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Abstract

This article develops a dynamic generalization of the nonuniform rational B�spline �NURBS� model�
NURBS have become a de facto standard in commercial modeling systems because of their power to
represent free�form shapes as well as common analytic shapes� To date� however� they have been viewed
as purely geometric primitives that require the user to manually adjust multiple control points and
associated weights in order to design shapes� Dynamic NURBS� or D�NURBS� are physics�based models
that incorporate mass distributions� internal deformation energies� and other physical quantities into the
popular NURBS geometric substrate� Using D�NURBS� a modeler can interactively sculpt curves and
surfaces and design complex shapes to required speci�cations not only in the traditional indirect fashion�
by adjusting control points and weights� but also through direct physical manipulation� by applying
simulated forces and local and global shape constraints� D�NURBS move and deform in a physically
intuitive manner in response to the user�s direct manipulations� Their dynamic behavior results from the
numerical integration of a set of nonlinear di�erential equations that automatically evolve the control
points and weights in response to the applied forces and constraints� To derive these equations� we employ
Lagrangian mechanics and a �nite�element�like discretization� Our approach supports the trimming
of D�NURBS surfaces using D�NURBS curves� We demonstrate D�NURBS models and constraints
in applications including the rounding of solids� optimal surface �tting to unstructured data� surface
design from cross sections� and free�form deformation� We also introduce a new technique for �D shape
metamorphosis using constrained D�NURBS surfaces�
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� Introduction

In ���
 Versprille ���� proposed the Non	Uniform Rational B	Splines or NURBS� This shape representation
for geometric design generalized Riesenfeld�s B	splines� NURBS quickly gained popularity and were incor	
porated into several commercial modeling systems ����� The NURBS representation has several attractive
properties� It o�ers a uni�ed mathematical formulation for representing not only free	form curves and
surfaces� but also standard analytic shapes such as conics� quadrics� and surfaces of revolution� By adjust	
ing the positions of control points and manipulating associated weights� one can design a large variety of
shapes using NURBS ���� ��� ��� ��� ��� ��� ����

Because NURBS are a purely geometric representation� however� their extraordinary �exibility has
some drawbacks�

� The designer is faced with the tedium of indirect shape manipulation through a bewildering variety
of geometric parameters� i�e�� by repositioning control points� adjusting weights� and modifying knot
vectors� Despite the recent prevalence of sophisticated �D interaction devices� the indirect geometric
design process remains clumsy and time consuming in general�

� Shape design to required speci�cations by manual adjustment of available geometric degrees of free	
dom is often elusive� because relevant design tolerances are typically shape	oriented and not control
point�weight oriented� The geometric �redundancy� of NURBS tends to make geometric shape re	
�nement ad hoc and ambiguous� for instance� to adjust a shape should the designer move a control
point� or change a weight� or move two control points� etc��

� Typical design requirements may be stated in both quantitative and qualitative terms� such as �a
fair and pleasing surface which approximates scattered data and interpolates a cross	section curve��
Such requirements impose both local and global constraints on shape� The incremental manipulation
of local shape parameters to satisfy complex local and global shape constraints is at best cumbersome
and often unproductive�

Physics	based modeling provides a means to overcome these drawbacks� Free	form deformable models�
which were introduced to computer graphics in ���� and further developed in ��
� �
� ��� ��� ��� ��� are
particularly relevant in the context of modeling with NURBS� Important advantages accrue from the
deformable model approach ��
��

� The behavior of the deformable model is governed by physical laws� Through a computational physics
simulation� the model responds dynamically to applied simulated forces in a natural and predictable
way� Shapes can be sculpted interactively using a variety of force	based �tools��

� The equilibrium state of the dynamic model is characterized by a minimum of the potential energy of
the model subject to imposed constraints ��
�� It is possible to formulate potential energy functionals
that satisfy local and global design criteria� such as curve or surface �piecewise� smoothness� and to
impose geometric constraints relevant to shape design�

� The physical model may be built upon a standard geometric foundation� such as free	form parametric
curve and surface representations� This means that while shape design may proceed interactively
or automatically at the physical level� existing geometric toolkits are concurrently applicable at the
geometric level�

In this article� we propose Dynamic NURBS� or D	NURBS� D	NURBS are physics	based models that in	
corporate mass distributions� internal deformation energies� and other physical quantities into the NURBS
geometric substrate� Time is fundamental to the dynamic formulation� The models are governed by dy	
namic di�erential equations which� when integrated numerically through time� continuously evolve the
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control points and weights in response to applied forces� The D	NURBS formulation supports interactive
direct manipulation of NURBS curves and surfaces� which results in physically meaningful hence intuitively
predictable motion and shape variation�

Using D	NURBS� a modeler can interactively sculpt complex shapes not merely by kinematic adjust	
ment of control points and weights� but� dynamically as well�by applying forces� Additional control over
dynamic sculpting stems from the modi�cation of physical parameters such as mass� damping� and elastic
properties� Elastic functionals allow the imposition of qualitative �fairness� criteria through quantitative
means� Linear or nonlinear constraints may be imposed either as hard constraints that must not to be
violated� or as soft constraints to be satis�ed approximately� The latter may be interpreted intuitively
as simple forces� Optimal shape design results when D	NURBS are allowed to achieve static equilibrium
subject to shape constraints� All of these capabilities are subsumed under an elegant formulation grounded
in physics�

Section � discusses the similarities and distinctive features of D	NURBS relative to prior models� Section
� brie�y reviews NURBS geometry and its properties� In Section �� we formulate D	NURBS and derive
their equations of motion� Section 
 discusses the application of forces and constraints for physics	based
design� We discuss the numerical simulation of D	NURBS in Section 
� Section � describes our prototype
D	NURBS modeling system and presents applications and results� Section � concludes the article�

� Background

Dynamic NURBS are motivated by prior research aimed at applying the deformable modeling approach to
shape design� Terzopoulos and Fleischer ��
� demonstrated simple interactive sculpting using viscoelastic
and plastic models� Celniker and Gossard �
� developed an interesting prototype system for interactive
free	form design based on the �nite	element optimization of energy functionals proposed in ��
�� Bloor
and Wilson ��� developed related models using similar energies and numerical optimization� and in ���
they proposed the use of B	splines for this purpose� Subsequently� Celniker and Welch �
� investigated
deformable B	splines with linear constraints� Welch and Witkin ���� extended the approach to trimmed
hierarchical B	splines �see also ������ Thingvold and Cohen ���� proposed a deformable B	spline whose
control points are mass points connected by elastic springs and hinges�

In ��� 
� ��� deformable B	spline curves and surfaces are designed by imposing shape criteria via the
minimization of energy functionals subject to hard or soft geometric constraints� These constraints are
imposed through Lagrange multipliers or penalty methods� respectively� The same techniques are applicable
to D	NURBS� Compared to deformable B	splines� however� D	NURBS are capable of representing a wider
variety of free	form shapes� as well as standard analytic shapes� Previous models solve static equilibrium
problems� or in the case of �
� involve simple linear dynamics with diagonal �arbitrarily lumped� mass and
damping matrices �apparently for e�ciency��

D	NURBS are a more sophisticated dynamic model� We adopt the approach proposed in ���� for
converting arbitrary geometric models into dynamic models using Lagrangian mechanics and �nite element
analysis� Our approach is systematic� We formulate deformable curves and surfaces and reduce them to
algorithms in a principled way� without resorting to any of the ad hoc assumptions of prior schemes
�c�f� ������ Because our dynamic models allow fully continuous mass and damping distributions� we obtain
banded mass and damping matrices� These are known as consistentmatrices in the �nite element literature
�����

The D	NURBS control points and associated weights become generalized coordinates in the Lagrangian
equations of motion� From a physics	based modeling point of view� the existence of weights makes the
NURBS geometry substantially more challenging than B	spline geometry� Since the NURBS rational basis
functions are functionally dependent on the weights� D	NURBS dynamics are generally nonlinear� and the
mass� damping� and sti�ness matrices must be recomputed at each simulation time step�� Fortunately�

�Note� however� that for static weights� the matrices become time invariant and the computational cost is reduced
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this does not preclude interactive performance on current graphics workstations� at least for the size of
surface models that appear in our demonstrations� We prove several mathematical results that enable us to
simplify the motion equations and apply numerical quadrature to the underlying NURBS basis functions
to compute e�ciently the integral expressions for the matrix entries�

� NURBS Geometry

In this section� we review the formulation of NURBS curves and surfaces� We then describe their analytic
and geometric properties� More detailed material can be found in ��� ��� ��� ��� ��� ����

��� Curves

A NURBS curve generalizes the B	spline� It is the combination of a set of piecewise rational functions
with n� � control points pi and associated weights wi�

c�u� �

Pn
i�� piwiBi�k�u�Pn
i�� wiBi�k�u�

� ���

where u is the parametric variable and Bi�k�u� are B	spline basis functions� Assuming basis functions of
degree k� �� a NURBS curve has n� k� � knots ti in nondecreasing sequence� t� � t� � � � � � tn�k � The
basis functions are de�ned recursively as

Bi���u� �

�
� for ti � u � ti��
� otherwise

�

with

Bi�k�u� �
u� ti

ti�k�� � ti
Bi�k���u� �

ti�k � u

ti�k � ti��
Bi���k���u��

The parametric domain is tk�� � u � tn��� In many applications� the end knots are repeated with
multiplicity k in order to interpolate the initial and �nal control points p� and pn�

��� Surfaces

A NURBS surface is the generalization of the tensor	product B	spline surface� It is de�ned over the
parametric variables u and v as

s�u� v� �

Pm
i��

Pn
j�� pi�jwi�jBi�k�u�Bj�l�v�Pm

i��

Pn
j�� wi�jBi�k�u�Bj�l�v�

� ���

A NURBS surface has �m� ���n� �� control points pi�j and weights wi�j � Assuming basis functions along
the two parametric axes of degree k�� and l��� respectively� the number of knots is �m�k����n� l����
The nondecreasing knot sequence is t� � t� � � � � � tm�k along the u	axis and s� � s� � � � � � sn�l
along the v	axis� The parametric domain is tk�� � u � tm�� and sl�� � v � sn��� If the end knots have
multiplicity k and l in the u and v axis respectively� the surface patch will interpolate the four corners of
the boundary control points�

��� Properties

NURBS generalize the nonrational parametric form� Like nonrational B	splines� the rational basis functions
of NURBS sum to unity� they are in�nitely smooth in the interior of a knot span provided the denominator

signi�cantly�
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is not zero� and at a knot they are at least Ck���r continuous with knot multiplicity r� which enables them
to satisfy di�erent smoothness requirements� They inherit many of the properties of nonrational B	splines�
such as the strong convex hull property� variation diminishing property� local support� and invariance
under standard geometric transformations �see ���� for more details�� Moreover� they have some additional
properties�

� NURBS o�er a common mathematical framework for implicit and parametric polynomial forms�
In principle� they can represent analytic functions such as conics and quadrics precisely� as well as
free	form shapes�

� NURBS include weights as extra degrees of freedom which in�uence local shape� If a particular
weight is zero� then the corresponding rational basis function is also zero and its control point does
not e�ect the NURBS shape� The spline is attracted toward a control point more if the corresponding
weight is increased and less if the weight is decreased�

For a more detailed discussion of NURBS properties� see ���� ��� ��� ��� ��� ����
The most frequently used NURBS design techniques are the speci�cation of a control polygon� or

interpolation or approximation of data points to generate the initial shape� For surfaces or solids� cross	
sectional design including skinning� sweeping� and swinging operations is also popular� The initial shape
is then re�ned into the �nal desired shape through interactive adjustment of control points and weights
and possibly the addition or deletion of knots� The re�nement process is ad hoc and often tedious� To
ameliorate it� we propose dynamic NURBS�

� Formulation of D�NURBS

This section formulates our physics	based D	NURBS model� The shape parameters of geometric NURBS�
which were described in Section �� play the role of generalized �physical� coordinates in dynamic NURBS�
We introduce time� mass� and deformation energy into the standard NURBS formulation and employ
Lagrangian dynamics to arrive at the system of nonlinear ordinary di�erential equations that govern the
shape and motion of D	NURBS�

��� Curves

For simplicity� consider �rst a D	NURBS space curve� The D	NURBS curve is de�ned as in ���� but it is
also a function of the spatial parameter u and time t�

c�u� t� �

Pn
i�� pi�t�wi�t�Bi�k�u�Pn

i�� wi�t�Bi�k�u�
� ���

The control points pi�t� and weights wi�t�� which are now functions of time� comprise the generalized coor	
dinates of D	NURBS� To simplify notation� we concatenate the generalized coordinates into the following
vectors�

pb�t� �
h
p�� � � � p�n

i�
�

pw�t� �
h
w� � � � wn

i
�

�

p�t� �
h
p�� w� � � � p�n wn

i
�

�

where � denotes transposition� Note that we can express the curve c�u� t� as c�u�p� in order to emphasize
its dependence on the vector of generalized coordinates p whose components are functions of time� The
velocity of the kinematic spline is

�c�u�p� � J �p� ���
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where an overstruck dot denotes a time derivative and J�u�p� is the Jacobian matrix� Because c is a
�	component vector	valued function and p is an ��n � �� dimensional vector� J is a � � ��n � �� matrix
which is the concatenation of the vectors �c��pi and �c��wi� i � �� � � � � n� Let us investigate the contents
of J� For i � �� � � � � n� let Bi�u�p� be a �� � diagonal matrix whose diagonal entries are the rational basis
functions

Ni�u�p� �
�c

�pi
�

wiBi�kPn
j�� wjBj�k

and let the �	vector

wi�u�p� �
�c

�wi

�

Pn
j���pi � pj�wjBi�kBj�k

�
Pn

j�� wjBj�k��
�

We collect the Bi into B and the wi into W as follows

B�u�p� �
h
B� � � � Bn

i
�

W�u�p� �
h
w� � � � wn

i
�

The Jacobian matrix may then be written as

J�u�p� �
h
B� w� � � � Bn wn

i
�

Using the foregoing notation� we can express

c � Bpb�

Appendix A shows that
Wpw � �� �
�

so that we can express the D	NURBS as the product of the Jacobian matrix and the generalized coordinate
vector�

c�u�p� � Jp� �
�

Another interesting relationship is �Jp � �� and it will enable us to simplify the discretized version of the
D	NURBS di�erential equations and arrive at an e�cient numerical implementation�

��� Surfaces

A D	NURBS surface has a similar structure to the curve� Proceeding analogously from ���� we de�ne

s�u� v� t� �

Pm
i��

Pn
j�� pi�j�t�wi�j�t�Bi�k�u�Bj�l�v�Pm

i��

Pn
j�� wi�j�t�Bi�k�u�Bj�l�v�

� ���

Again� the control points and weights comprise the generalized coordinates and are assembled into vectors
pb� pw � and p� Two subscripts are now associated with the generalized coordinates� re�ecting the surface
parameters u and v� For concreteness� we order the components in these vectors such that the second
subscript varies faster than the �rst� although this convention does not a�ect the derived results�

As before� we can write s�u� v�p� instead of s�u� v� t�� By analogy to c in ��� and �
�� we obtain for the
D	NURBS surface

s�u� v�p� � Jp� ���

�s�u� v�p� � J �p� ���

However� the contents of the Jacobian J di�er from those in the curve case� To arrive at an explicit
expression for J� let Bi�j�u� v�p�� for i � �� � � � � m� and j � �� � � � � n� be a � � � diagonal matrix whose
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entries are

Ni�j�u� v�p� �
�s

�pi�j
�

wi�jBi�k�u�Bj�l�v�Pm
c��

Pn
d�� wc�dBc�k�u�Bd�l�v�

and let the �	vector

wi�j�u� v�p� �
�s

�wi�j

�

Pm
c��

Pn
d���pi�j � pc�d�wc�dBc�k�u�Bd�l�v�Bi�k�u�Bj�l�v�

�
Pm

c��

Pn
d�� wc�dBc�k�u�Bd�l�v���

�

As before� the Bi�j and wi�j are assembled into B and W� respectively� Hence�

J�u� v�p� �
h
B��� w��� � � � Bm�n wm�n

i
�

Note that J is now a �� ��m� ���n� �� matrix�

��� D�NURBS Equations of Motion

The previous two sections presented D	NURBS curve and surface geometry in a uni�ed way� D	NURBS
physics are based on the work	energy version of Lagrangian dynamics ����� In an abstract physical system�
let pi�t� be a set of generalized coordinates� These N functions of time are assembled into the vector p�
Let fi�t� be the generalized applied force that acts on pi� We assemble the fi into the vector fp� We also
assume that J is the concatenation of N vectors ji�

To proceed with the Lagrangian formulation� we will de�ne kinetic energy T � potential energy U � and
Raleigh dissipation energy F which are functions of the generalized coordinates and their derivatives� The
Lagrangian equations of motion are then expressed as

d

dt

�T

� �pi
�

�T

�pi
�

�F

� �pi
�

�U

�pi
� fi� ����

Variants of this equation have served as the basis for deformable model formulations ��
�� Using ����� we
can take an arbitrary geometric model� such as a NURBS� introduce appropriate kinetic� potential� and
dissipation energies� and systematically formulate a physics	based� dynamic generalization of the model
�����

In the sequel� we will discuss only D	NURBS surfaces �we can consider D	NURBS curves as a special
case with a simpler expression in fewer variables�� To de�ne energies and derive the D	NURBS equations
of motion� let ��u� v� be the mass density function de�ned over the parametric domain of the surface� The
kinetic energy of the surface is

T �
�

�

Z Z
� �s� �sdu dv �

�

�
�p�M �p� ����

where �using ����

M�p� �

Z Z
�J�J du dv ����

is an N �N mass matrix� Similarly� let ��u� v� be the damping density function� The dissipation energy is

F �
�

�

Z Z
� �s� �sdu dv �

�

�
�p�D �p� ����

where

D�p� �

Z Z
�J�J du dv ����

is the damping matrix�
For the elastic potential energy of D	NURBS� we can adopt the thin�plate under tension energy model

��
�� which was also used in �
� ��� �other energies are possible� including the nonquadratic� curvature	based
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energies in ��
� �����

U �
�

�

Z Z �
����

�s�

�u

�s

�u
� ����

�s�

�v

�s

�v

�����
��s�

�u�
��s

�u�
� ����

��s�

�u�v

��s

�u�v
� ����

��s�

�v�
��s

�v�

�
du dv �

�

�
p�Kp� ��
�

The �i�j�u� v� and �i�j�u� v� are elasticity functions which control local tension and rigidity� respectively� in
the two parametric coordinate directions�� In view of ���� the N �N sti�ness matrix is

K�p� �

Z Z �
����J

�

u Ju � ����J
�

v Jv � ����J
�

uuJuu � ����J
�

uvJuv � ����J
�

vvJvv

�
du dv� ��
�

where the subscripts on J denote parametric partial derivatives�
In Appendix B� we show that by applying ����� the D	NURBS equations of motion are given by

M p�D �p�Kp � fp � I �p� ����

where the generalized force vector� obtained through the principle of virtual work ���� done by the applied
force distribution f�u� v� t�� is

fp�p� �

Z Z
J�f�u� v� t� du dv� ����

and where

I�p� �
Z Z

�J� �J du dv�

� Forces and Constraints

We have derived the Lagrangian equations of motion for D	NURBS� When working with D	NURBS� a
modeler may impose design requirements in terms of energies� forces� and constraints� For instance� the
modeler may apply time	varying forces to sculpt shapes interactively or to optimally approximate data�
Certain aesthetic constraints such as �fairness� are expressible in terms of elastic energies that give rise to
speci�c sti�ness matrices K� By building the physics	based D	NURBS generalization upon the standard
NURBS geometry� we allow the modeler to continue to use the whole spectrum of advanced geometric
design tools that have become prevalent� among them� the imposition of geometric constraints that the
�nal shape must satisfy� For example� if the shapes of certain cross	sectional curves in a NURBS surface
must be circular arcs� the control points associated with these curves must be constrained geometrically
to admit only circular arcs� Other constraints include the speci�cation of positions of surface points� the
speci�cation of surface normals at surface points� and continuity requirements between adjacent surface
patches or curve arcs�

��� Applied Forces

In the D	NURBS design scenario� sculpting tools may be implemented as applied forces� The force f�u� v� t�
in the D	NURBS equation of motion represents the net e�ect of all applied forces� Typical force functions
are spring forces� repulsion forces� gravitational forces� in�ation forces� etc� ��
� 
� ����

For example� consider connecting a material point �u�� v�� of a D	NURBS surface to a point d� in space

�In the case of the D�NURBS curve� there are only two terms and two weighting functions in the potential energy form

because of the single spatial parameter u� U � �

�

R
��u� �c

�

�u
�c
�u

� ��u� �
�c�

�u�
��c

�u�
du�
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with an ideal Hookean spring of sti�ness k� The net applied spring force is

f�u� v� t� �

Z Z
k�d� � s�u� v� t��	�u� u�� v � v�� du dv� ����

where is the 	 is the unit delta function� Equation ���� implies that f�u�� v�� t� � k�d� � s�u�� v�� t�� and
vanishes elsewhere on the surface� but we can generalize it by replacing the 	 function with a smooth kernel
�e�g�� a unit Gaussian� to spread the applied force over a greater portion of the surface� Furthermore� the
points �u�� v�� and d� need not be constant� in general� We can control either or both using a mouse to
obtain an interactive spring force�

��� Linear Constraints

Linear geometric constraints such as point� curve� and surface normal constraints are often useful �
�� To
incorporate linear geometric constraints into D	NURBS� we reduce the matrices and vectors in ���� to
a minimal unconstrained set of generalized coordinates� Linear constraints are generally expressible as
follows�

C�p� � Ap� b � �� ����

where A is a matrix of coe�cients� If ���� is an underdetermined linear system� we can eliminate variables
to express the generalized coordinate vector p as

p � Gq� q�� ����

where q is a new generalized coordinate vector with M � N components qj � Here� G is an N �M matrix�
which may be computed through Gaussian elimination or other means� and q� is a constant vector�

The lower	dimensional generalized coordinate vector q replaces p in the linearly constrained D	NURBS
model� To derive the equations of motion with constraints� we combine ��� and ��� with ���� as follows�

s�u� v�q� � J�Gq� q�� � Lq� Jq�

�s�u� v�q� � J�G �q� �p�� � JG �q � L �q�

where
L � JG

is the new Jacobian matrix of s with respect to q� Note that L consists of M vectors lj � �s��qj� for
j � �� � � � �M � Hence� the energy expressions become

T �
�

�
�q�G�MG �q

F �
�

�
�q�G�DG �q

U �
�

�
�q�G� � q��K�Gq� q���

We also de�ne the M �M mass� damping� and sti�ness matrices of the constrained D	NURBS�

Mq � G�MG

Dq � G�DG

Kq � G�KG�

In Appendix C we prove several identities that yield the following equations of motion for D	NURBS
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with linear constraints�
Mq q�Dq �q�Kqq � fq � gq � Iq �q� ����

where the generalized forces are

fq �
Z Z

L�f�u� v� t� du dv� ����

and where
gq � �G�Kq��

Iq � G�IG�

Although ���� looks more complicated than ����� its implementation is surprisingly straightforward in
view of the sparseness of G and the reduced size of q�

��� Nonlinear Constraints

It is possible to impose nonlinear geometric �equality� constraints

C�p� � �� ����

on D	NURBS through Lagrange multiplier techniques ����� This approach increases the number of degrees
of freedom� hence the computational cost� by adding unknowns 
i�also known as Lagrange multipliers�
which determine the magnitudes of the constraint forces� The method is applied to the B	spline model
in �
� ���� The augmented Lagrangian method ���� combines the Lagrange multipliers with the simpler
penalty method ��
��

One of the best known techniques for applying constraints to dynamic models is the Baumgarte stabi	
lization method ��� which solves constrained equations of motion through linear feedback control �see also
���� �
��� We augment ���� as follows�

M p�D �p �Kp � fp � I �p�C
�

p


� ��
�

where �C�p


 are generalized forces stemming from the holonomic constraint equations� The term C�p is

the transpose of the constraint Jacobian matrix and 


 � �
�� � � � � 
n�
� is a vector of Lagrange multipliers

that must be determined� We can obtain the same number of equations as unknowns� by di�erentiating
���� twice with respect to time�  C�p� � �� Baumgart�s method replaces these additional equations with
equations that have similar solutions� but which are asymptotically stable� e�g�� the damped second	order
di�erential equations  C��a �C�b�C � �� where a and b are stabilization factors� For a given value of a� we
can choose b � a to obtain the critically damped solution C�p� ��e�at which has the quickest asymptotic
decay towards constraint satisfaction ����� Taking the second time derivative of ���� and rearranging terms
yields

Cp p � �  C� �Cp �p�p �p� � �Cp �p � ���� ��
�

We arrive at the following system of equations for the unknown constrained generalized accelerations and
Lagrange multipliers� �

M C�p
Cp �

� �
 p





�
�

�
�D �p �Kp� I �p� fp
��� � �aCp �p � b�C

�
� ����

This system can be solved for  p and 


 using standard direct or iterative techniques �or in the least squares
sense when it is overdetermined by con�icting constraints��

��� Constraining the Weights

The components of pb may take arbitrary �nite values in �� but this is not the case for the weights pw�
Negative components of pw may cause the denominator to vanish at some evaluation points� causing the
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matrices to diverge� Although not forbidden� negative weights are not useful� We include constraints
in our D	NURBS which enforce positivity of weight values� Such a constraint is easily implemented by
establishing a positive lower bound on the weight values and enforcing it in the numerical solution using a
projection method�

Another potential di�culty is that smaller values of pw tend to �atten the surface in the vicinity of
the control points� which lowers the deformation energy� Consequently� the pw will tend to move toward
zero� To counteract this tendency� we can associate with the potential energy the penalty term

c�pw � p
�
w�
��pw � p

�
w�

in which p�w are desired weights and c is scaling factor�
We have implemented both techniques� Experiments indicate that the projection scheme works very

well� Consequently� we do not make use of the penalty scheme in our current modeling system� It may be
useful� however� if the modeler wants to constrain the weights to assume values near certain target values
p�w�

� Numerical Implementation

The evolution of the D	NURBS generalized coordinates is determined by the second	order nonlinear di�er	
ential equations ���� or ����� with time	varying mass� damping� and sti�ness matrices� We cannot obtain
an analytical solution in general� An e�cient numerical implementation of D	NURBS is possible� however�
through the use of techniques from �nite	element analysis ��
��

Standard �nite element codes assemble individual element matrices into the global matrices that appear
in the discrete equations of motion ���� �
�� Despite the fact that the global matrices are stored using
e�cient sparse matrix storage schemes �which maintain only the entries needed for matrix factorization��
matrix assembly and matrix	vector multiplications quickly become too costly� particularly for D	NURBS
surfaces with high dimensional p�

In our implementation� we use an iterative matrix solver that enables us to avoid the costs of assembling
the global M� D� and K matrices associated with the whole D	NURBS curve or surface� Rather� we work
with the individual D	NURBS element matrices� We construct �nite element data structures that contain
the information needed to compute all of the element matrices independently and in parallel�

��� Data Structures for D�NURBS Finite Elements

We consider a D	NURBS curve arc or surface patch de�ned by consecutive knots in the parametric do	
main to be a type of �nite element� We de�ne an element data structure which contains the geometric
speci�cation of the D	NURBS element along with its physical properties� A complete D	NURBS curve or
surface is then implemented as a data structure which consists of an ordered array of D	NURBS curve or
surface elements with additional information�

The element structure includes pointers to the associated generalized coordinates �control points and
weights�� For instance� � control points and associated weights are needed to describe a patch of a quadratic
D	NURBS surface �the total number of degrees of freedom is �
�� The generalized coordinates associated
with the entire D	NURBS curve or surface are stored in the global vector p� Note that neighboring elements
will share some generalized coordinates� The shared variables will have multiple pointers impinging on
them�

We also allocate in each D	NURBS element an elemental mass� damping� and sti�ness matrix� and
include in the element data structure the quantities needed to compute these matrices� These quantities
include the mass ��u� v�� damping ��u� v�� and elasticity �i�j�u� v�� �i�j�u� v� density functions� which may
be represented as analytic functions or as parametric arrays of sample values�



Published in ACM Transactions on Graphics� ������ April� ����� ���	��
� ��

��� Calculation of Element Matrices

We evaluate the integral expressions for the matrices ����� ����� and ��
� numerically using Gaussian
quadrature ����� We shall explain the computation of the element sti�ness matrix� the computation of the
mass and damping matrices follow suit� Assuming the element�s parametric domain is �u�� u�� � �v�� v���
the expression for entry kij of the sti�ness matrix of a D	NURBS surface element takes the integral form

kij �

Z u�

u�

Z v�

v�

fij�u� v� du dv� ����

where� according to ��
��

fij�u� v� � �����u� v�
�j�i
�u

�jj
�u

� �����u� v�
�j�i
�v

�jj
�v

������u� v�
��j�i
�u�

��jj
�u�

� �����u� v�
��j�i
�u�v

��jj
�u�v

� �����u� v�
��j�i
�v�

��jj
�v�

�

Here� the ji are the columns of the Jacobian matrix for the D	NURBS surface element�
We apply Gaussian quadrature to compute the above integral approximately� The integral is obtained

by applying Gaussian quadrature on the �	D interval twice� Given integer Ng and Nh� we can �nd Gauss
weights ag� bh and abscissas ug� vh in two directions of the parametric domain such that kij can be
approximated by ������

kij �

NgX
g��

NhX
h��

agbhfij�ug� vh��

We apply the de Boor algorithm ��� to evaluate fij�ug� vh��
�

Generally speaking� for integrands that are polynomial of degree �N � � or less� Gaussian quadrature
evaluates the integral exactly with N weights and abscissas� For D	NURBS� fij is not polynomial unless
the model is reduced to a B	spline� In our system� we choose Ng and Nh to be integers between � and ��
Our experiments reveal that matrices computed in this way lead to stable� convergent solutions�

��� Discrete Dynamics Equations

In order to integrate the D	NURBS ordinary di�erential equations of motion ���� in an interactive modeling
environment� it is important to provide the modeler or designer with visual feedback about the evolving
state of the dynamic model� Rather than using costly time integration methods that take the largest
possible time steps� it is more crucial to provide a smooth animation by maintaining the continuity of
the dynamics from one step to the next� Hence� less costly yet stable time integration methods that take
modest time steps are desirable�

The matrices M� D� and K �and Mq� Dq� and Kq� are symmetric� sparse� and banded� Several
algorithms are available for the numerical integration of the D	NURBS ordinary di�erential equations of
motion� The suitability of implicit or explicit integration algorithms is dependent on the bandwidth of the
matrices� as determined by the dimensionality of the parametric space and the order of the NURBS basis
functions� The matrices for a D	NURBS curve have a single band which has a half	bandwidth of �k� where
k is the order of the NURBS basis� For D	NURBS surfaces� the matrices become block banded� with each
block containing n bands similar to those of dynamic curves� where n depends on the order of the NURBS
basis in the opposite parametric direction�

�The entries of the D�NURBS curve element sti	ness matrix are kij �
R u�

u�
fij�u� du� where fij�u� � ��u�

�j�
i

�u

�jj

�u
�

��u�
��j�

i

�u�
��jj

�u�
Given integer Ng� we can �nd Gauss quadrature abscissas ug and weights ag such that kij can be approxi�

mated as follows� kij �
PNg

g��
agfij�ug��
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We integrate the di�erential equations ���� through time by discretizing the derivative of p over time	
steps !t� The state of the D	NURBS at time t �!t is integrated using prior states at time t and t �!t�
Depending on the choice of physical parameters� ���� may be a sti� system� We use an implicit time
integration method in order to maintain the stability of the integration scheme� The implicit method
employs discrete derivatives of p using backward di�erences

 p�t��t� �
p�t��t� � �p�t� � p�t��t�

!t�
�

�p�t��t� �
p�t��t� � p�t��t�

�!t
�

Making use of the fact that �Jp � �� we obtain the time integration formula

�
�M� �!tD � �!t�K

�
p�t��t� � �!t�fp � �Mp�t�� ��M� �!tD�p�t��t� �

Z Z
�J�s�t��t� du dv� ����

where the superscripts denote evaluation of the quantities at the indicated times� and where the remaining
quantities are evaluated at time t�!t� For example� we can extrapolate the mass matrix using the formula

M�t��t� �M�t� � !t �M�t� � �M�t� �M�t��t� ����

and likewise for the other matrices and vectors in ����� The simpler� constant extrapolations M�t��t� �
M�t�� etc�� ���
� Section ��
� also work satisfactorily�

In the interest of e�ciency� we do not factorize the matrix expression on the left hand side of ���� in
order to solve for p�t��t�� Instead� we employ the conjugate gradient method to obtain an iterative solution
���� ���� To achieve interactive simulation rates� we limit the number of conjugate gradient iterations per
time step to ��� We have observed that � iterations typically su�ce to converge to a residual of less than
����� More than � iterations tend to be necessary when the physical parameters �mass� damping� tension�
sti�ness� applied forces� are changed dramatically during interactive sculpting�

Note that when physical parameter values are chosen such that the equations ���� are not sti�� it
is much cheaper to employ an explicit time integration method using forward di�erences� Appendix D
discusses the forward di�erence approach� Note that the explicit method requires values for the matrices
only at time t� hence ���� is not needed�

For the D	NURBS curve� we simply replace c with s in ���� and everything proceeds as in the case of
surfaces�

In the case of D	NURBS with linear constraints� we discretize the derivatives of q �rather than p��
Analogous to ����� the discrete version of ���� is

��Mq � �!tDq � �!t�Kq�q
�t��t� �

�!t��fq � gq� � �Mqq
�t� � ��Mq � �!tDq�q

�t��t� �G�Mq� �
Z Z

�L�s du dv� ����

Since there are fewer degrees of freedom in q than in p� faster numerical implementation of constrained
D	NURBS is possible� provided the constraint matrix G is sparse� Note that since the conjugate gradient
algorithm requires only gradient vectors� we need not compute Mq� Dq and Kq explicitly� The only extra
cost is the computation of Gq and the multiplication of G with several vectors in �����

For nonlinear constraints� at each time step we can apply the conjugate gradient algorithm to solve
���� for the Lagrange multipliers 


 and the constrained generalized accelerations  p �given known p and
�p�� We then integrate  p and �p from t to t � !t to obtain the constrained generalized velocities �p and
coordinates p �e�g�� using the simple Euler method �p�t��t� � �p�t� �!t  p�t�� p�t��t� � p�t� � !t �p�t��t���
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��� Simpli�cations

The above implementation strategy permits real	time simulation of the general D	NURBS model on
midrange graphics workstations� Lengthy curves can be simulated at interactive rates� as can quadratic
and cubic surfaces on the order of ��� �� control points� It is possible to make simpli�cations that further
reduce the computational expense of ���� and ����� making it practical to work with larger D	NURBS
surfaces�

First� it is seldom necessary to simulate the fully general D	NURBS model throughout an entire sculpt	
ing session� Once we freeze the values of the weights pw� all of the matrices in ���� and ���� are constant
and their entries need no longer be recomputed at each time step� With this restricted rational generaliza	
tion of the B	splines� interactive rates are readily obtained for much larger surfaces with up to an order of
magnitude more degrees of freedom� Note that D	NURBS reduce to dynamic B	splines if all components
of the frozen vector pw are� in addition� equal to ��

Second� a full implementation of ���� is appropriate if the models must respond with realistic dynamics�
However� in certain CAGD and surface	�tting applications where the modeler is interested only in the �nal
equilibrium con�guration of the model� it makes sense to simplify ���� by setting the mass density function
��u� v� to zero� so that the inertial terms vanish� This economizes on storage and makes the algorithm
more e�cient� With zero mass density� ���� reduces to

D �p�Kp � fp� ����

while ���� reduces to
Dq �q�Kqq � fq � hq� ����

Discretizing the derivatives of p and q in ���� and ���� with backward di�erences� we obtain the integration
formulas

�D �!tK�p�t��t� � !tfp �Dp�t� ����

and
�Dq �!tKq�q

�t��t� � !t�fq � hq� �Dqq
�t� ��
�

respectively�

� Modeling Environment and Applications

This section describes our D	NURBS modeling environment and presents several applications of D	NURBS
relating to trimming� solid rounding� optimal curve and surface �tting� cross	sectional design of shapes�
free	form deformation� and shape metamorphosis�

	�� Interactive Modeling Environment

We have developed a prototype modeling environment based on the D	NURBS model� The system is
written in C and it currently runs under Iris Explorer on Silicon Graphics workstations� Our parallelized
iterative numerical algorithm takes advantage of a �D����VGX multiprocessor� To date� our D	NURBS
modules implement �D curve and surface objects with basis function orders of �� �� or � �i�e�� from linear
to cubic D	NURBS� with linear geometric constraints� They may be combined with existing Explorer
modules for data input and object rendering�

Using our system� designers can sculpt shapes in conventional geometric ways� such as by sketching
control polygons� repositioning control points� and adjusting associated weights� They can also satisfy
design requirements by adjusting the D	NURBS internal physical parameters� various applied	force terms�
and constraints� Physical parameters such as the mass� damping� and sti�ness densities� and force gain
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factors are interactively adjustable through Explorer control panels�	

Our D	NURBS system also implements� as special cases� rational B	splines ��xed weights values� and
ordinary B	splines �unit weights�� hence it encompasses three related free	form modeling schemes into one
uni�ed physics	based implementation� The following sections describe several applications�

	�� Trimming Curves and Surfaces

The physical basis of the D	NURBS model and our numerical quadrature approach to computing the mass�
damping� and sti�ness matrices �Section 
��� suggests a straightforward technique for trimming D	NURBS
curves and surfaces� Surfaces may be trimmed with arbitrary curves de�ned in the parametric domain�
including D	NURBS curves� The trimming of D	NURBS is directly analogous to the trimming of excess
material from real	world deformable wires and sheets�

Consider a D	NURBS patch that is intersected by a trimming curve� The values of material properties�
mass� damping� elasticity densities�over the portion of the patch that extends outside the trimming curve
should not a�ect the dynamics of the trimmed model and are set to zero� The Gauss quadrature proceeds
normally� but abscissas that sample zero physical parameters make no contribution to the summation� Of
course� a patch may be disregarded if it falls completely outside the trimming boundary� Note that the
integrands are discontinuous at the boundary due to the sudden transition of the the physical parameter
values� While this does not destroy the correctness of Gauss quadrature� we can expect reduced accuracy
since the integrand is not smooth� There is no easy way around this potential problem for arbitrary
boundary curves� other than to use Monte Carlo integration and pay the penalty of slow asymptotic
convergence ����� Fortunately� in practice� the D	NURBS model appears tolerant of the reduced integration
accuracy in boundary elements�

Fig� � illustrates the trimming of D	NURBS surfaces using D	NURBS trimming curves in the parametric
domain� Fig� ��a� shows the creation of a triangular surface with three linear curves each with � control
points� Fig� ��b� shows a trimmed annular surface de�ned by two circular trimming curves each with �

control points� Snapshots are shown of the trimmed surfaces undergoing dynamic deformations in response
to applied forces�

	�� Solid Rounding

The rounding of solids is a common operation for the design of mechanical parts� A goal of this operation
is to construct a �llet surface that smooths by interpolating between two or more surfaces� In geometric
modeling� this is usually done by enforcing parametric or geometric continuity requirements on the �llet�

D	NURBS provide a natural solution to the solid rounding problem� In contrast to the geometric
approach� the D	NURBS can produce a smooth �llet with the proper continuity requirements by minimizing
its internal deformation energy� Additional position and normal constraints may be imposed across the
boundary of the surface� The dynamic simulation automatically produces the desired �nal shape�

Fig� � demonstrates edge rounding using D	NURBS surfaces� In Fig� ��a��� we round an edge at the
intersection of two planar faces� The faces are formed using quadratic D	NURBS patches with ��
 control
points� Multiple control points are used to produce the sharp corner� We free the control points near the
corner and �x the remaining control points at the far boundaries to impose position and surface normal
constraints� After initiating the physical simulation� the D	NURBS rounds the corner as it achieves the
minimal energy equilibrium state shown in Fig� ��a���

Fig� ��b�� illustrates the rounding of a trihedral corner of a cube� The corner is represented using a
quadratic D	NURBS surface with 
 � 
 control points� The corner is rounded with position and normal

�At present� our software assumes uniform mass� damping� and elasticity densities over the parametric domain� except
across trimming boundaries �see Section 
���� This is straightforwardly generalizable to accommodate the nonuniform density
functions in our formulation� although our user interface would have to be extended to a	ord the user full control in specifying
these functions�
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�a�� �a��

�b�� �b��

Figure �� Trimming D	NURBS surfaces� �a� triangular D	NURBS surface� �b� annular D	NURBS surface�
�a�� Patch outlines and control points �white� with linear trimming curves� �a�� Interactive dynamic
deformation of trimmed triangular surface� �b�� Patch outlines and control points with concentric trimming
curves� �b�� Interactive dynamic deformation of annular surface�
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�a�� �a��

�b�� �b��

Figure �� Solid rounding� �a� rounding an edge between polyhedral faces� �b� rounding a trihedral vertex�
�a�� Initial con�guration of control points and patches� �a�� Rounded D	NURBS surface in static equilib	
rium� �b�� Initial con�guration of control points and patches� �b�� Rounded D	NURBS surface� In both
examples� the control points along edges have multiplicity ��
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constraints along the far boundaries of the faces �Fig� ��b����
The above rounding technique is easily extensible to any number of surfaces meeting at arbitrary angles�

To round a complete solid� we can apply the technique to all of its edges� corners� etc�

	�� Optimal Surface Fitting

D	NURBS are applicable to the optimal �tting of regular or scattered data ����� The most general and often
most useful case occurs with scattered data� when there are fewer or more data points than unknowns�i�e��
when the solution is underdetermined or overdetermined by the data� In this case� D	NURBS can yield
�optimal� solutions by minimizing the thin	plate under tension deformation energy ��
� ���� The surfaces
are optimal in the sense that they provide the smoothest curve or surface �as measured by the deformation
energy� which interpolates or approximates the data�

The data point interpolation problem amounts to a linear constraint problem when the weights pw are
�xed� and it is amenable to the constraint techniques presented in Section 
��� The optimal approximation
problem can be approached in physical terms� by coupling the D	NURBS to the data through Hookean
spring forces ����� We interpret d� in ���� as the data point �generally in ��� and �u�� v�� as the D	NURBS
parametric coordinates associated with the data point �which may be the nearest material point to the
data point�� The spring constant c determines the closeness of �t to the data point�


We present three examples of surface �tting using D	NURBS coupled to data points through spring
forces� Fig� ��a� shows �� data points sampled from a hemisphere and their interpolation with a quadratic
D	NURBS surface with �� control points� Fig� ��b� shows �� data points and the reconstruction of
the implied convex�concave surface by a quadratic D	NURBS with �� control points� The spring forces
associated with the data points are applied to the nearest points on the surface� In Fig� ��c� we reconstruct
a wave shape from �
 sample points using springs with �xed attachments to a quadratic D	NURBS surface
with �
 control points�

	�� Cross�Sectional Design

Cross	sectional design is a common approach to shaping surfaces and solids using cross	sectional curves�
Our modeling system provides the modeler with D	NURBS generator curves along with the most useful
surface generator operators�sweeping and swinging �����for generating common surfaces such as extruded
surfaces� natural quadrics� general quadrics� ruled surfaces� and surfaces of revolution� In our current
implementation� the modeler can indirectly sculpt the composite surfaces by direct dynamic manipulation
of the D	NURBS generator curves subject to constraints� Geometric constraints such as positions and
normals may be associated with D	NURBS curves�

We present three examples in the cross	sectional design of surfaces� First� Fig� � shows a generalized
cylinder with �� control points created by sweeping a green closed curve with 
 control points along the
red curve with 
 control points �Fig� ��a��� The generalized cylinder is interactively sculpted into various
shapes by applying spring forces on the green and red cubic D	NURBS curves �Fig� ��b	d��� Second� Fig� 

shows a torus with �� control points generated by swinging the green curve over the red curve �Fig� 
�a���
Both generators are closed cubic D	NURBS curves with � control points� In Fig� 
�b	d�� the torus is
deformed interactively by applying a spring force� Third� Fig� 
 shows a �
 control point �wine glass�
shape obtained by sweeping the green generator curve on the red generator curve in Fig� 
�a�� The red
closed D	NURBS curve has � control points and the green open D	NURBS curve has 
 control points� The
glass is interactively sculpted into di�erent swept shapes using spring forces �Fig� 
�b	d���

�Cross�validation �
�� provides a principled approach to choosing the relevant physical parameters�typically the ratio of
data force spring constants to surface sti	nesses�for given data sets� For the special case of zero�mean Gaussian data errors�
optimal approximation in the least squares residual sense results when c is proportional to the inverse variance of data errors
�����
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�a�� �a��

�b�� �b��

�c�� �c��

Figure �� Optimal surface �tting� D	NURBS surfaces �t to sampled data from �a� a hemisphere� �b�
a convex�concave surface� �c� a sinusoidal surface� �a"c�� D	NURBS patch outline with control points
�white� and data points �red� shown� �a"c�� D	NURBS surface at equilibrium �tted to scattered data
points� Red line segments in �c�� represent springs with �xed attachment points on surface�
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�a� �b�

�c� �d�

Figure �� Interactive deformation of generalized cylinder� �a� Patch outline of generalized cylinder created
from two D	NURBS generating curves �control points shown� using sweep operation� �b"d� Interactive
dynamic deformation of either generating curve causes global deformation of generalized cylinder�
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�a� �b�

�c� �d�

Figure 
� Interactive deformation of torus� �a� Two D	NURBS generating curves with control points shown
and patch outline of torus generated by swing operation� �b"d� Interactive dynamic deformation of either
generating curve causes global deformation of torus�
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�a� �b�

�c� �d�

Figure 
� Creation and deformation of �wine glass�� �a� Two D	NURBS generating curves with control
points and patch outlines of glass formed by swing operation� �b"d� Deformation of glass caused by
interactive dynamic deformation of D	NURBS generators�
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	�� Shape Metamorphosis

Metamorphosis is the blending of one shape into another� Work on �D shape blending includes ��� �
�� The
blending of �D shapes has widespread application in illustration� animation� etc�� and simple �e�g�� linear�
interpolation techniques usually produce unsatisfactory results ����� Shinagawa and Kunii ���� propose
an method which interpolates di�erential properties of the �D shape using the elastic surfaces of ���� �
��
Motivated by their approach� we propose a new technique which exploits the properties of D	NURBS
surfaces� D	NURBS provide minimal	energy blends which are more general than linear interpolants and
which may be controlled through various additional constraints speci�c to the NURBS geometry� For
example� since NURBS can represent conics� we can exploit their ability to generate helical surfaces in
order to represent rotational components of shape metamorphoses�

Our technique interpolates a D	NURBS generalized cylinder between two or more planar shapes with
known correspondence� The interpolant is a constrained skinned surface between the two end curves� We
interpret the parametric coordinate along the length of the surface� say u� as the �temporal� shape blending
parameter� The u coordinates of the control points are �xed� while the v coordinates are subject to the
D	NURBS deformation energy and additional constraints� We obtain intermediate shapes by evaluating
cylinder cross sections at arbitrary values of u�

Some examples will help to explain our technique in more detail� Fig� � shows minimal	energy D	
NURBS surfaces with � � 
 control points �� control points along u� interpolating between two closed
elliptical curves� Fig� ��b� shows a linear generalized cylinder obtained with high surface tension in the u
direction� ���� � ���� and ���� � �i�j � �� Note that the morphing ellipse shrinks as it rotates� a typical
artifact of linear interpolation ����� The rotational component can be preserved� however� by imposing a
geometric constraint on the D	NURBS which creates a helical surface in the u direction of the cylinder�
as shown in Fig� ��c�� Here the only nonzero deformation energy parameter is the rigidity ���� � �����
Note that the interpolating surface now bulges outside the convex hull between the two ellipses� As a
consequence the interpolated ellipses rotate instead of shrinking �Fig� ��d��� In general� we can obtain
a family of blending surfaces between these two extremes by using intermediate values of tension ����
and rigidity ���� parameters� Fig� � illustrates the morphing between two planar polygonal shapes� The
D	NURBS interpolant is a �� � surface� The parts of this �gure are similar to those of the previous one�

	�	 Free�Form Deformation

Bezier introduced the idea of globally deforming a shape through a �n � �n mapping implemented as a
free	form �tensor product� spline� The shape is embedded in the spline and deformed by manipulating the
spline�s control points� Sederberg and Parry ���� popularized this concept of free	form deformation �FFD�
in the graphics literature�

We can arrive at a physics	based version of the FFD in which the object to be deformed is embedded in
the D	NURBS �material� and deforms along with the deforming D	NURBS� The physics	based deformation
is similar in motivation to the one devised in ���� but it o�ers fully continuous dynamics by virtue of the
continuous nature of D	NURBS� In particular� we can apply forces at arbitrary points in the D	NURBS
space to control the deformation directly �rather than through indirect manipulation via control points��

� Conclusion

We have developed dynamic NURBS� a physics	based generalization of the well	known geometric NURBS
curves and surfaces� D	NURBS were derived systematically through the application of Lagrangian me	
chanics and implemented using concepts from �nite element analysis and e�cient numerical methods� We
generalized our D	NURBS formulation to incorporate geometric constraints� The formulation extends
naturally to solids� albeit at proportionately greater computational cost�

We described a prototype interactive modeling system based on D	NURBS and demonstrated the
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�a� �b�

�c� �d�

Figure �� Metamorphosis between two planar elliptical curves using D	NURBS interpolating surface� �a�
Control points and patch outline of cylindrical surface terminated by the two planar curves� �b� Linear
interpolating surface� �c� Constrained nonlinear interpolating surface combines rigid rotation with nonrigid
deformation� �d� An intermediate morphed curve obtained as cross section of surface in �c��
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�a� �b�

�c� �d�

Figure �� Metamorphosis between two planar polygonal curves using D	NURBS interpolating surface� �a�
Control points and patch outlines of cylindrical surface terminated by the two planar curves� �b� Linear
interpolating surface� �c� Constrained nonlinear interpolating surface combines rigid rotation with nonrigid
deformation� �d� An intermediate morphed curve obtained as cross section of surface in �c��
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�exibility of our models in a variety of applications� When working with D	NURBS� a designer need not
manipulate the individual degrees of freedom of an object� Instead� the designer can work with sculpting
tools that are implemented in terms of forces and geometric constraints� Sculpting forces may be applied
interactively to move the object or re�ne its shape� The interactive response of the D	NURBS may be
modi�ed by varying its mass and damping distributions� Global design requirements may also be achieved
by varying physical parameters such as elastic energies�

Because NURBS have been assimilated into such industry standards such as IGES� PHIGS�� and
OpenGL� our dynamic NURBS model promises to forge stronger links between established CAGD method	
ologies and new techniques in physics	based modeling�
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A Position Equation

Clearly�
Jp � Bpb �Wpw

and
c�p� u� � Bpb�

To prove �
�� we must show that �
� holds true� By de�nition�

Wpw �

Pn
i���

Pn
j���pi � pj�wjBi�k�u�Bj�k�u��wi

�
Pn

j�� wjBj�k�u���
� �

Pn
i��

Pn
j���pj � pi�wiwjBi�k�u�Bj�k�u�

�
Pn

j�� wjBj�k�u���
�

Exchanging the summation order and indexes� we have

Wpw � �

Pn
i��

Pn
j���pi � pj�wiwjBi�k�u�Bj�k�u�

�
Pn

j�� wjBj�k�u���
� �Wpw�

which proves �
�� hence �
��
Moreover� taking the time derivative of �
� yields

�c�u�p� � J �p� �Jp�

Given ���� it follows that �Jp � ��

B Simpli	cation of Motion Equations

Applying ����� the D	NURBS motion equations are

M p�D �p�Kp � fp �
h
� � � �

� �p
� �M

�pi
�p � � �

i�
� �M �p�

h
� � � �

�p
� �K
�pi
p � � �

i�
� ��
�

The two vectors involving M on the right side of ��
� may be be combined into a single vector�

�M �p�
h
� � � �

� �p
� �M

�pi
�p � � �

i�
� I �p� ����

Using the product rule of di�erentiation� we have �M � I� I�� For ���� to hold� we must have

I� �p �
h
� � � �

� �p
� �M

�pi
�p � � �

i
�

� ����

It is obvious from ���� that the two sides of ���� are integrals of the two vectors� respectively� The two
vectors in ���� are equal when� for i � �� � � � � N �

�j�i J �p �
�

�
�p�

��J�J�

�pi
�p� ����

We now prove ����� The right side is represented as R� Based on the product rule of di�erentiation
and the property of the Jacobian matrix� we obtain the simpler expression

R �
�

�
�p�

�J�

�pi
J �p�

�

�
�p�J�

�J

�pi
�p�

Furthermore� according to the property of the Jacobian matrix and the observation that we can interchange
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the order of the cross derivatives
�J

�pi
�p � �ji�

Combining the above two expressions we obtain

R �
�

�
�j�i J �p �

�

�

�
�j�i J �p

�
�

�

Since R is a scalar� ���� is proved�
Next� we derive another mathematical identity�

h
� � � �

�p
� �K
�pi
p � � �

i
�

� �� ����

The left side of ���� is the integral of the summation of the �ve terms of ��
�� Each of these �ve vectors
is the zero vector� To see this� note that for i � �� � � � � N � we have

�s

�pi
�

�J

�pi
p� J

�p

�pi
�

�J

�pi
p� ji

According to the de�nition of the Jacobian matrix� the left hand side is ji� i � �� � � � � N � Thus� we have

�J

�pi
p � ��

The order of the second cross derivative with respect to the variables pi and u is irrelevant� so we further
have

p�
�

�pi

�
�J�

�u

�J

�u

�
p � �� ����

Now� ���� is the ith component of the �rst vector on the left side of ����� Similarly� the other four vectors
inside the integral operator on the left hand side of ���� are zero�

C Simpli	cation of Motion Equations with Linear Constraints

Applying ����� the D	NURBS motion equations with linear constraints are

Mq q�Dq �q�Kqq�
h
� � � �

�
�p� �M

�qj
�p � � �

i�
�
h
� � � �

�p
� �K
�qj
p � � �

i�
� fq �G

�� �M �p�Kq��� ����

To simplify ���� we �rst show that it reduces to the following

G� �M �p�
h
� � � �

� �p
� �M

�qj
�p � � �

i�
� G�I �p� ����

As in Appendix B� �M � I� I�� Hence� ���� is also expressed as

G�I� �p �
h
� � � �

� �p
� �M

�qj
�p � � �

i
�

� ����

Similar to ����� the two sides of ���� are integrals of two vectors� respectively� Hence� ���� holds if
corresponding components of the two vectors are equal� i�e�� for j � �� � � � �M �

�l�j J �p �
�

�
�p�

��J�J�

�qj
�p� ��
�
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We now prove ��
�� Denoting the right side as R� we further expand it using the product rule of
di�erentiation

R �
�

�
�p�

�J�

�qj
J �p�

�

�
�p�J�

�J

�qj
�p�

Furthermore� according to the property of the Jacobian matrix and the irrelevance of the order of di�er	
entiation� we have

�J

�qj
�p �

�

�qj

h
� � � �s

�pi
� � �

i
�p � �lj �

Combining the above two equations� we have

R �
�

�
�l�j J �p �

�

�

�
�l�j J �p

�
�

�

Since R is a scalar� ��
� follows�
The proof of h

� � � �
�p
� �K
�qj
p � � �

i�
� � ��
�

parallels that in Appendix B� with qj replacing pj and lj replacing ji�

D Explicit Time Integration

We discretize the motion equations using the following �nite di�erences in p �q in the case of geometric
constraints��

 p�t� �
p�t��t� � �p�t� � p�t��t�

!t�
�

�p�t� �
p�t� � p�t��t�

!t
�

We obtain the discrete form of ���� as

Mp�t��t� � !t��fp �Kp
�t�� � �Mp�t� �!tDp�t�

�!tDp�t��t� �

Z Z
�J�s�t��t� du dv� ����

In this and the following explicit time integration schemes� all the matrices are evaluated at time t �instead
of time t �!t as in the implicit schemes��

For D	NURBS surfaces with linear geometric constraints� ���� is discretized as

Mqq
�t��t� � !t��fq � gq �Kqq

�t�� � �Mqq
�t� �!tDqq

�t� �

!tDqq
�t��t� �G�Mq

�t��t�
� �

Z Z
�L�s�t��t� du dv� ����

For the D	NURBS curve� we substitute c with s in ���� and �����
The discretized forms of the simpli�ed �rst order equations of motion ���� and ���� are

Dp�t��t� � !t�fp �Kp
�t�� �Dp�t� ����

and
Dqq

�t��t� � !t�fq � hq �Kqq
�t�� �Dqq

�t�� �
��
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