision detection, and (3) the edge

length threshold for mesh operations such as edge split and edge collapse. In

the future, we plan to simplify these parameters by conducting a preprocessing

step and normalize the input dataset to the same scale. Then it should be



Fig. 9. Surface reconstruction from volumetric image data of a chair.

Fig. 10. Surface reconstruction from volumetric image data of a phantom vertebra.

Fig. 11. Surface reconstruction from volumetric image data using multiple seeds.

Fig. 12. Shape recovery from synthetic range data.

Fig. 13. Shape recovery from real range data.

Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202 199



Table 2

Recovered model information

Figure # # Vertices # Edges Times (s) Maximum fitting error (%)

9D 2491 7491 157 1.05

9E 9889 29,685 342 0.92

10D 1005 3015 73 0.533

10E 4299 12,897 147 0.38

11D 2367 7141 96 1.25

11E 9735 29,146 285 0.93

12D 509 1539 41 4.37

12E 2104 6324 139 2.29

13D 270 804 8 6.43

13E 4557 13,665 138 2.68

Table 1

Weighting coefficients

a0 a1 a2 a3

1 1 1.6 1

200 Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202
possible for the algorithm to automatically determine the proper values for these

parameters.
6. Discussion

In this paper, we presented a new modeling algorithm that can recover correct

shape geometry as well as its unknown topology from either volumetric images or
point clouds. Because the underlying model is a subdivision-based model, it naturally

supports levels of detail. After the initial estimation of the topology and geometry is

achieved, the user can control the fitting quality easily by specifying the number of

levels of global subdivision. To further improve the performance, the algorithm can

be easily multi-threaded, i.e., multiple-seed models can be initialized at different lo-

cations at the same time.

The deformation behavior of the model is guided by the principle of energy min-

imization. Specifically, each vertex of the model is associated by a local defined cost
function Ciðx; y; zÞ Eq. (1). (1) is in fact a very flexible framework, different cost func-

tions can be employed for different applications. For example, to facilitate user inter-

action, a point attraction constraint Sðx; y; zÞ can be added in the right-hand side of

Eq. 1 to simulate a spring force attached at fixed position ðx0; y0; z0Þ
Sðx; y; zÞ ¼ kðjjðx; y; zÞ � ðx0; y0; z0ÞjjÞ2 � dðjjðx; y; zÞ � ðx0; y0; z0ÞjjÞ; ð6Þ

where d is a distribution function that is centered at position ðx0; y0; z0Þ with finite

support (such as a guassian filter). It is used to control the range of influence of the



Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202 201
spring constraints. The spring constraint Sðx; y; zÞ will allow the user to easily pin

point some fixed positions in the domain space to ensure the final shape of the model

will interpolate those fixed positions.

We expect our modeling algorithm to be valuable in areas such as visualization,

computer graphics, medical imaging, and CAD. It can be used to extract the internal
organs for medicine, or to model scanned mechanical parts for engineering. Further-

more, our model can be easily extended to higher dimensional spaces (e.g., to model

a series of time-varying volumetric data which is essential in motion tracking).
Acknowledgments

We would like to thank Professor Arie Kaufman for providing the volume render-
ing facilities in our visualization lab and providing most of the volumetric datasets

used in this paper. We thank Professor Tim McInerney for providing the phantom

vertebral image. The Potato Head dataset is courtesy of Liu Yang and Professor Dim-

itris Samaras. We are very grateful for the help from Kevin Kreeger, Ming Wan, Ke-

vin McDonnell, Haixia Du, Jing Hua, Meijing Zhang, Hui Xie, Nan Zhang, Bin

Zhang, andXiaoling Li.We thank for the reviewers for their constructive suggestions.
References

[1] N. Amenta, M. Bern, M. Kamvysselis, A new Voronoi-based surface reconstruction algorithm, in:

Computer Graphics (SIGGRAPH’98 Proceedings), July 1998, pp. 415–421.

[2] J. Bredno, T.M. Lehmann, K. Spitzer, A general discrete contour model in two, three, and four

dimensions for topology-adaptive multichannel segmentation, IEEE Trans. Pattern Anal. Mach.

Intell. 25 (5) (2003) 550–563.

[3] V. Caselles, R. Kimmel, G. Sapiro, Geodisc active contours, in: Proceedings of the Fifth International

Conference on Computer Vision (ICCV’95), 1995, June, pp. 694–699.

[4] L. Chew, Guaranteed-quality mesh generation for curved surfaces, in: Proceedings of the Ninth

Symposium on Computational Geometry, 1993, pp. 274–280.

[5] L.D. Cohen, I. Cohen, inite element methods for active contour models and balloons for 2D and 3D

images, IEEE Trans. Pattern Anal. Mach. Intell. 15 (11) (1993) 1131–1147.

[6] H. Delingette, General object reconstruction based on simplex meshes, Intl. J. Comput. Vision 32 (2)

(1999) 111–146.

[7] Y. Duan, H. Qin, Intelligent Balloon: a subdivision-based deformable model for surface reconstruc-

tion of arbitrary topology, in: Proceedings of Sixth ACM Symposium on Solid Modeling and

Applications (Solid Modeling’01), Ann Arbor, Michigan, 2001, pp. 47–58.

[8] Y. Duan, H. Qin, Extracting Boundary Surface of Arbitrary Topology from Volumetric Datasets.

Volume Graphics 2001, Springer, Vienna, June 2001, pp. 237–248.

[9] Y. Duan, H. Qin, A novel modeling algorithm for shape recovery of unknown topology, in:

Proceedings of The Eighth IEEE International Conference on Computer Vision (ICCV 2001),

Vancouver, Canada, 2001, pp. 402–409.

[10] H. Edelsbrunner, E.P. Mucke, Three-dimensional alpha shapes, ACM Trans. Graph. 13 (1994) 43–72.

[11] H. Fuchs, Z.M. Kedem, S.P. Uselton, Optimal surface reconstruction from planar contours,

Commun. ACM 20 (10) (1977) 693–702.

[12] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Surface reconstruction from

unorganized points, in: Computer Graphics (SIGGRAPH’92 Proceedings), July 1992, pp. 71–78.



202 Y. Duan, H. Qin / Graphical Models 66 (2004) 181–202
[13] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Mesh optimization, in: Computer

Graphics (SIGGRAPH’93 Proceedings), August 1993, pp. 19–26.

[14] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. jin, J. McDonald, J. Schweitzer, W. Stuetzle,

Piecewise smooth surface reconstruction, in: Computer Graphics (SIGGRAPH’94 Proceedings), July

1994, pp. 295–302.

[15] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, Intl. J. Comput. Vision 1 (4)

(1988) 321–331.

[16] J.-O. Lachaud, A. Montanvert, Deformable meshes with automated topology changes for coarse-to-

fine 3D surface extraction, Med. Image Anal. 3 (2) (1999) 187–207.

[17] Charles Loop, Smooth subdivision surfaces based on triangles. Master’s thesis, Department of

Mathematics, University of Utah, August 1987.

[18] W.E. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface construction algorithm, in:

Computer Graphics (SIGGRAPH’87 Proceedings), July 1987, pp. 163–169.

[19] R. Malladi, J. Sethian, B. Vemuri, Shape modeling with front propagation: a level set approach, IEEE

Trans. Pattern Anal. Mach. Intell. 17 (2) (1995) 158–175.

[20] C. Mandal, H. Qin, B.C. Vemuri, A novel FEM-based dynamic framework for subdivision surfaces,

in: Proceedings of Fifth ACM Symposium on Solid Modeling and Applications (Solid Modeling’99),

Ann Arbor, Michigan, June 1999, pp. 191–202.

[21] L. Markosian, J.M. Cohen, T. Crulli, J.F. Hughes. Skin: a constructive approach to modeling free-

form shapes, in: Computer Graphics (SIGGRAPH’99 Proceedings), August 1999, pp. 393–400.

[22] T. McInerney, D. Terzopoulos, A dynamic finite element surface model for segmentation and tracking

in multidimensional medical images with applications to cardiac 4D image analysis, Comput. Med.

Imaging Graphics 19 (1) (1995) 69–83.

[23] T. McInerney, D. Terzopoulos, Topology adaptive deformable surfaces for medical image volume

segmentation, IEEE Trans. Med. Imaging 18 (10) (1999) 840–850.

[24] J.V. Miller, On GDM’s: geometrically deformed models for the extraction of closed shapes from

volume data. Masters thesis, Rensselaer Polytechnic Institute, Troy, New York, December 1990.

[25] J.V. Miller, D.E. Breen, W.E. Lorensen, R.M. O’Bara, M.J. Wozny, Geometric deformed models: a

method for extracting closed geometric models from volume data, in: Computer Graphics

(SIGGRAPH’91 Proceedings), July 1991, pp. 217–226.

[26] Yu. Ohatake, A.G. Belyaev, A. Pasko, Dynamic meshes for accurate polygonization of implicit

surfaces with sharp features, in: Shape Modeling International 2001, Genova, Italy, May 2001, pp. 74-

81.

[27] H. Qin, C. Mandal, B.C. Vemuri, Dynamic Catmull–Clark subdivision surfaces, IEEE Trans.

Visualization Comput. Graphics 4 (3) (1998) 215–229.

[28] R. Szeliski, D. Tonnesen, D. Terzopoulos, Modeling surfaces of arbitrary topology with dynamic

particles, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’93), June 1993, pp. 82–87.

[29] D. Terzopoulos, K. Fleischer, Deformable models, Visual Comput. 4 (6) (1988) 306–331.

[30] D. Terzopoulos, D. Metaxas, Dynamic 3D models with local and global deformations: deformable

superquadrics, IEEE Trans. Pattern Anal. Mach. Intell. 13 (7) (1991) 703–714.

[31] D. Terzopoulos, A. Witkin, M. Kass, Symmetry-seeking models and 3D object reconstruction, Intl. J.

Comput. Vision 1 (3) (1987) 211–221.

[32] W. Welch and A. Witkin, Free-form shape design using triangulated surfaces, in: Computer Graphics

(SIGGRAPH’94 Proceedings), July 1994, pp. 247–256.

[33] W. Welch, A. Witkin, Serious Putty: topological design for variational curves and surfaces. PhD

thesis, Carnegie Mellon University, June 1995.

[34] R.T. Whitaker, A level-set approach to 3D reconstruction from range data, Intl. J. Comput. Vision 29

(3) (1998) 203–231.


	A subdivision-based deformable model for surface reconstruction of unknown topology
	Introduction
	Background
	Energy-based optimization
	Constraint modeling
	Deformation potential
	Boundary constraint
	Curvature constraint
	Angular constraint

	Optimization method

	Algorithm
	Model initialization
	Stressed edge resolution
	Local adaptive subdivision
	Mesh optimization
	Nodes distribution
	Triangle shape
	Nodes density

	Collision detection and topology changes
	Collision detection
	Shift the center vertices
	Align the two one-neighborhoods
	Put the one-neighborhoods into correspondence
	Change the topology
	Smooth out the connecting region

	Global subdivision

	Experimental results
	Discussion
	Acknowledgements
	References


