
A New Solid Subdivision Scheme based on Box Splines

Yu-Sung Chang Kevin T. McDonnell Hong Qin
∗

Department of Computer Science
State University of New York at Stony Brook

ABSTRACT
During the past twenty years, much research has been undertaken
to study surface representations based on B-splines and box splines.
In contrast, volumetric splines have received much less attention as
an effective and powerful solid modeling tool. In this paper, we
propose a novel solid subdivision scheme based on tri-variate box
splines over tetrahedral tessellations in 3D. A new data structure
is devised to facilitate the straightforward implementation of our
simple, yet powerful solid subdivision scheme. The subdivision hi-
erarchy can be easily constructed by calculating new vertex, edge,
and cell points at each level as affine combinations of neighbor-
ing control points at the previous level. The masks for our new
solid subdivision approach are uniquely obtained from tri-variate
box splines, thereby ensuring high-order continuity. Because of
rapid convergence rate, we acquire a high fidelity model after only
a few levels of subdivision. Through the use of special rules over
boundary cells, the B-rep of our subdivision solid reduces to a sub-
division surface. To further demonstrate the modeling potential
of our subdivision solid, we conduct several solid modeling ex-
periments including free-form deformation. We hope to demon-
strate that our box-spline subdivision solid (based on tetrahedral
geometry) advances the current state-of-the-art in solid modeling
in the following aspects: (1) unifying CSG, B-rep, and cell de-
composition within a popular subdivision framework; (2) overcom-
ing the shortfalls of tensor-product spline models; (3) generalizing
both subdivision surfaces and free-form spline surfaces to a solid
representation of arbitrary topology; and (4) taking advantage of
triangle-driven, accelerated graphics hardware.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations

General Terms
Algorithms, Design

∗Email: {yusung|ktm|qin}@cs.sunysb.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SM’02, June 17-21, 2002, Saarbrucken, Germany.
Copyright 2002 ACM 1-58113-506-8/02/0006 ...$5.00.

Keywords
Representation conversion, Blends, sweeps, offsets & deformations,
Multi resolution models, Geometric and topological representations,
Reverse engineering, User interaction techniques.

1. INTRODUCTION
Although solid modeling is more desirable in many engineering

and manufacturing applications, it has not yet gained popularity
until recently due to both a lack of widespread standards and its
strong need for more powerful computing resources. The past two
decades have witnessed a significant growth in solid modeling, es-
pecially in the development of new solid representations. One such
class of approaches employs implicit functions, such as CSG and
blobby models [21]. They represent a solid as the solution set of an
implicit function,

w = f(x, y, z).

In general, a level set

w = f(x, y, z), w = w0

represents the boundary of the solid, and portions where w < w0

comprise the interior. In implicit function representation, it is easy
to differ the interior from the exterior and the boundary. Hence,
they are very well suitable for algebraic operations on models [18].
However, there are a few disadvantages. For instance, there is no
simple way to evaluate them in general cases [1] for rendering pur-
pose. In addition, directly manipulating the level-set geometry is
very challenging because the solid boundary is implicitly defined.

Parametric representations also have been developed and are well-
studied because of their mathematical aspects, including Bernstein-
Bézier solids [13], B-spline solids, and other tensor-product based
[10, 16] approaches. Unlike implicit functions, parametric repre-
sentations define a solid by

S(x, y, z) =
�

i

vi Ni(x, y, z), (1)

where the Ni’s are basis functions that satisfy certain properties.
Tensor-product based solids in particular have basis functions of
the form

Ni(x, y, z) = Ni0(x) ⊗ Ni1(y) ⊗ Ni2(z).

where i = (i0, i1, i2). Due to their tensor-product nature, their
domains are restricted to a rectangular structure. In general, in con-
trast with implicit functions, the basis functions can be evaluated
efficiently and robustly.

Since the pioneering work of Catmull and Clark [5] and Doo and
Sabin [8] in the late 1970s, much research related to subdivision [9,

(a) (b) (c)

Figure 1: An example of our solid subdivision algorithm run on a simple model of 16 control points. (a) Initial control lattice. (b)
Lattice after one level of subdivision. (c) Lattice after three levels of subdivision. The three lattices contain 24, 140, and 7280 cells,
respectively. Faces are colored transparently to enhance the visibility of inside structures.

15, 12] and its analysis [19, 22] has been done. However, most of
such work has been focused on surface representations, rather than
solids. One exception is the work by MacCraken and Joy [16],
which generalizes tri-cubic B-splines to solids of arbitrary topol-
ogy. Bajaj and Warren [2] also suggested alternative solid subdi-
vision rules for hexahedral meshes. Subdivision algorithms inher-
ently have several key properties that make them very attractive in
computer graphics, engineering, and manufacturing. Some of these
advantages include:

• Uniformity of representation,

• Multiresolution analysis and levels of detail,

• Numerical efficiency and stability,

• Arbitrary topology or genus,

• Simplicity in implementation, and

• Hierarchical structure.

Our motivation is to combine the benefits of various existing
solid modeling representations by employing subdivision as its foun-
dation. We base our new subdivision scheme on volumetric box
splines and take advantage of its strong mathematical foundation.
In addition, we utilize non-tensor-product based tri-variate splines
to ensure topological freedom. We introduce a new 3D regular
structure that consists of two distinct types of polyhedra, which
has been briefly addressed in [3] and utilized in [14] and [11], but
has never been intensively employed previously in solid modeling
field. The new mesh provides us with the subdivision masks for our
scheme that share regular topology and simplicity. Simple affine
combinations over the mesh enable an efficient and robust evalua-
tion of the solid that can be expressed in the form of (1). By com-
bining solid representations with subdivision techniques, our algo-
rithm elegantly addresses many issues that current solid modeling
techniques are confronted with. Its box spline foundation provides
the advantage of high-order continuity without the need to have
high-order degree basis functions. We also employ the well-known
box spline based surface subdivision scheme [15] as our B-rep to
facilitate the data exchange with current design and modeling re-
quirements.

We demonstrate several application examples to illustrate the
solid modeling potential of our novel subdivision scheme. Free-
form deformation [20, 10, 16] is one of examples through which the
advantage of our novel scheme is exhibited. The underlying tetra-
hedral mesh make it very easy to devise an efficient and accurate

computation of the coordinates in the corresponding parametric do-
main. In addition, a few direct modeling sessions are presented to
demonstrate how easily and effectively our approach can represent
complex models of arbitrary topology.

2. TRI-VARIATE BOX SPLINE VOLUMES

2.1 3D Box Splines
There are many ways to define box splines, but one construc-

tive way is by considering a shadow (or image) of a higher dimen-
sional box in a lower dimensional space [4, 7]. More precisely, box
splines are defined by the projection of n-dimensional hypercubes
onto m-dimensional (m < n) affine space. Analytically, a box B
of an n-dimensional affine space An is defined by

B(p,p1,··· ,pn) = {� ∈ An | � = � +
�

j

cj�j , cj ∈ [0, 1]},

where � is a box vertex and �j are linearly independent vectors in
An that are representing n edges of an n-dimensional box. If all of
the �j ’s are of unit length, we call it a cube or hypercube.

An affine map π : An → Am denotes a projection onto an m-
dimensional affine space Am. Consider the image of B(p,p1··· ,pn)

with respect to the map π. We have

π
�
B
�

= {� ∈ Am |� = � +
�

j

cj�j , cj ∈ [0, 1]},

where � = π(�) and �j = π(�j).
Since m < n, it is obvious that the �j ’s are not linearly inde-

pendent. Hence, the pre-image of each point � ∈ Am forms a
non-trivial affine subspace:

π−1(�) = {� ∈ An | π(�) = �}, (2)

which is called a fibre of the map π at �. We can also derive the
fibre by solving the linear system

c1�1 + c2�2 + · · · + cn�n = � − �,

which has dimension d = n − m.
We now define a box spline as

MB(�) =
vol
�
π−1(�) ∩ B

�
vol
�
U(�)

� ,

where U is a fixed, d-dimensional unit box parallel to the fibre.
Note that MB has local support and satisfies Cd continuity inside
the support. Finally, the normalized version NB is obtained so

that it forms a partition of unity over the lattice �m. It satisfies
Cd−l continuity over the space where l is the largest dimension of
collapsing faces under π [6].

For instance, Loop’s surface subdivision scheme [15] is based on
the case of n = 6, m = 2. Our solid approach is the case of n = 8,
m = 3. However, the lack of regular tessellation over the lattice
�

m (except cubic-grid) in 3D makes an analogy complicated. This
aspect is addressed in the following sections in details.

2.2 3D Regular Mesh
Since �j does not form a linearly independent set on the m-

dimensional space, we are considering a regular mesh on the range
space and allowing some of the edges to overlap. Unlike 2D space,
3D space does not have a regular mesh which consists of simplices,
i.e., tetrahedra. Nonetheless, it is possible to fill the space with two
types of polyhedra rather than a single type of equilateral tetrahe-
dra. The initial form of the mesh can be seen by projecting a 4D
hypercube onto 3D space through its longest diagonal, or the main
diagonal, (0, 0, 0, 0) → (1, 1, 1, 1). Let the mapping be πd. Then
we have

πd((1, 0, 0, 0)) = (1, 0, 0) = �1,

πd((0, 1, 0, 0)) = (0, 1, 0) = �2,

πd((0, 0, 1, 0)) = (0, 0, 1) = �3,

πd((0, 0, 0, 1)) = (−1,−1,−1) = �4.

(1,1,0,0)

(1,0,0,0)

(0,1,0,0)

(0,0,1,0)

(0,1,1,0)

(1,1,1,0)

x+

y+

z+

(0,0,0,1)

(1,1,0,1)

(0,1,1,1)

(0,0,1,1)

(1,0,1,1)

(1,0,1,0)

(0,1,0,1)

(1,0,0,1)

(0,0,0,0)

u3 u2

u4

u1

Figure 2: 4D hypercube projected on 3D space.

Figure 2 shows an image of 4D hypercube by πd. The problem
is that the image does not form a polyhedral structure in 3D space.
We have to introduce additional edges to make it complete. At the
same time, however, we do not want to introduce too many auxil-
iary edges which can cause unwanted complexity and irregularity.
The simplest regular structure that consists of 4 mesh directions
{u1, u2, u3, u4} is called an octet-truss, which is shown in Figure
3. It may be noted that, this structure serves as a mesh for our sub-
division scheme. In a nutshell, it consists of two distinct types of
polyhedra – tetrahedra and octahedra. Each vertex has a valence of
14 in the regular case and shares the same topology as its neighbors.
The mesh is denoted by MOT (�3).

3. SOLID SUBDIVISION RULES

3.1 Subdivision
One of the attractive properties of box splines is that they can be

decomposed into an affine combination of splines with smaller sup-
port [3, 7]. We first consider a subdivision of the n-dimensional hy-
percube into 2n cubes, or sub-cells with a half edge length. The im-

Figure 3: A typical example of the octet-truss MOT (�3) in 3D
space. It consists of octahedral grids with tetrahedra in be-
tween.

ages of sub-cells also form box splines, but with smaller supports.
The original box spline can be written as an affine combination of
box splines of sub-cells. Since every cube has edge vectors of the
same orientation, we represent a cube as Ci where i ∈ MOT (�3),
which corresponds to the image of the projectional axis, i.e., the
main diagonal of a cube. We write simply Si = SCi . Also, we
use a hat notation to represent sub-structures, i.e., M̂î means a box
spline of a sub-cell Ĉî where î ∈ MOT (1

2
�

3). First, in the linear
case (n = 4, m = 3), it is clear to notice

Ni =
1

2

�
ĵ

αi,ĵ N̂ĵ , (3)

where

αi,ĵ =

��
�

2 if i = ĵ

1 if i is adjacent to ĵ
0 otherwise

(4)

The adjacent information among the i’s is controlled by the pres-
ence of edges in MOT . Furthermore, if our solid is given by

S =
�

i

vi Ni, (5)

where {vi} are control points in A3 and i ∈ MOT (�3), then, by
applying (3) to (5), we obtain

S =
�

i

�
vi

�1

2

�
ĵ

αi,ĵ N̂ĵ

��
=
�

ĵ

��1

2

�
i

αi,ĵ vi

�
N̂ĵ

�

=
�

ĵ

wĵ N̂ĵ

where

wĵ =
1

2

�
i

αi,ĵvi.

Therefore, control points wĵ for the refined mesh MOT (1
2
�

3)
can be expressed as affine combinations of the original control
points, namely, the vi’s. By convention, Ni is denoted by N1,1,1,1

i ,
since each mesh direction has only one edge from the hypercube
projected onto it.

In the interest of generating high-order continuous solids, our
proposed scheme is based on n = 8, or N2,2,2,2

i . In this case, each
mesh direction is projected twice by 8D hypercube edges. Unlike
in the linear case, we need to count the image of sub-cells twice.
Therefore, the Ni can be written as

Ni =
1

2

�
ĵ

αi,ĵ

�1

c

�
k̂

αĵ,k̂ N̂k̂

�
.

Once again, if we have a solid expressed by

S =
�

i

vi Ni,

then,

S =
�

j

wĵ N̂ĵ ,

where

wĵ =
1

2c

�
i

�
k̂

αi,ĵ αĵ,k̂ vi (6)

=
1

2c

�
i

�
k̂

βi,ĵ,k̂ vi. (7)

The coefficient α is defined by (4). The variable c is a normal-
ization factor to keep the summation equal to one. The value is
24 = 16 in our case. Refined control points wĵ can be specified as
vertex, edge, or cell points, depending on different cases. We call
them vĵ , eĵ , and cĵ , respectively.

: Vertex Points

: Edge Points

Figure 4: A tetrahedron is subdivided into an octahedron and
4 tetrahedra surrounding it.

: Vertex Points

: Edge Points

: Cell Point

Figure 5: An octahedron is subdivided into 6 octahedra with 8
tetrahedra in between.

3.2 Subdivision Mask
We employ MOT (�3) as our regular mesh. In the subdivision

process, elements in the mesh are subdivided into smaller ones.
Figure 4 and Figure 5 explain the way in which the mesh elements
are divided. The subdivided mesh again forms an octet-truss of half
the size. Therefore, after the first level, any local irregularities are
contained and only regular cases occur inside.

Even though the introduction of octahedra offers the benefit of
simplicity and regularity in structure, we need to choose an orien-
tation of the mesh due to asymmetry of our mask, which is based
on 4D hypercube projection (Figure 6). We devise this orientation
by choosing one of the diagonals inside an octahedron, which is de-
noted by a major diagonal. For each vertex point v̂j , we define vi′
as an adjacent vertex if and only if there exists an edge or a major
diagonal between j and i′. Also, an edge neighbor of eĵ is de-
fined by a vertex of a tetrahedral cell that shares an edge (i0, ij) on
which j lies, or a vertex of an octahedron that shares the edge and
and whose major diagonal joins the vertex and one of the edge’s
end-points. For cell points, cell neighbors are easily defined using
the vertices that comprise the cell.

Figure 6: A regular subdivision mask. It is a projected image of
a 4D hypercube that is visualized as an octet-truss. Major diag-
onals (red dotted lines) are introduced due to the asymmetrical
aspect of the mask.

3.3 Subdivision Rules
As mentioned previously, each new control point wĵ inMOT (1

2
�

3)

is obtained by an affine combination of the vi’s in MOT (�3),
whose coefficients are defined by (6). The evaluation of coeffi-
cients could be a tedious process in general. For instance, in the
ĵ = i case, the coefficient of vi is 18

32
, because βi,ĵ,k̂ is equal to 4

if ĵ = k̂ and equal to 1 for all other adjacent k̂’s, whose number is
14. We classify them into the following cases.

3.3.1 Vertex Points
This is the case when ĵ = i for some i’s. In the regular case, a

new vertex point is computed by

vĵ =
18

32
vi +

1

32

�
i′

vi′ , (8)

where i = ĵ and i′ is an adjacent index of ĵ in MOT (�3). The
number of adjacent vertices, |{i′}|, is equal to 14 in the regular
case. For the general case with valence k, we can use

vĵ =
18

32
vi +

14

32k

�
i′

vi′ , (9)

without much degeneration. It should be mentioned that the (9)
only ensures convergence around irregular vertices (k �= 14). How-
ever, the difference is hard to notice. Therefore, it is used in our
applications because of its simplicity.

1/32
1/321/32

1/32

1/32

1/32

1/32

1/32

1/32

18/32

1/32

)ˆ(pointvertex: ivjv =
)(erticesadjacent v: iv ′

Figure 7: A vertex point and its mask in the regular case. Only
the top half is shown. 4 more adjacent vertices are placed below
the vertex point. Red dotted lines indicate major diagonals.
Gray areas indicate faces which belong to tetrahedra.

3.3.2 Edge Points
For the case ĵ �= i for any i, there are two sub-cases. The

first case is an edge point, which lies on an edge by i0 and i1 in
MOT (�3) that is not a major diagonal of an octahedron. In the

regular case, we have

eĵ =
10

32
(vi0 + vi1) +

2

32

�
i′

vi′ , (10)

where i′ denotes an edge neighbor of ĵ. There are 6 edge neighbors,
as shown in Figure 8. In general case, we may use

eĵ =
10

32
(vi0 + vi1) +

12

32k

�
i′

vi′ , (11)

where k is a number of edge neighbors.

2/32

2/32

2/32

2/32

2/32

2/32

10/32

10/32

)ˆ(pointedge: je

),(points end edge:
10 iviv

)(neighbors edge: iv ′

Figure 8: An edge point and its mask. Note that vertices on
major diagonals (red dotted lines) are included. Gray areas
indicate faces of tetrahedra.

3.3.3 Cell Points
When ĵ lies on a major diagonal of an octahedron formed by i0

and i1, we use

cĵ =
8

32
(vi0 + vi1) +

4

32

�
i′

vi′ , (12)

where i′ is a cell neighbor that belongs to the same octahedron
(Figure 9). The number of neighbors is always 4.

8/32

8/32

4/32

4/32

4/32

4/32

)ˆ(pointcell: jc
),(verticesdiagonalmajor :

10 iviv

)(verticescell: iv ′

Figure 9: A cell point and its neighbors. The vertices on the
major diagonal have different weights.

3.4 Splitting and Reconnecting
Because our algorithm keeps octahedra that are created during

the splitting of cells, it is obvious what the connectivity of subcells
should be. Each tetrahedron is split into 4 tetrahedra, each of which
consists of one vertex point and 3 edge points adjacent to it, and one
octahedron that consist of 6 edge points that are generated by the 6
edges of the tetrahedron (Figure 4). An octahedron is divided into 6
octahedra and 8 tetrahedra. Each of the sub-octahedra comprises a
vertex point that is from each vertex of the octahedra, 4 edge points
from an adjacent edges, and one cell point. Each new tetrahedron is
made by connecting 3 edge points from one face and the cell point
(Figure 5).

3.5 Boundary Surface
The boundary requires special treatment. Since our solid subdi-

vision scheme is based on box splines, it is natural to choose a box
spline surface as its B-rep. We employ Loop’s scheme [15] for this
purpose. The weight used in the general case of valence k is based
on a modified version by Warren [23]. For surface vertices, masks
include only neighbors that are on the surface. This guarantees
high-order continuity not only in the interior, but on the boundary
as well. Attention also must be paid to the interface between the
boundary and interior of a solid object. For surface subdivision
algorithms, one can introduce modified rules [23] to acquire open
(rather than closed) surfaces over 2D parametric spaces. However,
the modified masks are often very complex. In solid subdivision,
boundaries and interfaces are inevitable. There could be some vi-
sual irregularities in interfaces which have to be addressed in future
research. Nonetheless, we can still assure convergence and C0 con-
tinuity.

4. IMPLEMENTATION

4.1 Data Structure
Our subdivision scheme requires a data structure to handle two

types of cells, even though our input data consist of only tetrahedra.
We have implemented a flexible structure which can handle arbi-
trary type of faces and cells. Edges (i.e., adjacency information)
and faces are reconstructed each time the subdivision is invoked.
In the interest of memory efficiency, pointers are used to record
adjacency information.

In each step, new vertices are generated by taking affine combi-
nations of vertices from the previous level, formulated in (6). This
can be expressed in the form of the subdivision matrix:

�
		

...
wĵ

...

�
�� = A

�
		

...
vi

...

�
�� .

We need to maintain the matrix A for several reasons. Even
though doing so imposes a heavy memory requirement, this data
is critical for our Free-Form Deformation (FFD) and other shape
modeling applications to sustain real-time performance. It may
be noted that matrices are required only when we are performing
free-form deformation or direct manipulating on the models. For-
tunately, since most of the matrix consists of zeros, sparse matrix
storage schemes can be used to dramatically reduce memory con-
sumption.

4.2 Diagonal Orientation
One problem with the mesh is that we need both to choose major

diagonals for octahedra and to maintain their orientations. In the
first level of subdivision, we can select diagonals for sub-octahedra
arbitrarily since we make no assumptions about the input lattice.
However, each time we choose diagonals, additional information
must be recorded to recover orientations in the next level. Each
sub-tetrahedron remembers sub-octahedra in the same parent cell
as orientation references. Hence, the next time we subdivide the
sub-cell, it refers to the linked cell to extract orientation informa-
tion. In this way, major diagonals are maintained regularly during
the process.

5. APPLICATIONS AND RESULTS

5.1 Free-Form Deformation
Free-form deformation (FFD) is one of the important applica-

tions to which our subdivision is directly applied. It plays a cru-
cial role in graphics, design, and manufacturing. Usually, FFD in-
volves generating parametric solids and translating model coordi-
nates back to parametric space [20], so that changes to the solids
can be reflected in the models. Our approach is similar to that of
MacCracken and et al. [16]. However, unlike the tensor-product
nature of Catmull-Clark solids and volumetric splines, our solid is
much more flexible due to the tetrahedral structure of the mesh.
The following is an overview of our implementation of FFD:

1. Generate an appropriate mesh that contains the model to be
deformed.

2. Subdivide the mesh up to the user-specified level using our
new solid subdivision scheme.

3. Calculate barycentric coordinates for each vertex in the model
on the final level.

4. The user then interactively moves control points in any coarser
level.

5. Recalculate the coordinates by following the subdivision ma-
trices.

The barycentric coordinates are easily computed. Suppose a
model vertex p lies within a tetrahedron (v0, v1, v2, v3). The co-
ordinate (c1, c2, c3) is given by

p = v0 + c1 u1 + c2 u2 + c3 u3, (13)

where ui = vi − v0 for i = 1, 2, 3. Conditions 0 ≤ c1, c2, c3 ≤ 1
and 0 ≤ c1 + c2 + c3 ≤ 1 are required to be in the tetrahedron. We
can solve the linear system

�

c1

c2

c3

�
 =

�
		

...
...

...
u1 u2 u3

...
...

...

�
��

−1 �
		

...
p − v0

...

�
�� ,

to obtain the coordinate. If a vertex is in an octahedral cell, we split
the octahedron into 4 parts using a major diagonal and compute the
barycentric coordinate within the corresponding tetrahedron.

Figure 10 and Figure 11 show two applications of FFD. The
mesh does not necessarily have a simple topology (i.e., genus zero),
as shown in 12. It is also possible that we manipulate objects lo-
cally (Figure 13), by simply assigning control meshes to certain
region of an object that we want to deform. Note that all processes
are done in real-time except barycentric coordinate computation.
Even the coordinate computation can be done in a matter of sec-
onds. Most of time is consumed by intersection checks between
tetrahedra/octahedra and model vertices. We are working on sev-
eral methods to accelerate these checks.

5.2 Direct Manipulation of Solids
Figure 1 and Figure 14 demonstrate examples of various mod-

els that can be obtained by our solid subdivision. The tetrahedral
structure offers the greatest freedom to generate objects of arbi-
trary topology. Also, by simple user interaction, we can perform
real-time modifications on solids by manipulating control points at
arbitrary levels. We can also introduce discontinuities on vertices
or along edges by assigning exceptional rules (i.e., simple bisection
without weights) to desired parts of objects.

5.3 Performance
All of our results have been run on a wide-range of consumer

level PCs which do not have any special hardware for volume visu-
alization. We were able to perform some of the free-form deforma-
tions on a relatively low-end system (Intel Celeron 700MHz with-
out hardware accelerated OpenGL rendering). It clearly demon-
strates how efficient our subdivision algorithm is in many aspects.
In most cases, the only requirement is a large amount of memory
(desirably more than 256 MB), which could be further alleviated
by optimizing the data structure. Even volume visualization can
be done on PCs by using the OpenGL 3D texture implementation
available in some recent video cards.

On a Pentium III 1 GHz machine with 1 GB RAM, the car model
(Figure 10) required only 0.701 seconds to subdivide up to level
3 (7280 cells). The coordinate update, triggered by user input,
takes roughly 0.03 seconds in each time, which guarantees real-
time interaction. The filter model (Figure 11) consists of 24877
vertices and 49548 faces, takes 0.5 seconds to subdivide meshes
(5200 cells). The interaction cost was comparable to that of the car
model. Even though it is possible to use higher subdivision levels
without much additional computational cost, the results are visually
indistinguishable.

6. CONCLUSION AND FUTURE WORK
We have developed a novel solid subdivision scheme based on

powerful box splines. The new solid subdivision scheme has a lot
of potential, especially in solid modeling. Since it is founded on
well-defined box splines, it is easy to integrate with current indus-
trial standard models based on splines. It can also achieve high-
order continuity with relatively low degree basis functions and nu-
merical stability. Its B-rep, which is critical in rendering, is the
well-known box spline surface. The tetrahedral mesh affords users
much freedom in modeling and deformation, in such way that other
tensor-product based or parametric solids can not represent. More-
over, the subdivision nature of the entire process offers fast evalua-
tion without much numerical cost, provides a multiresolution solu-
tion, and facilitates real-time manipulation.

Our free-form deformation application demonstrates the robust-
ness and efficiency of our novel scheme. The structural simplic-
ity of our meshes gives rise to the critical robustness issue that is
required to manipulate highly complicated models, and the rapid
convergence rate makes real-time user interaction possible. Levels
of details can be easily computed simply by choosing the subdivi-
sion level, and effects from one level are propagated by means of
the subdivision matrix without any extra numerical cost. Therefore,
our subdivision algorithm could offer a number of advantages to in-
teractive solid modeling, for instance, Virtual Clay by McDonnell
et al. [17].

Finally, even though the process does not generate any new ex-
traordinary points, original control points may include non-regular
cases which are not yet fully analyzed and addressed. Many re-
searchers have analyzed extraordinary cases for surface subdivi-
sions [19, 22], and these methods can be applied to our solid sub-
division. We have already analyzed cases using subdivision matrix
[8] and numerical techniques, and the values currently used in our
experiments assure convergence and certain level of visual conti-
nuity around extraordinary vertices. A complete analysis is another
topic for future research.

(a) (b) (c) (d)

Figure 10: Free-form deformation of a car model. The model contains 2244 vertices with 21 different components. (a) The original
model. (b) The subdivision mesh. (c) The deformed model. (d) Underlying subdivision solid. All deformation has been done in
real-time.

(a) (b) (c) (d)

Figure 11: Another example of free-form deformation of an industrial filter block model. The model contains 24877 vertices with
more than 49000 faces, and is converted from the B-spline surface model. (a) The original model. (b) The subdivision mesh. (c) The
deformed model. (d) The deformed model in wireframe.

(a) (b) (c) (d)

Figure 12: A mesh with non-trivial topology. In this case, our deformation mesh contains a hole. (a) The original model. (b) The
subdivision mesh in level 2. (c) The part of the model (the central cylinder) that is inside the hole has not been changed. (d) The
deformed subdivision mesh.

Acknowledgments
This research was supported in part by the NSF CAREER award
CCR-9896123, the NSF grants IIS-0082035 and IIS-0097646, Honda
Initiation Award, and Alfred P. Sloan Fellowship.

7. REFERENCES
[1] P. R. Atherton. A scanline hidden surface removal procedure

for constructive solid geometry. Computer Graphics
(SIGGRAPH 83 Proceedings), 17(3):73–82, July 1983.

[2] C. Bajaj, J. Warren, and G. Xu. A smooth subdivision
scheme for hexahedral meshes. The Visual Computer, 2001.
To appear in the special issue on subdivision.

[3] W. Boehm. Subdividing multivariate splines.
Computer-Aided Design, 15:345–352, Nov. 1983.

[4] W. Boehm. Calculating with box splines. Computer Aided
Geometric Design, 1(2):149–162, 1984.

[5] E. Catmull and J. Clark. Recursively generated B-spline
surfaces on arbitrary topological meshes. Computer-Aided
Design, 10:350–355, Sept. 1978.

(a) (b) (c) (d)

Figure 13: Localized free-form deformation. We can choose any region of the model and perform FFD. (a) The original model.
(b) Locally deformed model. (c) The original model. (d) Locally deformed model. Each model contains 3760 and 7854 vertices,
respectively.

(a) (b) (c) (d)

Figure 14: Examples of some models and their manipulations. (a) The original model with genus two. (b) The deformed model. (c)
The original model with genus one. (d) The plane made from the model (c).

[6] C. de Boor and K. Höllig. B-splines from parallelepipeds. J.
Analyse Math., 42:99–115, 1982.

[7] C. de Boor, K. Höllig, and S. Riemenschneider. Box Splines.
Springer-Verlag, New York, 1993.

[8] D. Doo and M. Sabin. Behaviour of recursive division
surfaces near extraordinary points. Computer-Aided Design,
10(6):356–360, Sept. 1978.

[9] N. Dyn, D. Levin, and J. Gregory. A butterfly subdivision
scheme for surface interpolation with tension control. ACM
Transactions on Graphics, 9(2):160–169, April 1990.

[10] J. Greissmair and W. Purgathofer. Deformation of solids with
trivariate B-Splines. In Proceedings of Eurographics ’89,
pages 137–148, 1989.

[11] M. Hall and J. Warren. Adaptive polygonalization of
implicitly defined surfaces. IEEE Computer Graphics and
Applications, 10(6):33–42, Nov. 1990.

[12] L. Kobbelt. Interpolatory subdivision on open quadrilateral
nets with arbitrary topology. In Computer Graphics Forum
(Proceedings of Eurographics ’96), volume 15(3), pages
409–420, 1996.

[13] D. Lasser. Bernstein-bezier representation of volumes.
Computer Aided Geometric Design, 2(1-3):145–150, 1985.

[14] E. Leitner and S. Selberherr. Mixed-element decomposition
method for three-dimensional grid adaptation. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
Systems, 17(7):561–572, July 1998.

[15] C. Loop. Smooth subdivision surfaces based on triangles.
Master’s thesis, University of Utah, Dept. of Math., 1987.

[16] R. MacCracken and K. I. Joy. Free-Form deformations with
lattices of arbitrary topology. In SIGGRAPH ’96 Computer
Graphics Proceedings, Annual Conference Series, pages
181–188, Aug. 1996.

[17] K. T. McDonnell, H. Qin, and R. A. Wlodarczyk. Virtual
clay: A real-time sculpting system with haptic toolkits. In
Proceedings of the 2001 ACM Symposium on Interactive 3D
Graphics, pages 179–190, March 2001.

[18] A. Pasko and V.Savchenko. Algebraic sums for deformation
of constructive solids. In Proceedings of Solid Modeling ’95,
pages 403–408, May 1995.

[19] H. Prautzsch. Generalized subdivision and convergence.
Computer Aided Geometric Design, 2(1-3):69–76, 1985.

[20] T. W. Sederberg and S. R. Parry. Free-form deformation of
solid geometric models. In Computer Graphics (SIGGRAPH
86 Proceedings), volume 20, pages 151–160, Aug. 1986.

[21] B. Wyvill, C. McPheeters, and G. Wyvill. Animating soft
objects. The Visual Computer, 2(4):235–242, 1986.

[22] D. Zorin. Smoothness of stationary subdivision on irregular
meshes. Constructive Approximation, 16:3, 2000.

[23] D. Zorin and P. Schröder. Subdivision for modeling and
animation. In SIGGRAPH 2000 Course Notes, 2000.

