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Abstract—This paper advocates a novel learning solution to
the modeling of long-term spatial-temporal saliency consistency
in order to boost the accuracy for video saliency detection. Con-
ventional methods typically utilize the “slack” spatial-temporal
model to locally ensure the smoothness of the computed video
saliency, yet they could easily encounter the performance trade-
off dilemma (i.e., detection’ accuracy and integrity). In contrast,
our novel approach proposes the bi-level learning strategy to
globally exploit the saliency consistency while overcoming the
above difficulty. Our method first starts with the contrast
computation of low-level saliency clues in a frame-wise manner.
Then, based on such obtained saliency clues, we devise a novel bi-
level Markov Random Field (bMRF) solution to conduct semantic
labelling, which can explicitly indicates both the salient salient
foregrounds and non-salient nearby surroundings with high
confidence while shrinking the low confidence remains. In such
a way, the spatial-temporal consistency constraint is embedded
intrinsically into the above explicit semantic labels, and we avoid
the performance trade-off problem from occurring. Next, based
on those semantic labels made by our bMRF method, we further
propose to learn multiple non-linear feature transformations
to enlarge the feature margin between the salient foregrounds
and the non-salient nearby surroundings, whose key rationale
is to resort to long-term common consistencies to enforce the
spatial-temporal smoothness. Thus, we can utilize these learned
non-linear feature transformations to simultaneously suppress
those short-term false-alarms and correct those hollow effects.
To validate our new approach, we conduct extensive experiments
on 5 publicly available benchmarks, and make comprehensive,
quantitative evaluations between our method and 17 state-of-
the-art techniques. All the results demonstrate our method’s
advantages in terms of accuracy, reliability, robustness, and
versatility.

Index Terms—Spatial-temporal Saliency Consistency, Bi-level
Morkov Random Field, Localized Feature Transformation, Video
Saliency Detection.

I. INTRODUCTION AND MOTIVATION

THE main purpose of video saliency detection is to
indicate the given video sequence’ most salient object,

which frequently exhibits uniqueness movement pattern. As
a pre-processing tool, the video saliency detection currently
has become a critical factor to dictate the performance of
the corresponding downstream applications, including visual
tracking [1], [2], space-time visualization [3], video resiz-
ing [4], and video compression [5] [6]. After years of ex-
tensive studies, researchers have reached a consensus that the
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key factor toward the robust video saliency detection relies
on two aspects: the low-level saliency computation [7] [8]
and the usage of spatial-temporal consistency to boost the
detection accuracy [9] [10]. In fact, since the first problem
has been well studied in our previous works [7] [11], the
main foci of this paper is to further boost the accuracy and
robustness of the detected video saliency by proposing a novel
strategy to explore the saliency consistency simultaneously
from spatial and temporal perspectives. As for the most-
represented solution to explore the saliency consistency from
the spatial-temporal perspective, the graph based methods
simultaneously integrate both the spatial and the temporal info
into an unified energy framework to iteratively perform two
steps: the iter-frame alignment step, then the spatial-temporal
saliency weighting. Although the spatial-temporal saliency
consistency degree can be implicitly revealed in “short-term”
manner by performing the graph based energy minimization,
several obstinate difficulties still remain unsolved, and we shall
give a brief analysis about these challenges.

First, the usage of the spatial-temporal consistency toward
the saliency boosting could easily encounter the performance
trade-off, i.e., an overemphasis on the spatial-temporal con-
sistency definitely damages the detection’ integrity , and vice
versa. So, the bottleneck is obvious that an extremely strong
consistency constraint is indispensable for those poor quality
low-level saliency clues to retain spatial-temporal smooth-
ness, however, such aggressive implementation inevitable to
enhances those false-alarm detections and finally causes the
false-alarm accumulations.

Second, the saliency exploration scope of the convention-
al graph methods are frequently too local to obtain robust
video saliency, especially for those short-term dynamic back-
ground [12] caused false-alarm detections. For example, the
graph energy solutions [13] [14] only utilize the beyond
scope spatial-temporal saliency information to re-boost the
accuracy of current frame’s saliency prediction. However,
since the conventional graph methods treat all the temporally
neighbored frames equally via the majority voting like scheme,
it is difficult to resort the short-term spatial-temporal saliency
consistency alone to obtain integral saliency detection while
delimitating those false-alarm detections.

To tackle the aforementioned first challenge (i.e., the perfor-
mance trade-off), our current research efforts are endeavored
to take full advantage of the graph model to exploit the
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Fig. 1. The architectural overview of our video saliency detection method. Our method first utilizes the contrast solution to compute the low-level saliency,
which are already demonstrated in Step 1. And then in Step 2, our method automatically regards the intersections of the two-level MRF saliency assumption
as the most trustworthy Pos region (which means the salient regions are denoted by blue color), and regards the near surrounded outliers of these two-level
assumptions union as the most trustworthy Neg region (which means the non-salient regions are denoted by white color). Thus, based on the bi-level saliency
assumptions, i.e., the positive Pos and negative Neg instances, our learning scheme can automatically assign saliency value to those undeterministic regions
Unk in Step 3. The saliency detection results of Step 4 are obtained by performing our long-term learning scheme with superpixel-wise and pixel-wise
spatial-temporal smoothing schemes.

short-term spatial-temporal consistency while avoiding the
performance trade-off dilemma by incorporating the bi-level
Markov Random Field (bMRF) strategy.

That is, we equally divide the input video sequence into
short-term video frame batches (identical to our previous
work [7]) and then build the spatial-temporal graph (Fig. 3c)
batch-wisely to integrate both the spatial and temporal info.
In fact, based on the above spatial-temporal graph, the con-
ventional MRF is the most intuitive choice to reveal short-
term spatial-temporal saliency consistency, and the consistency
degree is determined by the MRF’ smoothness term. That
is, the more we emphasize on the MRF’ smoothness term
in energy minimization, the obtained binary assumption will
exhibit stronger spatial-temporal saliency consistency. Thus,
in order to strike the conventional MRF’ performance trade-
off (i.e., trade-off between accuracy and integrity), our bM-
RF respectively output two-level of binary assumptions, i.e.,
one level with strong saliency consistency which sacrifices
the assumption’ integrity (we name it “aggressive” salien-
cy assumption), another level with relatively weak saliency
consistency while exhibiting better assumption’ integrity (we
name it “conservative” saliency assumption). Therefore, the
intersections (Pos in Fig. 1) between these two-level saliency
assumptions frequently corresponds to the most confident
salient regions, while the near surrounded outliers of these
two-level assumptions’ union (Neg in Fig. 1) always corre-
sponding to the most trustworthy non-salient backgrounds. In
this way, the spatial-temporal saliency consistency constraint
is now intrinsically embedded into the above explicit semantic
labels. Specially, we propose to use our newly designed metric
learning strategy to automatically determine the remaining
regions (Unk in Fig. 1) via enlarging the distance margin
between the trustworthy salient and non-salient assumptions.

As for the second challenge (i.e., long-term saliency mod-
eling), we propose to extend the learning scope of our nov-

el learning strategy in a batch-wise fashion, whose behind
rational is to resort the long-term common consistency to
either eliminate current false-alarms or fill the long period
hollow detections (Fig. 2). That is, for each video frame
batch, we learn multiple non-linear feature transformations
from current low-level saliency to capture the intra-batch’s
video saliency, and all these learned transformations are pooled
together to ensure the long-term smoothness of the computed
video saliency. Meanwhile, in order to avoid the over-fitting
problem, we propose to reduce the learning ambiguity via
constraining our metric learning extent within non-overlapped
local constraint pairs. To summarize, the main contributions
of this paper are two-fold:
• We propose a bi-level Markov Random Field (bMRF)

method to strike the performance trade-off between the
integrity and the accuracy within batch-wise manner.
Thus, by using our bMRF method, our subsequent met-
ric learning can take the full advantage of the spatial-
temporal consistency to boost the accuracy of video
saliency detection.

• We propose a localized metric learning solution to im-
plicitly reveal the long-term spatial-temporal saliency
consistency. Thus, our novel learning solution can au-
tomatically fill those long period hollow effects (Fig. 2)
while eliminating intermediate false-alarm detections.

II. BACKGROUND AND RELATED WORKS
In fact, the rationale of the spatial-temporal coherency

guided video saliency methods is that, the movement trajecto-
ries of the salient foreground object are frequently character-
ized by spatial-temporal smoothness. Thus, long-term model-
ing/learning with appropriate update is the most intuitive so-
lution to exploit the spatial-temporal coherency in consecutive
video frames, e.g., the deep learning methods [15] [16]. From
the perspective of scene modeling, background subtraction
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Fig. 2. Qualitative comparisons between the state-of-the-art methods
(GF15 [10], SA15 [9], FD17 [7]) and our method towards the long period
stop-and-go movement. Apparently, our method can well utilize the learned
long-term feature transformations to fill the hollow effects of the standstill
horse.

based salient motion/change detection methods [17], [18], [19]
have been well studied in recent years, whose central idea
is to utilize low-rank decomposition [20] to automatically
separate the salient foreground (i.e., the sparsity component)
from the non-salient background (i.e., the low-rank compo-
nent) by seeking spatial-temporal coherency, and the sparsity
measure is regarded as the unique indicator to locate the
motions/changes. Although plausible detection performance
has been observed for the stationary videos, these modeling
based methods frequently become incapable for non-stationary
videos [19] due to the absence of pixel-wise correspondence
in consecutive video frames. To ameliorate, either frame-
level affine registration [21] or background tracking strate-
gy [22] is integrated into the low-rank revealing process to
convert the non-stationary scenarios to relatively stationary
ones, however, the obstinate challenges still exist when the
input video sequences only have limited frames, because it
can heavily impact the robustness of the estimated background
model and leads to poor performance. Different from the
above-mentioned modeling methods, which mainly model the
spatial-temporal coherency of the non-salient backgrounds,
[23] proposes to utilize the foreground spatial-temporal in-
formation to construct their attention model, which fully takes
the advantage of the motion continuity to eliminate false-alarm
detections. Similarly, Li et al. [24] proposed to utilize the
newly-designed kernel regression to exploit the local spatial-
temporal coherency, whose hidden rationale is to seek the
common consistencies of the foreground object in short-term
video in a batch-wise way. Kim et al. [13] regarded the
graph model based stationary status as the video saliency clue,
achieving plausible performance. Actually, the core rationality
of the above batch-wise spatial-temporal coherency method is
to constrain the detected video saliency of the local neigh-
boring frames to retain spatial-temporal consistency. So, [25]
proposes to utilize a newly-designed graph model (considering
the unbound spatial-temporal coherency of the foreground

object) to automatically conduct the video saliency detections,
which was further followed and improved by Wang et al. [10],
[9]. Although these graph model based video saliency meth-
ods have achieved remarkable performance improvement, the
graph model solution easily causes the accumulation of false-
alarm errors, because its un-bounded saliency expansion lacks
of a mechanism to suppress the non-salient backgrounds while
enhancing the salient foreground object.

Although the most recent method [7] utilizes the low-rank
strategy to alleviate the problem of false-alarm error accumula-
tion in a batch-wise manner, it does not take full advantage of
the beyond scope saliency consistency, which easily produces
massive false-alarm detections when the majority of the intra
batch’s saliency clues are incorrect. Therefore, this paper will
exploit the long-term spatial-temporal coherency in a learning
fashion to avoid the above problems while ensuring the spatial-
temporal smoothness of the computed video saliency.

III. METHOD OVERVIEW

Algorithm 1. Main Steps of Our Video Saliency Method
Initialization:

Perform RF [26] smooth to each video frames;
Perform Optical Flow [27] to sense motion;
Perform batch decomposition [7] (frame number≥9);
Perform SLIC [28] over-segmentation;
Perform multi-level feature representation (Sec. V-A);
Initialize the feature transformations A = I;

For each video frame batch
1. Perform contrast based low-level saliency (Sec. IV-A);
2. Construct spatial-temporal graph based on LS (Fig. 3c);
3. Obtain bi-level saliency assumptions (Sec. IV-B);
4. Learn non-linear feature transformations A (Sec. V-B);
5. Compute learned video saliency (Sec. V-D);
End For

As we can see in Fig. 1, our video saliency detection method
mainly consists of four components: (1) low-level saliency
computation; (2) bi-level semantic labelling; (3) short-term
video saliency learning; and (4) beyond-scope saliency learn-
ing and boosting (i.e., spatial-temporal saliency smoothing and
pixel-wise saliency assignment). Our method first computes
the low-level video saliency frame-by-frame and then equally
decomposes the long-term source sequence into short-term
frame batches. After that, based on the pre-obtained low-level
saliency clues, we propose the bi-level Markov Random Field
(bMRF) model to perform batch-wise saliency assumption,
which can automatically identify those trustworthy salient/non-
salient regions via semantic labeling. Then, according to the
above bMRF saliency assumptions, we adopt the localized
learning solution to enlarge the feature margin between the
salient regions (blue Pos) and the non-salient surroundings
(white Neg), and those undeterministic regions (red Unk) are
excluded from our learning iterations to maintain General-
ization ability. Therefore, benefiting from the non-salient sur-
rounding’s feature coherency and our newly proposed beyond-
scope learning scheme, those undetermined nearby surround-
ings (i.e., red Unk in Step 2 of Fig. 1) can be assigned with
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Fig. 3. Demonstration of our graph model construction, where the right-bottom yellow marks respectively denote the SLIC superpixel decomposition (SLIC),
the Optical Flow computation (OF), the Motion Saliency (MS), the Color Saliency (CS) and the Low-level Saliency (LS). The yellow dots in the graph
model (c) denote the center position of superpixels (i.e., graph’ nodes), and the yellow lines represent the color distance (i.e., graph’ edges) to measure the
similarity between two neighbored graph nodes. Since the foreground mask FM is determined within the batch-wise manner, the obtained foreground masks
(i.e., white regions in d) may exist large difference between different frame batches. Also should be noted that our bMRF method may exists incorrect saliency
assumption, e.g., the blue superpixel in bottom row of d.

appropriate saliency values. Meanwhile, we adopt a series of
saliency boosting strategies (e.g., spatial-temporal smoothing
and pixel-wise saliency assignment) to further maintain the
spatial-temporal consistency of the learned video saliency.

For better understanding, we summarize all the necessary
steps of our video saliency method in Algorithm 1.

IV. BI-LEVEL SALIENCY ASSUMPTION

A. Low-level Video Saliency

Different from the conventional image saliency detection
which relies the spatial info only, the incursion of temporal
info is the critical factor for the correct video saliency detec-
tion. For any input video sequence, the most salient region
is simultaneously determined by its corresponding difference
toward its surrounding in both spatial extent and temporal
scale. Thus, we propose to utilize the contrast computation
over the SLIC [28] over-segmented mid-level feature space
(column b in Fig. 3) to explore those saliency clues, i.e., the
color saliency and motion saliency. That is, we propose to
compute the motion saliency MS in Optical Flow [27] gradient
spanned feature space (i.e., two-direction gradients: vx and
vy), and compute the color saliency CS in RGB color space,
which can be detailed as follows:

MSi =
∑

pj∈ψi

||Vi,Vj ||2
||pi,pj ||2

, CSi =
∑

pj∈ψi

||Ci, Cj ||2
||pi,pj ||2

, (1)

where Ci represents averaged RGB value of the i-th superpix-
el, V = [vx vy], || · ||2 denotes the l2-norm, pi denotes the
center position of the i-th super-pixel, ψi controls the contrast
computation range: ψi = {||pi,pj ||2 ≤ 200}. Also, we
conduce the min-max normalization batch-wisely to produce
final motion saliency and color saliency.

LS = ξ(CS)� ξ(MS). (2)

Since the above saliency clues are independently computed
in frame-by-frame manner, those false-alarm detections can be

further filtered by seeking saliency coherency between consec-
utive video frames. Therefore, we propose to use the spatial-
temporal weighting scheme to further boost the accuracy of
the above obtained saliency clues, and then fused it as the
low-level saliency LS in an element-wise fashion (Eq. 2).

ξ(MSti) : MSti ←

t+1∑
p=t−1

∑
q∈ψ

e−θ·||C
t
i−C

p
q ||2 ×MSti

t+1∑
p=t−1

∑
q∈ψ

e−θ·||C
t
i−C

p
q ||2

. (3)

Here ξ(·) denotes the spatial-temporal weighting function, Cti
represents RGB value of the i-th superpixel in t-th video frame,
q ∈ ψ constraints the spatial weighting’ computation range
which we empirically assign 25 as the maximum Euclidean
radius, θ controls the color discriminative power that we
empirically assign it to 30 to follow the suggestion of [11],
� denotes element-wise Hadamard product. Obviously from
Fig. 3c that the low-level saliency LS is much better than
either the motion saliency MS or the color saliency CS, and
the quantitative proofs can be found in Fig. 14.

B. Bi-level Markov Random Field Guided Saliency Assump-
tion

Based on the low-level saliency clues, which are computed
via frame-wise manner in previous subsection, we propose
to utilize the spatial-temporal consistency to further boost
the accuracy of the above low-level saliency, i.e., enhance
the common consistency of the salient foregrounds while
compressing those non-salient remains. Since the graph based
solutions can well reveal the short-term spatial-temporal con-
sistency, we propose to utilize Markov Random Field (MRF),
which is one of the most representative graph solution, to
perform binary saliency assumption in batch-wise fashion, and
the formulation of the spatial-temporal graph can be found
in Fig. 3c. In fact, the conventional Markov Random Field
(MRF) model consists two components, i.e., the data term
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Fig. 4. Demonstration of the learned video saliency toward our bi-level Markov Random Field (bMRF) saliency assumptions. The first row represents the input
video source frames, the second row demonstrates the low-level saliency, the third row is our bMRF saliency assumption results, and the last row demonstrates
the learned video saliency. Apparently, those undetermined regions (red regions in third row) can be correctly determined by our learning solution.

(i.e., the left part of Eq. 4) and the smoothness term (i.e., the
right part of Eq. 4), thus the energy minimization procedure
of MRF (GCO toolbox [29]) is sensitively controlled by the
strength parameters (i.e., ε in Eq. 4 and β in Eq. 5). Follow-
ing the “one-fix-all” rational, the main foci of the previous
MRF related works generally relies on the formulation of the
exact optimal MRF strength parameter, which attempt to suit
various scenarios with one fixed strength parameter, i.e., we
name it as single level MRF. However, due to the variation
nature of salient foregrounds, it is difficult for the single
level MRF to satisfy the long-term video saliency detections.
Therefore, to combat this limitation, we propose to adopt the
bi-level Markov Random Field (bMRF) model to convert the
conventional binary saliency assumption problem into multi-
layer semantic labelling. That is, instead of the conventional
“one-fix-all” strategy, we propose to respectively use the
“aggressive” strength parameters (εa in Eq. 4 and βa in Eq. 5)
to focus on the detection’ accuracy and use the “conservative”
strength parameters (εc in Eq. 4 and βc in Eq. 5) to bias
toward the detection’ integrity. Here we formulate our bMRF
solution as Eq. 4, and we use the subscript a/c to respectively
denote the strength parameters of the “aggressive” level MRF
and “conservative” level MRF. Also, we adopt an additional
constraint to enhance the consistency of inter-batch’ bMRF
binary assumptions, see details in Eq. 4.

min
Sa/c

∑
i

u(Si) + λ
∑

i,j∈εa/c

e−θ·|Ci−Cj | · |Si − Sj |,

s.t. |Λ(||Sp||0)− Λ(||Sq||0)| ≤ α · ξ,
(4)

where S ∈ {0, 1} represents the binary saliency assumption,
u(·) is an unary function (Eq. 5), parameter β controls the
bias tendency toward the data term, LS denotes the low-level
saliency, parameter λ controls the strength of the smoothness
term and we assign it to 1 to follow the suggestion of [21], θ
controls the color discriminative power, which is identical to
θ in Eq. 3, ε represents the spatial-temporal neighborhood re-
gions which is demonstrated as the blue dash circle in Fig. 3c,
the average function Λ(·) only considers those l0-norms be-
tween 20-th and 80-th percentiles, α = 0.1 × Λ(||Sp||0), p

and q are respectively from consecutive frame batches, and ξ
denotes the slack variable.

u(Si) =

{
1, if (LSi · Si) ≥ βa/c · std(LS)2

0, otherwise
. (5)

In fact, Eq. 4 can be effectively solved via iteratively per-
forming the convex optimization and adjusting βa/c to satisfy
the temporal constraint. Specially, we formulate the updating
procedure of βa/c as Eq. 6. Meanwhile, to guarantee the
convergency, we also shrink the slack variable ξ ← 0.9 × ξ
when the residual’ sign change, and we assign the initial
ξ = 1.

βa/c ← βa/c ·(1+0.1×sign(Λ(||Sp||0)−Λ(||Sq||0))·ξ). (6)

So far, we can obtain the bi-level saliency assumptions
via respectively assigning {βa, εa} and {βc, εc} to Eq. 4.
As βa/c inversely controls the performance trade-off toward
the εa/c, we empirically assign εa = 30, εc = 45, and
then perform quantitative evaluation to obtain the optimal
choice of βa/c (details can be found in Sec. VI-A). And we
also define the foreground mask FM, which comprises all
possible salient regions, as d(N(

∑
Sc) > 0.15), where d(·)

denotes the dilation operator with 20× 20 gaussian mask, N
represents the min-max normalization. Specially, the rational
behind of the foreground regions is to utilize the inter-frame’
coherency to coarsely locate regions containing all possible
salient foregrounds.

Based on the above computed two-level binary saliency
assumptions (i.e., Sa and Sc), we can perform the semantic
labelling (Step 2 in Fig. 1) as following:

(1) we regard the intersections of the obtained two-level
saliency assumptions (i.e., (Sa ∩ Sc)+) as those most trust-
worthy salient foreground regions, see Pos in Fig. 5.

(2) we regard the residual between the foreground mask FM
and the union of two-level binary saliency assumptions (i.e.,
{FM− (Sa ∪ Sc)+}+) as those most trustworthy non-salient
background regions, see Neg in Fig. 5.

(3) we regard the positive residual between the union of
two-level binary saliency assumptions and Pos (i.e., {(Sa ∪
Sc)+− (Sa∩Sc)+}+) as those undetermined regions (Unk in
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Fig. 5. Demonstration of those incorrect semantic labels, which is mainly
caused by exceptions of the bMRF’ strength parameters.

Fig. 5), which we propose to determine it via our subsequent
metric learning solution.

That is, by regarding bMRF determined semantic labels as
training instances (Fig. 3d), we can resort metric learning so-
lution, which will be further introduced in Sec. V, to estimate
an appropriate decision boundary for the saliency assignment
toward those undetermined remaining regions (Unk).

Here we summary the main differences between the conven-
tional MRF and our newly proposed bMRF method in three
aspects:
First, the graph structure of our bMRF is slightly different
to the conventional MRF (see the εa/c in Eq. 4). That is, we
use varying strength parameters (i.e., εa/c in Eq. 4 and βa/c
in Eq. 5) to facilitate our two-level saliency assumptions (i.e.,
the “aggressive” level and the “conservative” level).
Second, since the short-term saliency consistency is estimat-
ed in batch-wise manner, we put an additional long-term
constraint (see the constraints in Eq. 4) to ensure the iter-
batch smoothness to further robust the short-term saliency
consistency revealing.
Third, the subsequent usage of our bMRF is also different
to the conventional MRF method. As for the conventional
MRF methods, the estimated video saliency is solely related
to the MRF’ binary saliency assumption. However, our bMRF
solution simultaneously considers both bi-level assumptions
to formulate implicit semantic labels, whose quality directly
determines the performance of our subsequent learning proce-
dure.

V. LONG-TERM VIDEO SALIENCY MODELING

A. Feature Representation

Due to the low discriminative power of the RGB color
space, it is difficult to resort learning solution directly to obtain
reasonable discriminative margin, thus we propose to integrate
multi-scale spatial info. That is, for each SLIC over-segmented
superpixel (total superpixel number is 500 in single video
frame), we formulate our feature space F as follows:

F ∈ R1×45 = {RGB3, Lab3, CN3,

RGB4, Lab4, CN4, RGB5, Lab5, CN5},
(7)

where the up-script 3, 4, 5 respectively denote the features
obtained from different scale, i.e., SLIC over-segmentation
with total superpixel number 300, 400 and 500 respectively,
CN ∈ R1×10 [30] represents the color mapping results,
which is computed by converting the original 3 dimensional
RGB color into 10 dimension linguistic color labels. Specially,
we only consider the last two channels of Lab color info.

Fig. 6. Demonstrate of the intuition of our novel method toward the rejection
of non-salient regions. Benefit from these learned beyond scope info, i.e., the
long-term saliency consistency (Neg in #202), our method can automatically
determine those previous undetermined regions (Unk in #142), see the yellow
dash arrow.

Thus, the dimension of feature space F can be detailed as by
(RGB ∈ R1×3 + Lab ∈ R1×2 + CN ∈ R1×10)× 3 = 45.

B. Localized Saliency Learning

Based on the batch-wise semantic labels made by our bi-
level Markov Random Field (bMRF) method, we propose to
learn multiple non-linear feature transformations A ∈ R45×45

to enlarge the feature distance (dA(FPos, FNeg) in Eq. 8)
between the salient foregrounds (Pos with total m instances)
and the non-salient near surroundings (Neg with total n
instances).

dA(FPos, FNeg) = (FPos − FNeg)TA(FPos − FNeg). (8)

Thus, by regarding the Neg as the contrast anchors, we can
estimate the learned saliency degree of those undetermined
regions (Unk) via contrast computation. That is, we automat-
ically assign appropriate saliency value to those undetermined
regions (Unk) according to the transformed feature distance
(Eq. 9).

dA(FNeg, FUnk) = (FNeg − FUnk)TA(FNeg − FUnk). (9)

So far, the above learning problem can be relaxed into sat-
isfying implicit feature distance constraints while conserving
unbiased A to avoid over-fitting problem (i.e., ensuring the
closeness between A and identity matrix I), and the detailed
learning formulation can be found in Eq. 10.

min
A�0
||A, I||2

s.t. tr(A(Fi − Fj)(Fi − Fj)T ) ≥ ξl i ∈ Pos j ∈ Neg,
tr(A(Fi − Fj)(Fi − Fj)T ) ≤ ξu (i, j) ∈ Pos,
tr(A(Fi − Fj)(Fi − Fj)T ) ≤ ξu (i, j) ∈ Neg,

(10)
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Fig. 7. The qualitative demonstration via combining different components of our method, where the Motion column demonstrates the motion saliency map,
the Color column demonstrates the color saliency map, Low-level illustrates the motion and color fused low-level saliency map (Eq. 2), Bi-learned illustrates
the obtained saliency map after introducing our bMRF guided metric learning, Long-term illustrates the obtained saliency map after introducing the beyond
scope learned feature transformation, and Final denotes the final video saliency detection after spatial-temporal pixel-wise saliency assignment. Also, the
corresponding quantitative evaluation result can be found in Fig. 14.

where ξu and ξl represent the slack variables, and we ini-
tialize ξu/ξl as the upper/lower bound of the constraints’ l2
feature distance. Apparently, the rational behind the explicit
constraints in Eq. 10 is to enlarge the “inter class” feature
distance while shrinking the “intra class”. And we can obtain
m×n constraints, which is consisted by instances respectively
from Pos and Neg, to enlarge the feature margin between two
different class.

However, due to the occasional existence of the incorrect
bMRF saliency assumption (see demonstrations in Fig. 5), it
could easily bias the learning problem into local minima if
we attempt to satisfy all the above implicit constraints, not to
mention the extra brought-in computation cost. To reduce the
learning ambiguity, we propose to localize the formulation of
the constraint pairs to maintain the decision boundary staying
global optimal. That is, as for the intra class learning problem
(e.g., both Fi and Fj ∈ Pos), we focus our learning iterations
toward those constraint pairs with large feature distance. Then,
as for the inter class cases (e.g., Fi ∈ Pos and Fj ∈ Neg), our
learning procedure is biasing to those constraint pairs with
small feature distance. Meanwhile, the formation of constraint
pairs are all unique bijections with minimum global feature
distance (i.e., the feature distance sum of all selected constraint
pairs) to ensure the generalization ability of our learned feature
transformation.

To achieve this, we utilize binary assignment strategy to
construct constraint pairs, which can be detailed as Eq. 11
(total min{m,n} constraint pairs for inter class problem) and
Eq. 12 (total m+ n constraint pairs for intra class problem).

min
Q

Θ(

 ||F1, F1||2, · · · , ||F1, Fn||2
. . .

||Fm, F1||2, · · · , ||Fm, Fn||2

), (11)

where Θ(·) is the column-wise selective function which per-
forms the binary assignment Q ∈ R1×min{p,n} to formulate
our inter class constraint pairs. Also, the formulation of the
intra class constraint pairs can be viewed in Eq. 12.

max
Q

Θ(

 ||F1, F1||2, · · · , ||F1, Fm|n||2
. . .

||Fm|n, F1||2, · · · , ||Fm|n, Fm|n||2

). (12)

Actually, the above optimization can be efficiently solved
by Hungarian algorithm [31] in polynomial time, and thus
the constraint pairs are explicitly indicated by the binary
assignment result Q.

C. Mathematical Solver
To solve Eq. 10, we propose to use the Bregman projection-

s [46], which project the current solution onto single constrain-
t, to simultaneously satisfy those explicit constraint pairs and
maintain closeness between A and I. And the iteration steps
of the Bregman projection toward single distance constraint
(e.g., (Fi, Fj)) can be represented as follows:

A← A + µA(Fi − Fj)(Fi − Fj)TA, (13)

where µ controls the direction and strength of the Bregman
projections, which can be detailed as follows:

µi,j =
κi,jα

1− κi,jα× w
, (14)

κi,j =

{
1, if i ∈ Pos and j ∈ Neg
−1, if (i, j) ∈ Pos or (i, j) ∈ Neg . (15)

Here, κ is the indicator parameter (Eq. 15), α and w can be
iteratively updated according to our bMRF saliency assump-
tions via the following steps:

α = min(λi,j ,
κi,jγ

γ + 1
(

1

w
− 1

ξi,j
)) (16)

w = (Fi − Fj)TA(Fi − Fj), (17)

where w (Eq. 17) represents the projection residual under the
current solution A. Also, the slack variable ξ and the threshold
λ, which is initialized to 0, can be updated via Eq. 18.

λi,j ← λi,j − α, ξi,j ←
γξi,j

γ + κi,jαξi,j
. (18)

Specially, parameter γ is a predefined parameter to control
the trade-off between satisfying the constraints and minimizing
min
A�0

||A, I||2 (Eq. 10), and it will be further discussed in our

experiment section. In our implementation, the above learning
iterations will stop when either the total error reaches the
objective (10−2) or the iteration times exceed the predefined
allowance (i.e., 100× (m+ n+ min{m,n})).
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Fig. 8. Quantitative comparisons between our methods and 17 state-of-the-art methods over SegTrack v1 [32], SegTrack v2 [33], BMS [34], DS [35], UCF [36]
and Davis2016(480p) [37] dataset (almost 250 video sequences). Those state-of-the-art methods include: FD17 [7], SA15 [9], GF15 [10], BT16 [22], ST14 [38],
BL14 [19], MC15 [13], SU14 [39], CS13 [40], HS13 [41], MF13 [42], SB14 [18], MO13 [21], EC10 [43], RC11 [44], HC11 [44], and FT09 [45].

Fig. 9. Averaged quantitative comparisons between our methods and 17 state-of-the-art methods, i.e., the left part is the overall PR curve (over 6 adopted
dataset) and the right part is the corresponding Precision rate and Recall rate with fixed thresholds according to the largest F-measure. Those state-of-the-art
methods include: FD17 [7], SA15 [9], GF15 [10], BT16 [22], ST14 [38], BL14 [19], MC15 [13], SU14 [39], CS13 [40], HS13 [41], MF13 [42], SB14 [18],
MO13 [21], EC10 [43], RC11 [44], HC11 [44], and FT09 [45].

D. Learned Video Saliency

So far, for each video frame batch, we have independently
learned one non-linear feature transformation A, which can
automatically enlarge the inter class’ feature distance while
maintain compactness of intra class cases.

Therefore, with the learned feature transformation A, we
should assign large saliency value to those undetermined
regions Unk if it exhibits large transformed feature distance
toward the Neg. That is, we resort instances of Neg as the
contrast basement to compute the learned video saliency (Sali)

as follows:

Sali =
1

Z

∑
j∈Neg

(Fi − Fj)TA(Fi − Fj), (19)

where Z represents the normalization factor. Although Eq. 19
can correctly assign saliency value to those undetermined
regions Unk in most cases, it may produce incorrect saliency
assignments if Unk is extremely distinctive to both Pos and
Neg in the current video frame batch. To conquer this limita-
tion, we propose to integrate multiple feature transformations,
which are complementary learned from consecutive frame



1520-9210 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2018.2839523, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 9

Fig. 10. Qualitative comparisons over SegTrack v1 [32], SegTrack v2 [33], BMS [34], and DS [35] datasets. SRC denotes the source input video frames,
GT shows the ground truth, Ours demonstrates the results obtained by our method (highlighted with red rectangle), and column d-k demonstrate some
state-of-the-art methods, including: FD17 [7], GF15 [10], MC15 [13], SA15 [9], BT16 [22], ST14 [38], SU14 [39] and BL14 [19].

batches, into current saliency computation (the t-th frame
batch), see Eq. 20.

Sali =
1

N

t+2∑
k=t−2

ηk
∑

j∈Negk

(Fi − Fj)TAk(Fi − Fj), (20)

where we empirically set the weight parameter η as
ηt−2=ηt+2=0.1, ηt−1=ηt+1=0.25, ηt=0.3. To sharpen the
salient objects boundary and slightly suppress the false-alarm
detections, we also conduct spatial-temporal smoothing and
pixel-wise spatial-temporal smoothing scheme, which is iden-
tical to Eq. 3, and the pictorial demonstrations can be found in
Fig. 4. Also, the proofs toward the performance improvement
brought by introducing the above learning scheme can be
found in Fig. 14.

Here we further demonstrate the intuition of our long-term
metric learning toward the rejection of non-salient regions in
Fig. 6. In fact, the behind rational of our novel method is
to utilize bMRF to obtain trustworthy salient and non-salient
semantic labels (i.e., Pos and Neg), then utilize these labels
(specially those beyond scope binary assumptions) to guide the
subsequent metric learning to reveal the long-term common
consistency of the salient foregrounds. Based on the learned
long-term saliency consistency, our method can either com-
press those short-term motion induced false-alarm detections
(i.e., via contrast computation under the learned long-term
feature transformations, i.e., #142 frame in Fig. 6) or fill the
intermittent movement caused hollow effect (demonstrations
in Fig. 2)

VI. EXPERIMENTS AND EVALUATIONS

A. Parameter Selection

In principle, there are a total of three parameters having
influence on the performance of our method: bMRF’ strength
parameters βc, βa (Sec. IV-B) and learning balance factor γ
(Eq. 16). Since our learning performance is dependent on the
bMRF computed semantic labels, we first to quantitatively test
the overall performance toward different combinations of βc
and βa, and then determine the optimal choice of γ.

Parameter βc and βa. We have quantitatively tested the
performance of these parameters to obtain an optimal choice,
and the evaluation results can be found in Fig. 12a, where
the tested combinations include: βc ∈ {10, 15, 20}, βa ∈
{1.5, 2, 2.5}×βc. In fact, a large choice of βc easily affects the
integrity of the detected video saliency, while a small choice
tends to produce massive undetermined regions which easily
lead to poor learning performance. Meanwhile, a large choice
of βa definitely reduces the amount of determined positive
salient foregrounds (Pos) at the expense of confidence degree,
and vice versa. Thus, according to the results demonstrated
in Fig. 12a, we set the optimal choice of βc = 10 and
βa = 2×βc. Parameter γ. Actually, as we mentioned before,
the parameter γ controls the tradeoff between satisfying the
constraints and minimizing min ||A, I||2. That is, a large
choice of γ easily leads the optimization process biasing
toward the constraints, and vice versa. However, being ob-
served in Fig. 12b, these quantitative results suggest multiple
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Fig. 11. Qualitative comparisons over UCF [36] dataset. SRC denotes the source input video frames with Ground Truth marked with red rectangle, Ours
demonstrates the results obtained by our method (highlighted with red rectangle), and column c-k demonstrate some state-of-the-art methods, including:
FD17 [7], GF15 [10], MC15 [13], SA15 [9], BT16 [22], ST14 [38], SU14 [39], BL14 [19] and CS13 [40].

Fig. 12. (a) Quantitative evaluation toward different combination of βa and
βc (Eq. 5), where P1, P2 and P3 respectively represent: βc ∈ {15}, βa ∈
{1.5, 2, 2.5} × βc; P4, P5 and P6 respectively represent: βc ∈ {20}, βa ∈
{1.5, 2, 2.5} × βc; P7, P8 and P9 respectively represent: βc ∈ {25}, βa ∈
{1.5, 2, 2.5} × βc, and we select P8 as our optimal choice; (b) quantitative
evaluation toward different choice of γ (Eq. 16).

complementary choices, i.e., γ = 3, 6, 9. Therefore, for each
video frame batch, we independently learn 3 non-linear trans-
formations with γ ∈ {3, 6, 9} respectively via CPU parallel
computing. Thus, we further formulate the computation of
learned video saliency as follows:

Sali =
1

N

t+2∑
k=t−2

ηk

3∑
l=1

∑
j∈Negk

(Fi − Fj)TAlk(Fi − Fj). (21)

After determining the aforementioned parameters, we quan-
titatively evaluate the overall performance of our method by
testing different combinations of the component involved in
our method, and the results can be found in Fig. 14, where
the Color Saliency exhibits the worst precision-recall curve,
while the Motion Saliency exhibits much better performance.
Meanwhile, the Low-level Saliency, which is fused by spatial
and temporal saliency clues, is much better than pure Color
Saliency or Motion Saliency. Since our newly proposed learn-
ing scheme can guarantees the spatial-temporal smoothness
of the computed videos saliency, the Learned Video Saliency
(i.e., Bi-level Learning in Fig. 14) outperforms the Low-level
Saliency by a large margin. Also, the Learned Video Saliency
(Bi-level Learning) can be further improved by introducing
our long-term learning scheme via integrating multiple beyond

scope learned feature transformations, see the Long-term
Learning in Fig. 14. Furthermore, the spatial-temporal s-
moothing and pixel-wise assignment strategies (Final) can also
boost the performance of our Long-term Learning scheme
slightly.

B. Quantitative Evaluations

In this paper, we evaluate the performance of our method
over 5 public benchmarks, including SegTrack v1 [32],
SegTrack v2 [33], BMS [34], DS [35], UCF [36] and
Davis2016(480p) [37] dataset. The SegTrackv1 dataset con-
tains 6 short video sequences with fast object movements com-
pounded with complex surroundings. The SegTrackv2 dataset
contains 8 video sequences with mild-level object movements
in either stationary or non-stationary scenes. The DS dataset
contains 10 video sequences with slow object movements and
dynamic backgrounds. The BMS dataset contains 26 diverse-
length video sequences with various movements. The UCF
dataset, which is guided by the human eye fixations, contains
almost 150 sport related video sequences (exist almost 25%
multiple salient object cases). The Davis2016(480p) dataset
contains 50 video sequences (all videos only contain one
salient object) with well annotated GroundTruth.

We compare our method with 17 state-of-the-art method-
s, including FD17 [7], SA15 [9], GF15 [10], BT16 [22],
ST14 [38], BL14 [19], MC15 [13], SU14 [39], CS13 [40],
HS13 [41], MF13 [42], SB14 [18], MO13 [21], EC10 [43],
RC11 [44], HC11 [44], and FT09 [45]. To better verify and
validate the performance of our method, we leverage the
well-recognized precision-recall (PR) as evaluation indicator.
Towards this end, we alternatively segment the video saliency
detection results of different methods with the same threshold
(T ∈ [0, 255]), and the regions with saliency values larger
than T are labeled as foreground. If the obtained foreground
is consistent with the ground truth mask, it is deemed as
successful detection, and the final precision-recall curves are
obtained by varying T from 0 to 255. As the recall rate is
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Fig. 13. Qualitative comparisons over Davis2016(480p) [37] dataset. SRC denotes the source input video frames, GT denotes the ground truth, Ours
demonstrates the results obtained by our method (highlighted with red rectangle), and column d-k demonstrate some state-of-the-art methods, including:
FD17 [7], GF15 [10], SA15 [9], MC15 [13], SU14 [39], HS13 [41], MF13 [42] and SB14 [18].

inversely proportional to the precision, the tendency of the
trade-off between precision and recall can truly indicates the
overall video saliency detection performance. We demonstrate
the quantitative comparison results in Fig. 8. Since the ground
truth in UCF dataset is guided by human fixations, we also
reported the AUC results in Fig. 15.

As we can see the selected qualitative comparisons in
Fig. 10, Fig. 11 and Fig. 13, because the conventional graph
methods (i.e., GF15 and SA15) easily lead to the accumu-
lation of false-alarm detection when pursuing the spatial-
temporal smoothness of the detected video saliency, massive
false-alarm detections can be easily found in their detection
result, specially for those salient foreground object undergo
rapid movements (e.g., the monkeydog sequence). Although
the FD17 method adopts the low-rank guided alternative
alignment strategy to avoid the accumulation problem, yet
it frequently regards those short-term non-salient motions as
salient foregrounds, e.g., the floats in worm sequence. Partic-
ularly, due to the absence of the long-term info, FD17 method
easily produces hollow effect while the salient foreground
object undergoes long period intermittent movement, e.g., the
hollow horse in DO01 013 sequence. As for those fusion
based video saliency detection methods, e.g., ST14 and SU14,
their massive false-alarm detections are mainly brought by
the deficiencies of the sole fusion, which totally neglects the
spatial-temporal coherency. Further, because of the absence of
the temporal info, the conventional image saliency methods
(e.g., HS13 and MF13) exhibit much worse detections over all
adopted benchmarks. As for the results over the UCF dataset,
all these compared methods exhibit low recall rate, because
the human eye fixation guided ground truths are marked by a
rectangle box.

Specially, the quantitative comparisons of our method
toward the state-of-the-art methods over Davis2016(480p)
dataset can be found in the bottom-right of Fig. 8. Since
the salient objects in Davis2016 dataset are mostly dominated

by plain movements, the motion clue biased video saliency
detection methods (e.g., FD17 and SU14) easily obtain re-
markable quantitative scores. In fact, the major advantage of
our method is the newly designed learning solution to reveal
long-term info to handle scenarios with complex movements
(e.g., the intermittent movements in horse sequence in DS
dataset [35]). Thus, it is reasonable for our method to exhibit
equivalent performance to FD17 (motion biased method) over
plain motion dominated dataset, i.e., Davis2016.

Moreover, we also leverage the average precision, recall,
and F-measure indicators to demonstrate the advantages of
our method. The F-measure can be computed via

F-measure =
(β2 + 1)× Precision× Recall

β2 × Precision + Recall
, (22)

where Precision denotes the average precision rate, Recall
denotes the average recall rate, and β2 = 0.1 to bias toward
the Precision rate. It can be easily found in right-bottom of
Fig. 9 that, our method apparently outperforms other state-of-
the-art methods by a large margin. It also should be noted that,
the detection results from both SB14 and MO13 methods are
binary maps, so they have no PR curves in Fig. 8.

C. Limitations

In practice, there are total two limitations which may hinder
the broad application of our method. First, our method must be
applied via the off-line manner. Although we can buffer the
input video frame streams to alleviate the above limitation,
yet the performance trade-off still exist which deserves our
future investigation. Also, Fig. 16 demonstrates failure case
of our proposed method, which is mainly caused by the
incorrect long-term low-level saliency estimation. Another
limitation of our method is that, our method tends to be little
time-consuming, i.e., our method needs about 2.6s (CUDA
accelerated on a Alienware laptop with Quad Core i7-6700HQ
2.6 GHz, 16GB RAM and GTX 970m) to perform the saliency
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TABLE I
AVERAGE TIME COST (IN SECONDS) FOR SINGLE VIDEO FRAME OF THE STATE-OF-THE-ART METHODS. BOLD FONTS INDICATE THE BEST
PERFORMANCE WHILE THE italic FONTS INDICATE THE SECOND-BEST ONES, AND THE NORMAL FONTS INDICATE THE THIRD-BEST ONES.

Method Ours FD17 SA15 GF15 ST14 SU14 BT16 MO13 MC15 BL14 CS13 SU14 BL14
Time Cost 2.63 3.93 2.56 13.3 24.31 90.3 3.47 .291 55.3 53.3 3.59 90.6 53.3

Fig. 14. Precision-recall curves of our method combining with different
components, wherein Color Saliency represents the obtained video saliency
using color saliency clues alone, Motion Saliency represents the obtained
video saliency using motion saliency clues alone, Low-level Saliency (Color
+ Motion) represents the obtained low-level saliency, + Bi-level Learning
represents the learned video saliency with intra batch feature transformations
only, + Long-term Learning represents the learned video saliency with both
intra and inter batch feature transformations (i.e., our long-term learning
scheme) and Final Saliency represents the final video saliency detection
after superpixel-wise and pixel-wise spatial-temporal smoothing scheme. We
also tested our method with different optical flow choices, i.e., HS08 [47],
LC09 [27] and NL14 [48]. It should be noted that all these quantitative results
are evaluated over SegTrack v1 [32], SegTrack v2 [33] and BMS [34] dataset.

Fig. 15. Quantitative comparisons (AUC results) between our methods and
the state-of-the-art methods over UCF [36] datasets. Those state-of-the-art
methods include: FD17 [7], SA15 [9], GF15 [10], BT16 [22], ST14 [38],
BL14 [19], MC15 [13], SU14 [39], CS13 [40], HS13 [41], MF13 [42],
EC10 [43], RC11 [44], HC11 [44], and FT09 [45].

detection for single 300 × 300 frame. The major bottle neck
of the computation relies on two dimensions: the optical flow
computation (almost 1s) and the learning iterations (almost
0.9s). And the time cost comparison toward the state-of-the-
art video saliency detection methods are detailed in Table. I.
It should also be noted that we can alleviate time-consuming
limitation via adopting deep learning based optical flow solu-
tion as paper [49], which can reduce the time cost of optical
flow by half.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have detailed a novel learning framework
for video saliency detection, which takes full advantage of the
long-term spatial-temporal consistency to boost the detection

Fig. 16. Failure cases on Davis2016 [37] dataset. Since the motivation of
our bMRF semantic labelling is heavily dependent on the quality of the pre-
computed low-level saliency clues (i.e., motion clues and color clues), our
method easily fails when both the motion saliency and the color saliency are
simultaneously incorrect for all video frames.

accuracy. Our method comprises several novel technical el-
ements, including: (a) The newly-proposed bi-level Markov
random field (bMRF) based saliency assumption can well
represent the spatial-temporal consistency constraint explicitly
by the binary saliency assumption; (b) Based on the bMRF
guided saliency assumption, our learning solution can well
utilize the intrinsic spatial-temporal smoothness to robustly
compute the video saliency while avoiding the accumulation
of possible false-alarm errors, and also resort to the long-
term common consistency to further boost the accuracy of
the detected video saliency.

As for our near future works, we are particularly interested
in utilizing the learning-based solution to perform the motion
saliency detection instead of the most time-consuming
optical flow computation. Also, we are specially interested
in designation of an appropriation solution to integrate the
Gestalt cues [50] [51] to guide the spatial-temporal alignment
and diffusion.
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