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Figure 1: Surface mapping between horse and lizard. The color-coding shows the mapping of each region, guided by eight user-specified feature
curves. Our topology-driven method provides mappings of different homotopy type between the two surfaces as shown in (c) and (d). We show
feature curves in red.

Abstract

Topological concepts and techniques have been broadly ap-
plied in computer graphics and geometric modeling. How-
ever, the homotopy type of a mapping between two surfaces
has not been addressed before. In this paper, we present a
novel solution to the problem of computing continuous maps
with different homotopy types between two arbitrary trian-
gle meshes with the same topology. Inspired by the rich
theory of topology as well as the existing body of work on
surface mapping, our newly-developed mapping techniques
are both fundamental and unique, offering many attractive
advantages. First, our method allows the user to change
the homotopy type or global structure of the mapping with
minimal intervention. Moreover, to locally affect shape cor-
respondence, we articulate a new technique that robustly
satisfies hard feature constraints, without the use of heuris-
tics to ensure validity. In addition to acting as a useful tool
for computer graphics applications, our method can be used
as a rigorous and practical mechanism for the visualization
of abstract topological concepts such as homotopy type of
surface mappings, homology basis, fundamental domain, and
universal covering space. At the core of our algorithm is a
procedure for computing the canonical homology basis and
using it as a common cut graph for any surface with the
same topology. We demonstrate our results by applying our
algorithm to shape morphing in this paper.

CR Categories: I.3.7 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Curve, surface,
solid, and object representations;

Keywords: Surface parameterization, Riemann surface
structure, Computational topology, Shape morphing

1 Introduction

Surface mapping is of prime significance in many graphics
applications including shape analysis, texture mapping, an-

imation transfer, shape morphing, feature registration, and
many other digital geometry processing methods. In prin-
ciple, parameterization-based surface mapping methods can
be classified by the topology of the parametric domain. Typ-
ically, surfaces that are homeomorphic to a disk can be eas-
ily parameterized over the plane. For topologically more
complicated shapes, the parameter domain can be an arbi-
trary surface in R

3, and so a parameterization will essen-
tially be a mapping between two objects. In such a case, a
continuous, meaningful mapping requires that the two sur-
faces share the same topological attributes, such as genus
and number of boundaries. In addition to the topological
factors, a desirable surface mapping also hinges upon the
specific application demands. For example, texture map-
ping frequently requires a planar parameterization because
most textures are acquired/synthesized as 2D images. How-
ever, applications such as remeshing, morphing, and medical
model registration are better suited to a surface mapping be-
tween topologically equivalent manifolds in 3D.

Furthermore, topological concepts and techniques have been
broadly applied in computer graphics and geometric model-
ing ([6]). However, the homotopy type of a mapping between
two surfaces has not been addressed before. While other sur-
face mapping methods focus on a single homotopy class, in
this paper, we articulate a theoretically rigorous method that
produces many continuous maps of different homotopy type
between two arbitrary triangle meshes with the same topol-
ogy (see Figures 2 and 9). The uniqueness of our method-
ology results from applying the rich mathematical theory of
topology to surface classification, rather than relying solely
on the embedded geometry. In a nutshell, we first compute
a special set of curves, called the canonical homology basis,
that will cut any two homeomorphic surfaces in the same
way into a topological disk (see Figure 6). Then, we can
parameterize each sliced surface over a planar domain, us-
ing a metric to reduce the distortion. Next, we can create
a mapping between the planar domains of two surfaces and
extract the final mapping between the original surfaces from



Figure 2: Visualization of two different homotopy classes of mappings
between the vase and the two-hole torus by color coding. (a) and
(b) show the mapping of the handles between the two-hole torus and
the vase: right to right, left to left. Each mapping is produced by
a different homology basis on each surface. We obtain a different
mapping between the handles in (c) and (d): right to left, left to
right. (a) and (c) are 25% morphs.

the shared planar domain.

In addition, our novel, topology-based approach has sev-
eral other advantages. First, current methods require the
use of heuristics to avoid bad path-tracing while partition-
ing the surface into multiple regions between features. On
the other hand, our technique enables an elegant feature
mapping mechanism that can robustly satisfy user-specified,
hard constraints without relying on ad-hoc approaches to en-
sure validity. Moreover, unlike some methods, we do not re-
quire a minimum number of features to be inserted. The fea-
tures (including points and line segments) are always guar-
anteed to be parts of cutting curves mapped to hard, pla-
nar boundaries, so the exact feature alignment will be nat-
urally enforced, while non-feature regions are automatically
mapped.

Aside from acting as a useful tool for computer graphics ap-
plications, our method can be used as a rigorous and prac-
tical mechanism for visualizing and gaining an intuitive un-
derstanding of abstract topological concepts such as homo-
topy type of surface mappings, homology basis, fundamental
domain, and universal covering space. Our approach com-
putes many different mappings between two surfaces, each
of which corresponds to a single homotopy class (see Figure
9).

The main contributions of our method are outlined as fol-
lows:

• A novel technique for computing mappings of different
homotopy type between two arbitrary surfaces with the
same topology.

• A fundamental method for computing sets of canonical
homology basis curves that slice the surface to a single
disk.

• An elegant, local feature correspondence technique that
robustly satisfies hard constraints, without the use of
heuristics to avoid bad path-tracing.

• A new mechanism that allows the user to quickly
change the homotopy type, or global structure, of the
mapping with minimal user intervention.

• An approach for the visualization and intuitive under-
standing of abstract topological concepts such as ho-
motopy class of surface mappings, homology basis, fun-
damental domain, and universal covering space.

Note that, in the interest of space, this paper focuses only on
applying our mapping to shape morphing and color trans-

fer. However, the technical scope of this work easily extends
to other visual computing applications, including anima-
tion transfer, feature registration for medical applications,
remeshing, and other geometry processing applications. The
space limitation also compels us to assume that the reader
has some knowledge of the relevant concepts and language of
abstract topology. We only include a minimal explanation
of these concepts in the Appendix, and we refer the reader
to [14] and [12] for a more thorough treatment.

2 Previous Work

Planar parameterization. Parameterization of 3D sur-
faces over the plane are the most developed because of the
early attention to texture mapping for enhancing the visual
quality of polygonal meshes. In order to compute a one-to-
one mapping to a planar domain, a surface has to be home-
omorphic to a disk. The goal of a planar parameterization
of a disc-like mesh M in R

3 is to find an appropriate polygo-
nal domain Ω ⊂ R

2 and a suitable piecewise linear mapping
φ : P ⊂ R

3 → Ω, such that φ(x, y, z) = (u, v) = x−1 and
P is the set of vertices i in M with positions xi. See [7]
for a survey of planar parameterization methods, including
Floater’s shape-preserving map and mean-value map.

Surface cutting and computational topology. Other
planar parameterization methods handle surfaces that do
not have the topology of a disk, for example, closed sur-
faces. This requires that the topology be modified by par-
titioning the surface into a set disk-like charts and mapping
them individually to the plane. While some methods slice
the surface into multiple, non-overlapping patches ([21],[20])
or overlapping charts ([9]), others cut the mesh into a single
disk ([3],[10],[27],[11]). The quality of the resulting parame-
terization depends on the cut placement.

For our purpose of computing an intermediate planar map-
ping, we must slice open the two homeomorphic surfaces
using the same cut graph. In addition, mapping an atlas
of multiple charts can be cumbersome, and many of these
methods rely on heuristics to place the cuts; they cannot
guarantee a canonical planar domain boundary for each sur-
face. To alleviate this difficulty, [6],[26],[2], and [9] develop
methods for cutting a surface along a canonical homology
basis. The method of [6] show that finding such a cut that
minimizes the length is generally NP-hard. The algorithm
of [2] finds a provably minimum-length schema, given a non-
optimal basis, in polynomial time. By using these methods,
one can compute a minimum cut graph on the surface, but
only a single set of such curves. On the other hand, our
method can compute many canonical cuts for a given sur-
face, allowing the user to make the most desirable choice.
Each cut corresponds to a mapping of different homotopy
type (see Figures 2 and 9).

Non-planar parameterization. Non-planar methods pa-
rameterize the surface over a 3D domain. In the genus-0
case, the surface can be mapped directly to a sphere, but it
is harder to guarantee robustness and avoid flipped triangles.
Spherical parameterization methods include [1], [8], and [22].
Other methods use a hierarchical approach to map the sur-
face to some topologically-equivalent, coarser domain. They
partition the mesh into a set of polygonal regions, each to
be mapped onto a single face in the base domain ([4], [17],
[18], [23], [24]). However, this is a problem in itself; it in-
volves tracing consistently-arranged paths between feature
vertices on the meshes. Moreover, these techniques requires



Figure 4: Procedure for computing a canonical fundamental domain, M∗. Step 1: Compute an irregular cut graph that will open the surface
to a single disk. Step 2: Slice the surface open to a non-canonical fundamental domain, whose edges (here, 18 of them) are segments of
homology basis curves. Step 3: Glue copies of the domain to itself along corresponding segments to form the UCS M̃ . Choose a vertex v ∈ M

and a preimage of v, ṽ0 ∈ M̃ . Trace paths between ṽ0 other preimages ṽk ∈ M̃ of v, each of which corresponds to a single homology class
of curves on M . Step 4: Find a combination of such curves that forms a canonical homology basis. Step 5: Slice the surface along this cut
graph, constructing a canonical fundamental domain M∗. The ith handle is sliced open along the curve sequence ai, bi, a

−1

i , b−1

i .

(a) (b)

(c) (d)

Figure 3: Visualization of several homology basis curve sets for the
two-hole torus. (a) and (b) have canonical homology bases, produc-
ing a regular cut graph. (c) and (d) show homology bases that are
non-canonical.

a set of heuristics to avoid bad path-tracing and guarantee
the correspondence of the patches. On the other hand, our
method does not encounter such difficulties because we slice
the mesh in a consistent way to a single disk, based on the
topology of the surface.

Feature correspondence. For feature alignment, some
approaches allow the user to specify a set of point con-
straints, others (like ours) represent features as a collection
of curves (edge paths) on the mesh. Some use “soft” con-
straints ([19],[3]), where the system will attempt to match
the features as closely as possible while minimizing a dis-
tortion metric. Others create “hard” constraints that will
exactly match corresponding feature positions ([5],[16],[24]).
Hard constraints can be difficult to handle because there
may exist no valid mapping that satisfies all the constraints.
However, our technique robustly satisfies user-defined hard
constraints easily, without the use of ad-hoc approaches like
the addition of so-called Steiner vertices ([5],[16]).

3 Algorithms

3.1 Overview

The intent of our method is to create a continuous, piecewise-
linear map between triangulated surfaces with the same

genus and number of boundaries. Thus, our goal is to obtain
a common domain for the surfaces, from which to extract
the final mapping. To this end, for each surface we compute
a single planar disk with a regular polygonal boundary, the
canonical fundamental domain M∗ of the surface (see Figure
4).

To obtain this, we first compute a special set of curves (edge
paths), a canonical homology basis, for the surface (see Fig-
ures 3 and 5). This set of curves defines a regular cut graph,
along which we slice each surface open in a canonical way.
As mentioned above, the homotopy type of the mapping is
governed by the choice of a homology basis for each sur-
face, as well as the one-to-one matching between these sets
of curves. This will produce a mapping that belongs to a
unique homotopy class of surface mappings. In Figures 1,2,
and 9, we visualize the effect of the homology basis on the
final surface mapping.

Once we have the two homology basis sets and a matching
between them, the surface can be parameterized over the
canonical fundamental domain M∗. Every surface with the
same genus can be cut open to a disk in this manner. The
overall alignment of mesh features is governed by the way in
which the curves on two surfaces correspond. In our system,
the curve mappings can be controlled by the user before
and after the mapping to the plane. Once we have cut the
surfaces open, we parameterize them onto the plane. Then,
we align these planar domains and extract the mapping from
the two sets of vertices and faces.

The outline of our approach is as follows:

1. The user selects a set of feature curves, which we use
in the Feature Handle Conversion of the surface (see
Section 3.4).

2. Compute a set of curves, the canonical homology basis,
which becomes a cut graph for slicing each surface open
to a single disk. The user can choose any computed set
to map corresponding structures of surfaces as desired.

3. Slice each surface open to a disk along the cut graph
formed by the set of curves.

4. Parameterize each sliced surface over the plane. The
set of curves form the boundary of the canonical fun-
damental domain M∗, a polygon with 4g sides.



5. Extract the map between the two meshes and construct

a meta-mesh M̂ (see [18]), combining the vertices and
tessellations of both models.

With a simple rotation that re-aligns the boundary edges
of the polygonal domain regions (which translates to curve
matching on the original surfaces), we can easily change the
homotopy type, or global structure, of the mapping. Then,
we repeat step 5.

3.2 Computing the Canonical Homology Basis

First, we informally introduce the relevant terminology. We
say that two curves are homotopic to each other if one can
be deformed to the other on the surface without any tearing
(see Figure 5). A more general curve classification theory
is homology ; we say that two curves are homologous if they
bound any 2-dimensional patch on the surface (including
handles). Given a surface with genus g, a homology basis is
a set of 2g curves {a1, b1, a2, b2, · · · , ag, bg}, each of which is
not homotopic to any other, that spans the curve space of
the surface. (see Figure 3). A canonical homology basis is a
homology basis that meets the following criteria:

1. All the curves meet at a single base point, v.

2. Each pair of curves {ai, bi} algebraically intersect each
other exactly once.

3. No curve in another pair {aj , bj} algebraically intersects
either of {ai, bi}.

Here, we define algebraic intersection in the following way.
Given two oriented loops a and b on the surface M , let xI

be their algebraic intersection number. At any point p ∈ M
where a and b cross, we compute the unit vectors tangent to
a and b, ta and tb, respectively. Let the unit surface normal
at p be n. If (ta × tb) · n > 0, increment xI ; otherwise,
decrement xI . a and b algebraically intersect iff xI = +1.

Here, we explain steps 1-4 of Figure 4. A mapping between
two genus g surfaces requires that the cut graph structure
of both surfaces be equivalent. To accomplish this, we 1)
compute canonical homology basis curve sets for the surface,
and 2) choose a basis for each surface. In the simplest case,
each handle i on the surface will be assigned a pair of curves
{ai, bi}: one that travels around the hole ai, and another bi

that runs through it (see Figures 3a and 5). The surface M
is sliced along the regular cut graph formed by a canonical
homology basis to obtain the canonical fundamental domain
M∗, a 4g-gon. The boundary of this polygon has a regular
pattern (see Figure 4) a1b1a

−1

1
b−1

1
a2b2a

−1

2
b−1

2
· · · agbga−1

g b−1

g

(the inverse of a curve c is denoted c−1, traversed in the
direction opposite to c).

To compute the canonical homology basis, we first compute
a non-canonical fundamental domain M∗

nc, formed by the
irregular cut graph of a non-canonical homology basis (see
Figure 4, steps 1-2). In this case, the boundary of M∗

nc

is a set of homology basis curve segments, as opposed to
the 4g-sided canonical fundamental domain, whose bound-
ary consists of whole curves formed by a regular cut graph
on M . We use the method of [11] to compute the irregu-
lar cut graph and the resulting non-canonical fundamental
domain.

Next (step 3 of Figure 4), we use a concept called the uni-
versal covering space (UCS) from Riemann surface theory
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ṽ1 ṽ2
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Figure 5: This universal covering space (UCS) M̃ is formed by infinite
copies of the canonical fundamental domain M∗ of a torus M , sliced
open along a canonical homology basis. The covering map p : M̃ →
M is a periodic function. The base vertex v has a discrete set of
preimages, p−1(v) = ṽ0, ṽ1, . . . on M̃ . A curve γ drawn between
each pair {ṽ0, ṽk} represents a unique homotopy class of curves
p(γ) when mapped to the surface by p. Here, p(γ) is homotopic to
b.

(see the Appendix). Intuitively, the UCS M̃ of a surface M
is an infinite topological disk that consists of an unbounded
number of copies of the fundamental domain M∗ glued to-
gether along corresponding homology basis curves or curve
segments (i.e. ai in one copy is glued to a−1

i in the neigh-
boring copy, and bi in one copy is glued to b−1

i in another

copy. Let p : M̃ → M be the so-called covering map, which
is a periodic function (see Figure 5). Therefore, each ver-
tex v ∈ M will have a discrete set of preimages or copies
ṽk ∈ p−1(v) in the UCS M̃ . The central idea is this: if we

pick a base vertex ṽ0 in M̃ , any curve γ drawn between the
pair {ṽ0, ṽk} represents a unique homology class of curves
when mapped to the surface by p. Since ṽ0 and ṽk each map
to v ∈ M , p(γ) will be a loop on M . Each ṽk corresponds
to a curve of different homotopy type.

In essence, we construct the canonical homology basis in the
following manner (see Figure 4):

1. Compute the irregular cut graph of the surface M (non-
canonical homology basis) using the method of [11].

2. Slice M along the cut graph to obtain the non-canonical
fundamental domain, M∗

nc. The new boundary of the
planar mesh is a set of homology basis curve segments.

3. Construct the UCS M̃ by gluing copies of M∗

nc to itself
along corresponding segments.

4. Choose a vertex v ∈ M and fix one corresponding base
vertex ṽ0 ∈ p−1(v) in the UCS M̃ .

5. For each ṽk ∈ p−1, find the shortest path on M̃ between



Figure 6: An overview of the surface mapping process. The vase
and the two-hole torus are cut open along a common set of curves
and parameterized over the canonical fundamental domain M∗. The
final mapping is extracted from the overlaid meshes. τ can be used
to change the homotopy type of the mapping.

the base vertex and ṽk.

6. For each ṽk ∈ p−1, project the path to M , where the
path is actually a closed loop. This closed curve repre-
sents a single homology class of curves on the surface.

7. Choose 2g projected curves to form the canonical ho-
mology basis (see below).

Choosing the canonical homology basis. For any sur-
face with handles (genus g > 0), there is an infinite number
of canonical homology basis curve sets. For each surface, our
technique allows the user to visualize a subset of all possi-
ble homology bases on the surface and choose the one most
appropriate for the desired mapping. After we compute the
UCS, we trace shortest paths to find representative candi-
dates for the homology basis and sort them by length on
the surface M . Then, we employ a verification procedure,
based on the criteria in Section 3.2, to find a combination
of curves that constitutes a valid canonical homology basis.
If the curve set is unsatisfactory, we can continue searching
until we find a favorable combination.

Note that, if the mesh M is too sparse, some curves can
share edges, especially around the base vertex v. In order to
prevent this, we subdivide the mesh as needed in problem
areas to allow more direct routes for shortest path tracing
(step 5 of the algorithm above for computing the canonical
homology basis).

3.3 Surface Mapping

Planar Parameterization. Once we have computed and
chosen a canonical homology basis for each surface, we slice
the mesh along these curves to obtain a disk. Each curve a
is fixed on one edge of the boundary of the planar 4g-gon
domain; the inverse a−1 represents the opposite edge (see
Figure 4). We compute a parameterization φ : M∗ → M of

the vertices v ∈ M over this domain by using a harmonic
mapping f(v) = φ−1(v) to obtain the planar mesh M∗, min-
imizing the harmonic energy:

Eh(f) =
1

2

Z

M

|∇f |2. (1)

This metric, popular in the computer graphics community,
works quite well to reduce the distortion on the plane. In
addition, this translates into a simple linear system of equa-
tions, whose weights we compute as the mean value coordi-
nates [7].

Final Mapping. After we have parameterized both meshes
over the same planar polygonal region, the goal is to compute
the surface mapping ρ : M1 → M2, where

ρ(M1) = φ−1

1 (M1) ◦ τ (M∗

1 ) ◦ φ2(M2), (2)

where M1 is mapped to M2 (see Figure 6), and τ is a trans-
formation of the planar domain.

A mapping between two meshes M1 and M2 involves storing,
for each vertex, its position, normal, color, and any other
desired attributes for each mesh. We compute the surface
mapping in the following steps:

1. For each v ∈ M1, find the face f ∈ M2 in which the
(u, v) position φ−1(v) lies. Compute its barycentric co-
ordinates within f and interpolate the position and at-
tributes of the vertices (v0, v1, v2) of face f .

2. For each v ∈ M2, find the corresponding face f ∈ M1.
Compute the new M1 attributes of v as in the previous
step.

3. Combine the vertices and edges of M1 and M2 into the
meta-mesh.

4. For each vertex formed by an intersection of an edge of
M1 and an edge of M2, interpolate the positions and
attributes from the endpoints of those edges. Enter the
vertex and the newly-formed edges into the meta-mesh.

3.4 Feature Correspondence by Feature Handle
Conversion

The matching of homology basis curves determines the align-
ment of major shape elements of both meshes; handles are
mapped to handles. This defines the homotopy type of the
map. However, depending on the geometric differences be-
tween the surfaces, sometimes it is necessary to adjust the
mapping, or even if the surfaces are very similar, the user
may want to create a highly unusual mapping of features. To
this end, our system incorporates a novel feature-matching
procedure, Feature Handle Conversion, that satisfies user-
defined hard constraints robustly and elegantly. The idea
is to treat each feature simply as another handle on the
surface. We allow the user to input a set of corresponding
open feature curves or edge paths on each mesh before it is
cut into a disk (see Figure 7). Then, for each feature, we
can create a new boundary in the mesh M by slicing along
the curve. Next, we perform a technique known as double-
covering (see [11]), by which a copy of M is glued to M
along the newly-cut boundaries to obtain a new mesh M ′.
The result is a set of new feature handles on each surface.



Specifically, for a genus g surface with n feature curves, there
will be n− 1 feature handles; thus, the surface M ′ will be of
genus 2g + n − 1.

Then, we can simply proceed as before; compute the canon-
ical homology basis for each doubled surface, inserting the
homology basis curve that travels along each feature and
back into the basis set in order to ensure that the features are
exactly mapped. Then, we match each pair of corresponding
feature handles as well as any other true handles of the sur-
faces. When the mapping procedure is completed, we will
have two copies of the meta-mesh glued together. We sim-
ply cut one copy away and sew together the boundary holes
created when we sliced along the feature curves. Finally,
we obtain a mapping between the original meshes: a single
meta-mesh with combined tessellations from M1 and M2.
This elegant technique guarantees exact feature alignment
and a robust surface mapping because the special curves
computed on the surfaces are mapped to the hard bound-
aries on the planar domain. Aside from robustness, this
procedure holds an advantage over other ad-hoc hard con-
straint handling techniques in that it is unnecessary to use
heuristics to avoid bad path-tracing between features. Since
each feature is treated as a topological handle, the curves
are a homology basis, and thus, form a valid configuration
on the mesh.

4 Implementation

Choosing a canonical homology basis. We have found
that it takes less than 2-3 layers of the UCS to produce a
canonical homology basis. Each matching of canonical ho-
mology bases between the two surfaces will produce a map-
ping of different homotopy type. Our interactive method
produces curve bases one at a time, starting with shorter
curves. A naive user can view a preliminary mapping (be-
fore the expensive step of meta-mesh construction) for each
choice of canonical basis for the two surfaces. If it is unsat-
isfactory (as explained in Section 3), the system computes
the next canonical basis (adding more layers to the UCS if
necessary) and presents the resulting partial mapping.

Feature mapping. We have developed an interactive sys-
tem for feature mapping that allows the user to enter and
match a set of feature curves on each mesh. (see Figure
7). Then, the system will proceed to compute curves on
the meshes along which to slice them open and parameter-
ize them over the planar polygonal region. In this method,
the pair of homology basis curves for each feature handle
created at a specified feature includes one curve ai that sur-
rounds the handle and another curve bi that is traced from
the common vertex v, through the handle, and back to v. By
using this system, we can also map surfaces with boundaries
by treating each boundary as an additional feature; the user
simply chooses the mapping between the boundaries on each
surface. When the surface is double-covered, we get another
feature handle for the boundary.

Merging meshes. We represent a map between two meshes
M1 and M2 by storing, for each vertex, its position, normal,
color, texture coordinates, and any other desired attributes
on each mesh. We combine their tessellations into a meta-
mesh M̂ [18]. For morphing between the source (M1) and
target (M2) meshes, this combined mesh is paramount: we
must retain the complete geometry of both source and tar-

get. Therefore, M̂ combines the complete connectivity, both
vertices and edges, of both meshes. The original geometry is

(a) (b) (c) 50% morph.

Figure 7: The skull model mapped to ”Dirk’s Head” (Copyright
c©2004 Sean Carner). Features are mapped in left and middle.

(a) (b) (c)

(d) (e) (f)

Figure 8: In (a) and (b), we show curve a + b matched with a and b

with b. (c) shows the texture used to create the effects. In (d), we
map a to a, b to b. In (e), we map a to b, and b to a. (f) shows
a mapping between the torus and teapot with a morph (10% torus,
90% teapot).

retained by including the vertices created by the intersection
of original mesh edges on the planar domain. On the other
hand, the meta-mesh is much more dense than the original
meshes, taking up more memory, and the edge connectivity
network may be rather cumbersome. In order to produce
the best trade-off between this and the geometry loss, it
is possible to choose only those edges whose insertion into
the meta-mesh will prevent a change in geometry from the
original meshes. To this end, our mesh-merging procedure
allows the user to specify the maximum dihedral face angle
for determining which edges to insert into the meta-mesh.

5 Results

In the surface mapping function (Equation 2), we can utilize
τ to change homotopy type of the map. For example, by ro-
tating of the domain of M2 by 2π/g radians, we can switch
the mapping of the handles. This rotation changes the map-
pings between the homology basis curves of each surface. We
illustrate this concept in Figure 2. In the first mapping be-
tween M1 (the two-hole torus) and M2 (the vase), the right
handles are mapped to each other, as are the left handles.
In the second, the right handle is mapped to the left handle
and vice-versa.

Figure 1 shows the visualization of two homotopy classes of
mappings between a lizard and a horse. Here, the features
are treated as topological handles. By rotating the planar
fundamental polygon by π radians, we can easily change the
mapping. In the first mapping, the lizard and horse heads
are mapped to each other. In the next, the horse’s head is



Figure 9: Visualization of two different homotopy classes of mappings
between the vase and the two-hole torus. Each mapping is facilitated
by the choice of a homology basis on the two-hole torus.

mapped to the lizard’s tail and vice-versa.

Figure 7 demonstrates the mapping between the head of
“Dirk” and a skull. Facial feature curves such as the eyes
and nose are specified by the user. Our system slices the
mesh open along these curves and double-covers it, increas-
ing the number of handles. Then, we compute the canonical
homology basis, slice the surface open to the plane, and ex-
tract the mapping. Finally, we discard one copy of the mesh
and sew the cuts to obtain the surface mapping.

In Figure 8, we visualize several homotopy classes of map-
pings between the torus and itself, as well as between the
teapot and torus. By using this concept, we can create var-
ious new coloring effects. The torus in (a) is mapped to the
torus in (b); by matching the curve a + b with a and b with
b, we obtain a swirling effect on the flame. In (d) and (e),
we create two different mappings between the teapot and
itself. We obtain a flame around the handle in (d) by simply
mapping a to a and b to b. Next, we switch the curve map-
pings in (e) (a to b, b to a) to revolve the flames through the
handle. In (f), we use the mapping between the torus and
teapot to enlarge the handle with a morph (10% torus, 90%
teapot).

We demonstrate the results of our method on two genus-0
surfaces that each have one boundary in Figure 10. The face
meshes were acquired from a real-time 3D scanning device.
We use four features to guide the mapping process, and we
apply our map to morphing and color transfer in (c) and (d),
respectively.

Figure 11 illustrates the mapping between the Stanford
bunny and a gargoyle statue. Eight feature curves were
specified by the user: two for the wings, two for the ears,
two at the bottom, and two on the head. Then, we convert
the genus-0 mesh to a genus-7 surface by cutting along the
feature curves and double-covering the surface.

6 Conclusion and Future Work

We have articulated a novel, robust approach to the problem
of automatically computing continuous maps between two
arbitrary triangle meshes with the same topology. Strongly
inspired by concepts from topology theory, we have devel-
oped several techniques that can easily create a suite of
meaningful mappings between two surfaces. We compute
canonical homology basis sets to slice the surfaces open, one
of which the user chooses for each surface. Moreover, we pre-
sented an elegant and robust technique for satisfying hard
feature constraints.

M1 M2 M1 M2 M̂ g g′

Lizard Horse 25002 19859 216821 0 7
Bunny Gargoyle 12502 10002 109825 0 7
Dirk Skull 4322 5002 40458 0 5
2H-Torus Vase 770 1476 10955 2 2
Teapot Torus 4256 2500 37569 1 1
Lock Torus 1120 2500 16999 1 1
Face 1 Face 2 76365 59700 N/A 0 4

Table 1: Mesh sizes (number of vertices) and genus for several data

sets used in our system. M̂ is the mesh that contains the merged
connectivities of M1 and M2. The change from genus g to g′ =
2g + n − 1 reflects the addition of n features by the user, which
are treated as new handles on the surface. Face 1 and Face 2 are
from Figure 10; the resolution of Face 1 is large enough to avoid
constructing M̂ .

Furthermore, our method tackles the homotopy type of a
mapping between two surfaces, which has never been ad-
dressed before. In addition to acting as a useful tool for
computer graphics applications, our method can be used
as a rigorous and practical mechanism for visualizing and
gaining an intuitive understanding of abstract topological
concepts. Our approach computes many different mappings
between two surfaces. Our results visualize these concepts
using shape morphing, color coding, and new coloring ef-
fects.

There are many possible avenues for future research. Given
the infinite number of homology basis curve sets for a given
surface, so it would be beneficial to provide a more artistic
control for naive users, an intuitive way for computing the
“best” set of homology basis curves for a surface based on
certain metric. Thus, we aspire to extend our method by
including such a metric for determining a good choice and
placement of the curves based on geometry (curvature). In
addition, flattening the surface can induce large distortion
if regions of high curvature are not sliced apart. We are
currently working on a technique that, given the matching
of homology bases, relaxes the mapping on the surface to
obtain the minimum distortion. Also, our mapping can be
straightforwardly adapted to many other graphics applica-
tions, including remeshing, animation and detail transfer,
and shape analysis, which we plan to explore.

A Appendix

The major concepts and theories in topology used in the paper
are introduced in detail in this section.

Homology and Canonical Basis. Suppose M is a triangle
mesh and suppose its vertices are v0, v1, · · · , vn. We use [vi, vj ]
to denote a half-edge from vi to vj , and [vi, vj , vk] to denote a
face with vertices vi, vj , vk. An n-dimensional chain is a linear
combination of n simplicies with integer coefficients. All n-chains
form a linear space called an n-dimensional chain space. The
boundary operator ∂n : Cn → Cn−1 is a linear operator, which
maps a chain to its boundaries. For example, the boundary of a
face [v0, v1, v2] is [v0, v1]+ [v1, v2]+ [v2, v0]. Closed 1-chains have
zero boundaries, namely, they belong to ker∂1. The boundary of
2-chains belong to img∂2. All boundary chains are closed. The
first homology group is the quotient group, H1(M, Z) = ker∂1

img∂2

.

H1(M, Z) is a finite dimensional group; for a genus g closed mesh,
H1(M, Z) is 2g dimensional.

Homotopy of curves. A closed curve on a surface S is a map
from the unit interval to the surface, r : [0, 1] → S, f(0) = f(1).



(a) (b) (c) (d)

Figure 10: (a) and (b): original face meshes, acquired via 3D scan-
ning. The mapping between them is guided by four features, shown
in blue. (c) 50% morph. The color value associated with each vertex
of (b) is transferred from (a) using the mapping in (d).

(a) (b) (c)

Figure 11: Mapping between Stanford bunny and a gargoyle, guided
by eight user-specified features (red curves). (a) and (b): color-
coding corresponding regions. (c) 50% morph.

A homotopy between two curves r0 and r1 is a continuous map
R : [0, 1] × [0, 1] → S, such that R(·, 0) = r0 and R(·, 1) = r1. If
r0 and r1 can be connected by a homotopy, then r0 is homotopic

to r1.

Homotopy of mappings. Given two surfaces M1 and M2 and
two mappings f0 : M1 → M2 and f2 : M1 → M2, a homotopy
between f0 and f1 is a continuous map F : M1 × [0, 1] → M2,
where M1×[0, 1] is the direct product of M1 and the unit interval,
such that F (·, 0) = f0 , F (·, 1) = f1. Two continuous mappings
are homotopic to each other if there exists a homotopy between
them. Suppose f : M1 → M2 is a continuous map that induces a
map f∗ : H1(M1, Z) → H2(M2, Z). f∗ is a linear map between
two linear spaces; it can be represented as a matrix. Two maps
f1, f2 : M1 → M2 are homotopic if and only if f∗

1
= f∗

2
.

Universal covering space. Suppose M1, M2 are meshes. A
map f : M1 → M2 maps vertex to vertex, edge to edge and
face to face. If, for any vertex v ∈ M1, f maps the one-ring
neighbor composed of all faces adjacent to v to a one-ring neighbor
of f(v) ∈ M2, and the mapping is one to one, then f is a covering

map, and M1 is a covering space of M2. Conceptually, for any
mesh M , there exists a unique mesh M̃ that is a covering space
of M and is an infinite topological disk; M̃ is called the universal

covering space of M . We denote the covering map as p : M̃ → M .
Given a vertex v ∈ M , its preimage p−1(v) is a discrete set.
Suppose ṽ0, ṽ1 ∈ p−1(v). If we select arbitrarily two curves r̃0, r̃1

connecting ṽ0, ṽ1, then p(r̃0) and p(r̃1) are closed curves on S

through p. Furthermore, they are homotopic to each other.
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