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Abstract

In this paper, we propose a novel convolution neural networks (CNNs) based
method for nodule type classification. Compared with classical approaches that
are handling four solid nodule types, i.e., well-circumscribed, vascularized, juzta-
pleural and pleural-tail, our method could also achieve competitive classification
rates on ground glass optical (GGO) nodules and non-nodules in computed to-
mography (CT) scans. The proposed method is based on multi-view multi-scale
CNNs and comprises four main stages. First, we approximate the spherical sur-
face centered at nodules using icosahedra and capture normalized sampling for
CT values on each circular plane at a given maximum radius. Second, intensi-
ty analysis is applied based on the sampled values to achieve estimated radius
for each nodule. Third, the re-sampling (which is the same as the first step
but with estimated radius) is conducted, followed by a high frequency content
measure analysis to decide which planes (views) are more abundant in infor-
mation. Finally, with approximated radius and sorted circular planes, we build
nodule captures at sorted scales and views to first pre-train a view independent
CNNs model and then train a multi-view CNNs model with maximum pooling.
The experimental results on both Lung Image Database Consortium and Image

Database Resource Initiative (LIDC-IDRI) [I] and Early Lung Cancer Action
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Program(ELCAP) [2] have shown the promising classification performance even
with complex GGO and non-nodule types.

Keywords: Computed Tomography, Lung Nodule, CNNs

1. Introduction

Lung cancer has been the leading cause of cancer-related deaths in United
States in 2016 [3]. There are over 150,000 deaths caused by lung and bronchus
cancer, accounting for over 25% of all cancer-related deaths in the past year.
A total of over 220,000 new lung and bronchus cancer cases are projected to
occur in 2017. Fortunately, early detection and localization of nodules could
significantly improve the survival rate to 52% [4]. Among all the cases with
nodules, approximately 20% represent lung cancers [5]. Therefore, identification
of nodules from malignant to innocent is an essential part for both screening
and diagnosis of lung cancer [0].

Shapes of lung nodules are usually spherical, but can be complicated when
surrounded by anatomical structures such as vessels, and pulmonary walls.
Intra-parenchymal and GGO type nodules have higher chance to be lung can-
cer than those only connected with surrounding structures. Based on the fact
that malignancy has strong correlation with intensity distribution and relative
positions, lung nodules are categorized into different types: well-circumscribed
(W), located in the center of the lung without any connection to other tissues;
vascularized (V), the same as W except for connecting to vascular structures;
juxta-pleural (J), fully connected to pleural surface; pleural-tail (P), close to
pleural but only connected with a thin tail; GGO (G), the same with W except
for its non-solid CT value distribution. Besides these, we also conduct investi-
gation on the so-called non-nodules (IN), which have partial nodule features but
actually are not nodules. Typical cases for each type are shown in Fig.

CT could capture luxuriant details of both lung nodules and surrounding
structures, leading to a powerful tool towards diagnosis. However, lung nod-

ules are so complex that even experienced radiologists can not correctly tell
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Figure 1: Typical cases for each nodule type. Both images on axial plane and in 3-D spaces
are presented. Approximated nodule radii are shown in red circles. Red arrows are used to

point out corresponding nodules in 3-D space.

malignancy from benign in some cases. It is reasonable if we can label lung
nodules on CT images to their corresponding types, which will be of great help

for radiologists for early lung cancer diagnosis.

1.1. Previous Work

To detect lung cancer at early stage, various researches have been carried
out. Image intensity-based thresholding or edge preserving smooth is most com-
monly used because of their ability of overcoming large image contrast between
lung regions and surrounding body tissues [7]. Gao et al. [§] propose another
threshold-based approach consisting of four steps which take anatomical infor-
mation into consideration. Although simple and fast, it is extremely hard to
determine the threshold since it is greatly related to the image acquisition types,
protocols, intensities, especially when there are severe lung pathologies [9].

Compared with processing original CT images, the other straightforward
way is to design features that can best describe the characteristics of nodules.
The grey-level distribution represented as a histogram [12] has been effectively
used to characterize intensity variations.

Also, filter-based feature extraction techniques are widely applied to high-
light the edge and shape information for images [13]. Besides these commonly-

used computer vision features, new methods that are more incorporated with
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medical image analysis are also proposed. Scale-invariant feature transform
(SIFT) [15] provides a robust way invariant to image transformation, scaling
and rotation. Histogram of oriented gradients (HOG) [16] is interpreting ob-
jects by occurrences of gradient orientation in localized portions of an image.
Local binary patterns (LBP) [I7] provides a powerful tool for local texture classi-
fication by applying multi-scale and rotation-variant property. Ciompi et al. [18]
have encoded the nodule intensity distribution patterns into frequency domain
and classified nodules in a bag-of-words fashion. Although these descriptors
are effective individually, it is becoming more complex to achieve outstanding
human-design features towards huge and various data nowadays. Gu et al. [? |
propose an automatic lung lesion segmentation method based on existing ” Click
& Grow” method, which only require one seed point. The average similarity
indexes on 129 CT lung tumor images have shown the accuracy and stability of
the proposed method.

Besides intimate connection with local image analysis, Computer Aided De-
tection (CADe) systems have been developed and widely used to assist radi-
ologists in diagnosis and thereby making screening more effective [I9]. CADe
usually comprise of two stages: nodule candidate detection stage which usually
uses double thresholding and morphological operations to detect a large num-
ber of candidates, and false positive reduction stage, which uses features and
supervised classification. Although CADe systems are effective, there do exist
a considerable number of nodules undetected, prohibiting their widespread use
in clinical practice [20]. Abdel-Nasser et al. [? | propose a strain-tensor-based
method for quantifying and visualizing changes of breast tumors for patients
with undergoing medical treatments. They evaluate the performance of eight
robust and recent optical flow methods and use the aggregated approaches to
estimate the displacement fields.

Recently, inspired by a large amount of available data and more powerful
computational resources, especially parallelization ability empowered by Graph-
ic Processing Units (GPUs), convolutional neural networks (CNNs) [21I] have

shown their abilities of outperforming the state-of-the-art in classical computer
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vision applications [23], as well as in the field of medical image analysis [25].
Parveen et al. [20] have conducted reviews on computer aided detection and
diagnosis methods for lung cancer nodules including both classical and modern
methods for preprocessing, segmentation and classification, showing the high
efficiency of artificial neural network based methods. In [27], they investigate
more details on deep learning techniques including Deep Belief Network (DBN)
and CNNss for classification of lung nodules. Their experiments and results have
shown that deep learning framework can outperform the conventional feature
computing CADe methods. Shin et al. [28] have deployed researches on dif-
ferent CNNs architectures, different data sets on two specific CADe problems
including thoraco-abdominal lymph node detection and interstitial lung disease
classification, indicating the high potentials of CNNs in CADe field. Meanwhile,
since CNNs can be trained end-to-end with the layers automatically learning
discriminative features without handcrafting design, they are very suitable for
lung nodule type classification considering the complex intensity and surround-
ing anatomical structure distributions. Lo et al. [29] proposed the CNNs based
method for pulmonary nodule detection in chest radiology images. Arnaud
et.al [30] have used the multi-view CNNs for pulmonary nodule false positive
reduction in CT images, with a complete performance discussion over different
fusion methods [24]. Cao et al. [? | have proposed a multi-kernel based frame-
work for feature selection and imbalanced data learning, using multiple kernel
learning, multi-kernel feature selection and multi-kernel over-sampling. A few
other studies have also extended the use of 2D CNNs to 3D volumetric analysis
on 3D images, i.e., CT images. In all of these methods, volumetric images are
projected to fixed views (planes), followed by that each view is processed under
2D CNNs and finally integrated under a multi-view fashion with the best fusion
methods. Li et al. [33] have applied deep CNNs for nodule classification, which
achieve better feature representations for solid, semisolid and GGO nodules. Lin
et al. [? ] have proposed a set of fractal features based on fractional Brownian
motion model to distinguish nodule malignancy instead of classical CT attenua-

tion values. Experiments on 107 CT data have shown that their method achieve
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promising results in accuracy, sensitivity, etc. Liu et al. [34] have adopted multi-
view CNNs with two convolutional, two pooling and one fully connected layers
for binary and ternary nodule classification. Shen et al. [? | have proposed an
end-to-end Multi-crop Convolutional Neural Network to automatically extrac-
t salient nodule information from raw CT images with multi-cropped regions
and max-pooling operations to unify outputs of all regions, which can predic-
t not only nodule malignancy but also nodule semantic attributes. Jiang et
al. [35] cut multi-group patches from original images, followed by Frangi filter
enhancement to generate feedings for a four-channel CNNs. They acquire a rel-
ative low false positive rate at high sensitivity. Christodoulidis et al. [36] have
proposed an improved method for lung pattern analysis by transferring knowl-
edge from the similar domain of general texture classification. Anthimopoulos et
al. [37] have applied deep CNNs to classify healthy, ground glass opacity (GGO),
micro-nodules, consolidation, reticulation, honeycombing and a combination of
GGO/reticulation nodules for interstitial lung diseases diagnosis. Their method
has achieved 85.5% accuracy and demonstrating the potentials of CNNS in an-
alyzing lung patterns. Chen et al. [38] exploit three multi-task learning schemes
including stacked denoising autoencoder, CNNs and hand-crafted Haar-like and
HoG features, to obtain semantic feature descriptions for lung nodules in C-
T images. Their method may provide quantitative assessments of nodule for
better diagnosis.

While many studies have reported detection and segmentation of pulmonary
nodules, there are limited researches in nodule type classification. Farag et
al. [39] have reported some basic studies in classification problem. Zhang et
al. [I4] designed an overlapping nodule identification procedure for nodules lo-
cated at intersections among different types. After that, they have proposed
a multilevel patch-based context analysis for nodule classification [40] in light
of prior work proposed by Song et al. [4I] and validated their method on the
public ELCAP database.

All the aforementioned methods are based on designed features that are cal-

culated from candidate regions perhaps already segmented from images. How-
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ever, segmentation from blurry medical images has always been a non-trival
task and at the same time it is doubtful how well human-crafted features could
characterize candidate regions. Therefore, we apply CNN-based approaches be-
cause of the fact that they are taking raw images as input without the need of
segmentation and its self-adaptive weight tuning between adjacent layers. We
believe that CNN-based approaches would achieve comparable performance to

tackle the complexity of the pulmonary nodule classification problem.

1.2. Contributions

Inspired by the aforementioned works, this paper presents a CNN-based nod-
ule type classification method in a multi-view multi-scale fashion. The pipeline
of the proposed method is described in Fig. 2] Different from other classical
methods, we also conduct investigation on GGO and non-nodules. The major

contributions of our work include:

e A comprehensive method for classifying not only solid nodule types such as

well-circumscribed and vascularized ones, but also GGO and non-nodule

types.

e A normalized spherical sampling pattern based on icosahedron and a n-

odule radius approximation method based on thresholding.

e A view selection method for nodules on CT images based on high frequency

content analysis.

e A multi-view multi-scale re-sampling and color projection method for n-

odules, based on which the CNNs with maximum pooling is trained.

e A comprehensive validation on the publicly accessible datasets of LIDC-

IDRI and ELCAP.

The rest of this paper is organized as follows. Section [2| provides details for
data source we have been using to train and validate our method. Section [3]

documents how to sample nodule volumes, estimate nodule radii, select views
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Figure 2: Pipeline of the proposed method. (a) Sampling patterns. (b) Intensity threshold
based nodule radius estimation. (c) High frequency content based view selection. (d) multi-

view multi-scale CNNs with soft-max layer.

and ultimately train CNNs in a multi-view multi-scale fashion. A comprehen-
sive comparison between the proposed method and PB [40] method, as well as
comparison among our own methods is presented in Section[d Finally, we draw

a brief conclusion and pinpoint possible future work in Section

2. Materials

In our approach, we train and validate the CNNs both on LIDC-IDRI [I]
and ELCAP [2] separately. Original data from both sets are processed and
annotated by an experienced radiologist to obtain corresponding nodule types

and labels.

2.1. LIDC-IDRI

LIDC-IDRI [I] consists of totally 1018 chest CT image cases. Each case in
the database includes images from a clinical thoracic CT scan and an associated
eXtensible Markup Language (XML) file that records the locations of the image

pixels on the nodule boundary in each image and nine characteristics of the



180

185

190

195

200

205

nodule malignancy given by up to four experienced thoracic radiologists. LIDC-
IDRI contains a large quantity of non-blind expert- labeled nodule cases with
multiple types from different institutions [42] and provides a feasible platform
to quantitatively compare between different methods.

From the original LIDC-IDRI, only nodules with at least agreement level
2 (count of radiologists labeling the area as nodules or non-nodules) and sizes
larger than 3 mm are extracted. Totally, we obtain 1738 nodules (W: 905,
52.0%; P: 329, 19%; V: 219, 12.5%; G: 82, 6%; J: 203, 11.5%) and 1000 non-
nodules from 744 chest CTs with various imaging qualities of different patients.
The CT screening parameters include reconstruction intervals of 0.6-3.0 mm,
and tube currents of 120 mA with 200-400 kVp. The original CT slice is sampled
with 512 x 512 pixels with in-plane spacing as 0.4-1.0 mm, while the extracted
nodules are organized at 64 X 64 pixels with normalized in-plane spacing 1
mm. 80% of nodules for each type are used in training and validating, while
the other 20% are used to test trained CNNs. To enrich varieties, both training

and testing cases are augmented at different scales and views, separately.

2.2. ELCAP

ELCAP consists of an image set of 50 low-dose documented whole lung CT
scans with labeled nodules annotated by two experienced radiologists. Scans
are achieved in a single breath hold with 1.25 mm slice thickness. The in-plane
spacing is 0.5 mm while most nodule sizes range from 2 mm to 5 mm.

In our approach, we select 46 cases with 421 nodules (W: 92, 21.8%; V:
49, 11.6%; P: 155, 36.8%; J: 106, 25.2%, G: 19, 4.6%). It should be noted
that, ELCAP is a bit different towards LIDC-IDRI in two fields: its nodule
sizes are very small; it contains no annotated non-nodules. In fact, tiny nodules
mostly can only be observed on one single slice even for the ELCAP data,
which has already sustained perfect slice thickness as thin as 1.25 mm. That
means annotations for these nodules are not reliable and they can be recognized
as non-nodules even for radiologists during clinical practice. Meanwhile, our

CNNs model is trained, validated and tested with nodules larger than 3 mm on
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LIDC-IDRI. Therefore, to achieve fair comparisons, we have changed labels of

nodules whose sizes (= 2 mm as non-nodules in our experiments.

2.8. Data Augmentation

Extracted labeled nodules from LIDC-IDRI data set are unbalanced for each
type, which may mislead the optimization of CNNs to local optima and cause
predictions biased towards more frequent samples. Data augmentation is an
efficient method to prevent overfitting and misleading by adding in-variances to
existing data.

Nodule numbers for each type are much smaller than non-nodules, therefore
augmentation is only done to nodule types (type W, V, P, J, G). Trainning data
augmentation is done by two ways: (1) nodules are scaled [2.5, 3.0, 3.5] times of
their estimated radii (maximum 32 mm) and enlarged to 64 mm x 64 mm by
linear sampling; (2) nodules are re-sampled for each scale with random selection
in the sorted views. After augmentation, we achieve almost 640 training cases
for each type (nodules and non-nodules) in LIDC-IDRI.

It is reported that test data augmentation can also help to improve the
performance and robustness of CNNs [43]. Test data augmentation is performed
on each type by the same multi-view multi-scale way as training data. Finally,
we obtain almost 160 cases for each test type and resulting in around 1000 cases
in total in LIDC. Meanwhile, there is no need for consideration of balancing for
training in ELCAP since it is only used for validation. Therefore, each type in
ELCAP is augmented according to the original count, but finally resulting in
almost 690 in total.

3. Methods

3.1. Overview

In our approach, we are adopting a multi-view multi-scale CNNs based ap-
proach to overcome the shortcomings of hand-crafted features. Instead of calcu-

lating nodule features from segmented CT images, we are using an icosahedron

10
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based sampling pattern to encode CT values for both nodules and their sur-
rounding areas. Meanwhile, we have also added a multi-scale way to ensure
nodules and their surroundings are both captured, as well as a high frequency
content based view sorting method to output more informatics to CNNs com-
pared with classical fixed sampling patterns. In addition, we have applied a
linear color projection method to re-sliced CT values to preserve original image
characteristics as much as possible.

The pipeline of the proposed method comprises five steps. First, we prepro-
cess input CT data using a linear interpolation method (Sec. . Second, we
construct a normalized sphere partitioned by icosahedra at the center of nod-
ules and sample the volume using concentric circle planes whose normal vectors
are from the nodule center to icosahedron inner centers (Sec. [3.3]). Third, we
use a threshold approach to estimate the nodule radii, with which we re-sample
the nodule volume (Sec. . Fourth, with estimated radii, we re-sample the
data again in the same ways as that in the second step but at different scales
and compute the high frequency content to sort views depending on their im-
portance for each scale (Sec. . Finally, selected views at all scales are used
to first pre-train an independent CNN and then fine-tune it in a multi-view
fashion using maximum pooling, resulting in a multi-view multi-scale network
(Sec. [3.6).

Compared with current methods, the proposed method has several obvi-
ous advantages. In processing steps, the icosahedron-partitioned sphere ensures
normal sampling across nodule regions. Meanwhile, we are building multi-scale
views based on approximated radius, making built views capture not only nod-
ules but also nodule-surrounding anatomical structures, which would be of great
importance for classification of pleural-type nodules. Furthermore, instead of
fixed views, the view-sorting procedure based on high frequency content analy-
sis is forwarding dynamic views to CNNs according to their importance, which

could afford more informative details for correct classification.

11
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3.2. Preprocessing

The original CT images are with various imaging qualities and different inner
plane spacings, making these data anisotropic. Therefore, before all training and
testing processes, we first re-sample the original images to a unified inner plane
spacing as 1 mm linearly. Then, all cases are clamped to [-1000,1000] Hounsfield
Unit (HU) to remove noises whose CT values definitely do not belong to nodules.
These preprocessing steps are essential especially when encountering terrible

imaging qualities and help to reduce artifacts and noises on CT images.

8.8. Normalized Spherical Sampling

Sampling is the very first and important step in our method. It is commonly
agreed that nodule types are related to not only nodule intensity distributions,
but also nodule surrounding anatomical structures. Therefore, we are applying
a sampling method based on the icosahedron divided sphere which is described
in Fig. [3] The schematic representation of the normalized spherical sampling is

described in Fig. @] The algorithm for sampling is presented in Algorithm.

Figure 3: Icosahedron based sampling sphere division. Top row, icosahedra with different
levels; from left to right, original , level 1, level 2, level 4 icosahedra; Icosahedron edges
are in red and inner centers in green dots. Bottom row, generated sampling planes (views)
corresponding to top row, normal vector for each sample plane is from the center to the
icosahedron inner center, described using lines colored in blue. Due to symmetry, only half

inner centers are used in bottom row.

Denote the candidate nodule region as V' and the center of nodule as vy,..

First, we divide the sphere containing V' using icosahedra and compute inner

12
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Algorithm 1 Normalized Sphere Sampling

Input:
1: V, nodule volume. r, maximum sampling radius.
2: N / M / K, specified parameters.
Output:
3: S, sampled matrix with size N x M x K for V.
4: function SPHERE_SAMPLING
5: C < generate N inner centers
6: Ar «—r/M
7 forn=1—-N, m=1—-M,k=1— K do

8: Teur < AT XM

9: Snmk < linear_interp(V,n,m, k)
10: end for

11: return S

12: end function

centers C' = {c1,¢a,...,cn} for each triangles on the divided mesh surface as
described in Fig. [3] These N inner centers spread uniformly on the surface,
making a homogeneously sampling in nodule space. Then, N circle planes
centered at vy, with a given maximum sample radius 7,4, and normal vector
normal, = (¢, —Vgyz),n € {1,2,3,..., N} are calculated. These circles are used
to approximate the sphere in a normalized sampling fashion. After that, we slice
the volume V onto these N circle planes (Fig. 4] (a)), and generate M concentric
circles for each plane with r,,, = Arxm, m € {1,2,3,..., M} and Ar = a0 /M,
as described in Fig. 4| (b) and (c). Finally, K points are sampled along counter
clockwise direction on each circle, resulting in a vector describing CT values

along the corresponding circle, described as Spm = {Snm1, Snm2, - Snmk | in

Figl4] (d) and (e).

13
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Figure 4: Schematic view of the normalized spherical sampling. (a) All sampling views. (b)
The n-th sampling circular plane (view) with concentric circles. (c) Sampling pattern for n-th
plane. Inner and outer nodule sampling are described using red and blue circles separately.
(d) For the m-th circle, K points (white dots) are sampled in a counter clockwise direction.

(e) Corresponding sampled values.

3.4. Nodule Radii Estimation

It is essential to confirm the volume of interest (VOI) to extract features
more accurately. During sampling, it can be observed that the intensity value
distribution of nodules on different sampled circles have distinguished character-
istics. Intensity values for an inner circle are relatively high and stable; values
for an outer circle are somehow low but also stable; values for circles at the
boundary are very unstable and can be from very high to very low. In our
approach, we apply a threshold operation on sampled data to estimate nodule
radii. The algorithm is presented in Algorithm [2]

With sampled CT values S, N circular planes generated by icosahedra and
M concentric circles on each plane, we first calculate count of the K sampled

values greater than the given threshold (Algorithm [2{ Ln.6 - Ln.15). This leads

14
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to a counter matrix Counter with size N x M. Then, we accumulate the counter
through all the IV circular planes for each concentric circle, leading to a vector
R_Counter with size M (Algorithm [2| Ln.16 - Ln.22). Finally, the indices of
the first zero value and local minima in R_Counter are extracted as r; and
ro separately, and the estimated radius is calculated as the minimum between
ry and 7o (Algorithm [l Ln.23 - Ln.30). Typical estimated nodule radii are
described in Fig|l| using red circles.

3.5. View Selection

After we obtain the VOI, the next problem is how we can project the CT data
to 2-D images as input for CNNs. Although original CT images are 3-D, they are
usually projected to three 2-D fixed planes naming Azial, Sagittal and Coronal
for a better view for radiologists. It is reasonable to have a 2-D projection based
on both the complexness of CT images with many anatomical structures and
human’s better understanding. However, most classical approaches are adopting
the same fixed views for every nodule candidate, which are not efficient for all
CT images since many pathological areas are irregular and fixed views can not
present the best characteristics.

In our approach, we regard the quality of projection as how many irregular
distributions, in other words, the variational changes, are presented on the pro-
jected image. More irregular distributions captured by projected views should
lead to better visualization for the characteristics and morphological features of
candidate nodules.

The procedure of view selection is described in Fig. |5 after achieving esti-
mated nodule radii, we re-sample V' again with r.s; as maximum radius. The
problem of selecting views is transformed into how to sort the IV circular planes
according to their importance. Actually, since each circular plane comprises of
M concentric sampling circles, planes with more information should be those
inside which the sampling circles show more amount of variations. This can
be straight-forward solved in frequency domain since variations of signals in

a spatial domain imply presence of high frequency components in frequency

15
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Algorithm 2 Nodule Radius Estimation

Input:
1: S, sampled 3-D matrix with size N x M x K for V.
2: N / M / K, specified parameters.
Output:
3: Test, estimated radius for V.
4: function RADIUS_ESTIMATION
5: Counter < 0 // Counter for M circles x N planes
6: forn=1—- N, m=1—->M,k=1— K, S,mr > threshold do

7 Countery,, = Counter,,, + 1

8: end for

9: R_Counter < 0 // Counter for M concentric circles

10: form=1— M,n=1— N, R.Counter,, < counter_threshold do
11: Ty 4—m

12: end for

13: ro < local_min(R_Counter)

14: Test < min(ry,ro)

15: return r.;

16: end function

domain.
Therefore, we are applying the high frequency content analysis [44] to be

an indicator of importance as,

M
fregn =Y De(Snm), (1)
m=1

where D¢ (Spm) is the complex domain difference between target and observed

Short Time Fourier Transform (STFT) and defined as,
1 s
Dc(Snm) - Ekz_lLXvk _Xk‘v (2)

where X, is the STFT value of S,,,,,; and )?k is the polar form of X, K is

sampling count for each concentric circle.

16
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Figure 5: Schematic view of the view sorting procedure. Analysis for one view is shown. Fast
Fourier Transform (FFT) is applied to sampled CT values to transform them into frequency
domain. Then, computed high frequency contents are accumulated towards each view and
used as sign of variations. Finally, all views are sorted based on their corresponding frequency

variations.

The procedure is described in Algorithm [3] With re-sampled intensity dis-
tribution S, we compute the STFT and frequency for data grouped by K
sampling points for each m-th (m € 1,2,..., M) concentric circle on the n-th
(n € 1,2,...,N) circular plane (Algorithm [3| Ln.7 - Ln.13). Then we sum up
the frequency for all M circles on the n-th plane and use this accumulated fre-
quency as the indicator for this view. Finally, all N views are sorted by their

frequencies from high to low, indicating from most important to less.

8.6. CNNs Input Generation and Training

Multi-view CNNs has been proven efficient in 3-D object classification [45].
However, different from object classification, it is a common sense that nodule
type classification is related to not only nodule shapes and intensity distribution-

s, but also positions and surrounding anatomical structures. Thus, following the
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multi-view approach, with estimated radius r.s; achieved in Sec. and sorted
Views in Sec. we design the CNNs for original volume V' in a multi-view
multi-scale fashion to capture both nodule and its surrounding characteristics.
The process is presented in Algorithm

Although all views are acquired according to their significance, another big
difference between common computer vision and medical image analysis is from
the characteristics of imaging protocol. CT images are gray-scale while each
pixel is 12-bit, usually holding a value ranging from —1024 HU to +3071 HU.
Specific to lung cancer diagnosis, we are using values within [-1000,1000] HU.
However, this is also out of the ability of normal gray-scale images holding values
from 0 to 255 (2000 — 255,~ 10z) . Therefore, we use sampled concentric
circles from S at specified Views to re-build the images; then, we adopt a color
bar with 2000 color values smoothly changing from blue to red and projecting
values [-1000,1000] HU to these colors to generate RGB colored 2-D images.
Each intensity value on CT image is correspond to one specific RGB color.
This projection will encode original data in CT images as much as possible
and projected color images will definitely hold more information compared with
normal gray-scale images. The processed 2-D images are shown in Fig 6]

In our approach, we are first pre-training independent CNNs and then fine
tuning the pre-trained model with a maximum pooling layer to take all views and
scales into consideration. Totally, for each nodule candidate, we are adopting 3
scales, while 4 views for each scale, leading to 12 views finally. The architecture
of the proposed network is presented in Fig. [7] At the end of the proposed
CNNs, we are using a soft-max layer to process prior 6 x 1 fully connected layer
and decide the final classification results.

The characteristics of our proposed network lies in two aspects. In pre-
training stage, the CNNs will adjust weights according to the input twelves
images separately, which summarizes the common nodule type information in
each 2-D slice image at one single scale and view. After that, all 2-D slice
images corresponding to the same nodule will be feed in together, processed by

several convolutional layers to extract feature maps and finally pooled by the
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Figure 6: Generated multi-scale inputs for proposed CNNs. (a) and (e): axial view of original
CT images on slice 31 and 37. (b) and (f): 2-D images sliced from original volume and CT
values compressed to gray-scale images. (c) and (g): same with (b) and (f), but images are
re-built using color projections. (d) and (h): re-built images using concentric sampling data

and color projection. The color map used is also shown on right.

Algorithm 3 High Frequency Content Analysis
Input:

. S,C,N/M/K
Output:

2: Views, sorted views corresponding index in C.
3: function HIGH_FREQ_ANALYSIS
4: Freqall < 0

5: forn=1—- N, m=1— M do

6: this_freq + freq.analysis(Spm)

7 Freq.all, < Freq-all, + this_freq
8: end for

9: Views < sort(Freq-all)

10: return Views

11: end function
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Algorithm 4 Generate CNNs Images

Input:
1: V, candidate volume. Scales, given multi-scales.
2: r, maximum sampling radius.

Output: CNNImages, input images for CNNs.

3: function GENERATE_CNN_VIEWS

4: S <~ SPHERE_SAMPLING(V, r)

5: Test < RADIUS_ESTIMATION(S)

6: for scale in Scales do

7: S < SPHERE_SAMPLING(V, 7 X scale)

8: Views <— HIGH_FREQ_ANALYSIS(.S)

9: Images < BUILD_CIRCLES_IMAGES(SS, Views)
10: CNNImages < {CNNImages, Images}

11: end for

12: CNNImages < color_project(CN N Images)
13: return CN N Images

14: end function

max-pooling operation to collect maximum responses from all slice images. The
max-pooling will unite corresponding feature maps of different slice images into
single one, which next will be flatten by the fully-connected layer and processed

by the soft-max layer for final prediction.

4. Experiments and Validations

As described in Sec. [2] we totally select 1738 nodules and 1000 non-nodules
from 744 chest CTs in LIDC-IDRI. These nodules and non-nodules are extract-
ed with a 64 x 64 x 64 mm? volume. 80% of all these candidates are used
for training, while 20% are used for testing. Meanwhile, 421 nodules from 46
ELCAP cases are extracted for testing. ELCAP nodules smaller than 3 mm are

classified as non-nodules. Data augmentation is done on both LIDC-IDRI and
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Table 1: Parameter Selection for the proposed method

Parameter Value Description
Views 12 number of views
Scales 2.5, 3.0, 4.0 sampling scales
N 168 number of circular planes
M 32 number of concentric circles
K 128 number of sampling points
Tmaz 32 mm maximum sampling radius
threshold 0.15 (-700 HU) | maximum accepted CT value
counter_threshold 3200 minimum count of threshold

ELCAP and finally we obtain almost 3900 training (all from LIDC-IDRI) and
1600 testing (LIDC-IDRI: ~ 960, ELCAP: ~ 640) cases separately.

4.1. Parameter Selection

The parameter number of views has been detailedly discussed in [45]. Fol-
lowing that, we are using three scales [2.5, 3.0, 4.0] in 12 views. The selection of
these three scales is under consideration: since estimated radii are not accurate,
scale 2.5 is used to capture the whole nodule inside; scale 4.0 is used to capture
more surrounding details. In preprocessing, all images are re-sliced to an inner
plane space 1 mm; CT values within [-1000,1000] HU are linearly normalized
into [0,1]. In sampling stage, we are using a level-2 icosahedron mesh, but only
168 (N=168) inner centers are used due to symmetry, leading to a same amount
of circular planes; 32 (M=32) concentric circles are built for each circular plane;
128 (K'=128) sampling points are evenly distributed on each concentric circle;
maximum sampling radius (7y,q.) is set to 32 mm. All default parameters are

presented in Table
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Figure 7: Network architecture of the proposed method. The pre-trained model is without
max pooling layer to train an independent CNN without affection of views. This model is

then fine-tuned by combining all views together through the maz pooling.

4.2. Results

Classification results for typical cases in each type are shown in Fig. [§] La-
beled classification types are labeled out on top. Different boxes are used to
indicate different data set LIDC and ELCAP. Both re-built images for CNNs
input and original CT image on axial plane are shown. It should be noted that
these results are achieved using msnodulecircles described in Sec. Due to

page limit, more results can be found in the supplementary material.

4.3. Performance

It is hard to completely assess a classification model, especially in medical
image analysis field without so many public open-access benchmarks like other
computer vision fields to compete. However, LIDC-IDRI and ELCAP provide
some standards for comparison between different methods.

As described in Sec. 2] we are training the proposed CNNs on LIDC-IDRI
and testing the model on both LIDC-IDRI and another independent data set

ELCAP. We are testing our model on almost 1000 cases (~160 cases for each
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Figure 8: Classification results for typical cases of each type. Classified types are labeled. Red
rectangles: data from LIDC-IDRI. Green rectangles: data from ELCAP. In each rectangle,
top row: re-built images with color projection; bottom row: original CT images on axial plane

with nodule radius labeled in red circles.

type) of LIDC augmented data. The confusion matrix on LIDC-IDRI is pre-
sented in Table[2] Classification rate for each type is presented in main diagonal
of the confusion matrix. Totally, we achieve a classification rate as 92.1% (932
out of 1012) through all types of candidates. Through the matrix, we can figure
out that even though the classification rates for solid nodules (type W, V, J)
are high (>90%), more false classifications appear in type GGO. We think this
is because of the limitation of count for GGO type nodules.

We have also tested the proposed model on the public accessible data set
ELCAP. The confusion matrix is shown in Table. We achieve an overall
classification rate at 90.3% (624 out of 691). The testing results show a little
difference compared with LIDC-IDRI, which is related to the characteristics of
these two sets. Most nodule sizes in ELCAP are under 5 mm, making it even

harder to classify them into correct types.
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Table 2: Confusion Matrix for Proposed Model on LIDC-IDRI

G w N P A% J

0.83 | 0.02 | 0.13 | 0.02 | 0.00 | 0.00
0.01 | 0.97 | 0.01 | 0.00 | 0.02 | 0.00
0.00 | 0.01 | 0.99 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.10 | 0.90 | 0.00 | 0.00
0.01 | 0.06 | 0.01 | 0.00 | 0.92 | 0.00

~ < 7"z 2 Q

0.00 | 0.00 | 0.09 | 0.01 | 0.00 | 0.90

G = Ground glass optic W = Well-circumscribed N = Non-nodule

P = Pleural-tail V = Vascularized J = Juxta-pleural

From Table [3] we can figure out that the proposed model will give a high-
er response towards small nodules not touching too much with surrounding
anatomical structures into non-juxta-pleural types.

It can also observed that classification for juxta-pleural nodules is not as
efficient as other types. This has great correlation with nodule sizes based on
the fact that nodule radius estimation is not so efficient as other types towards

nodules attached on lung plurals when nodules are pretty small.

4.4. Comparison

As described in Sec. although much work has been done on lung nod-
ule detection and segmentation, only a few researches are focusing on nodule
type classifications. However, comparison between methods is an essential and
reasonable step for validating the efficiency of our method. Thus, we are doing
comparisons in two ways.

On one way, we have adopted the most similar work in [40], in which they
are focusing on classifying W, V, P and J type nodules using a patch-based
model.

On the other way, we compare different configurations to have an investiga-

tion in the effect of the multi-view multi-scale fashion:
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Table 3: Confusion Matrix for Proposed Model on ELCAP

G w N P A% J

1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.95 | 0.05 | 0.00 | 0.00 | 0.00
0.04 | 0.04 | 0.92 | 0.01 | 0.00 | 0.00
0.01 | 0.00 | 0.12 | 0.92 | 0.00 | 0.00
0.05 | 0.00 | 0.02 | 0.00 | 0.93 | 0.00
0.06 | 0.00 | 0.19 | 0.01 | 0.00 | 0.75

« <47z 20

e Configuration 1, called as nodules. The input 12 views for CNNs comprises
of 9 random views from the sorted Views and 3 specific views at center
of vy, on sagi ttal, axial and coronal planes. All views are sliced from
original data with linear interpolation and projected to [0,255] gray-scale

images.

e Configuration 2, called as colornodules. All 12 views are selected from the
sorted Views, randomly. Meanwhile, sliced data from original CT values
are re-projected to color space to generate color images (see Sec. [3.6)) as

input for CNNs.

e Configuration 3, called as nodulecircles. All 12 views are selected from the
sorted Views from top to bottom, meaning from more important to less.
Instead of using original sliced CT values, the sampled circle data S are

projected to color space to build color concentric circle images.

Each configuration is coming with a normal form and a multi-scale (ms-
) form, resulting in 6 configurations nodules, ms-nodules, colornodules, ms-
colornodules, nodulecircles, ms-nodulecircles. It should be noted that, all per-
formance results presented in Sec. [£.3]are achieved using msnodulecircles. We

validate all configurations on both LIDC-IDRI and ELCAP.
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Table 4: Confusion Matrix for Comparison with PB [40]

w P A% J

Prop / PB Prop / PB Prop / PB Prop / PB
W | 0.95/089 | 0.00/0.06 |0.00/004 |0.00/0.01
P 0.00 / 0.03 0.92 /091 | 0.00 /0.03 0.00 / 0.03
A% 0.00 / 0.05 0.00 / 0.06 0.93 / 0.86 | 0.00 / 0.03
J 0.00 / 0.03 0.01 / 0.06 0.00 / 0.04 0.75 / 0.87

Prop = proposed method PB = patch based [40] P = Pleural-tail

W = Well-circumscribed V = Vascularized J = Juxta-pleural

4.4.1. Comparison with other methods

Zhang et al. [40] proposed a multilevel patch based (PB) nodule classification
method and evaluated the classification performance for W, V, J and P type
noduls on ELCAP data set. Therefore, only performance of ELCAP of our
method for these four types is compared. The confusion matrix is presented
in Table. [] It should be noted that, classification results for GGO and non-
nodule are not shown, therefore, sum up of each row of the proposed method is
not equal to 1.

The overall claimed classification rate of PB [40] is 89% on ELCAP. Mean-
while, even though we are processing two more complex types of nodules (GGO
and non-nodule), we also achieve a higher rate at 90.3%. When diving into
results for each individual type, we can observe two facts: the proposed method
outperforms PB at nodule types W, P and V but falls behind at J; most classi-
fication errors of the proposed methods are lying in GGO and non-nodule types.
If we wipe out these two types, the proposed method is outperforming PB at
all four types.

4.4.2. Comparison among different configurations
To have a comprehensive understanding of the proposed method and the

effect of each step we use, we are validating the method using 3 different con-
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figurations with both normal and multi- scale form on LIDC and ELCAP data
set, resulting in 6 confusion matrices totally. Each confusion matrix consists of
the normal and multi-scale evaluation of one configuration on one data set.

The confusion matrix for nodules and ms-nodules, colornodules and ms-
colornodules, nodulecircles and ms-nodulecircles on LIDC-IDRI are presented
in Table [5] Table [f] and Table [7] with overall classification rate as 83.1%, 84.1%,
81.1%, 85.9%, 88.2%, 92.1%, separately. Meanwhile, the confusion matrix for
nodules and ms-nodules, colornodules and ms-colornodules, nodulecircles and
ms-nodulecircles on ELCAP are presented in Table [§] Table 0] and Table
with overall classification rate as 79.6%, 86.5%, 84.1%, 84.3%, 84.9%, 90.3%,
separately.

Comparing from left to right in the same table, it can be figured out that,
multi-scale approach helps raise accuracy in classifying most types. Comparing
from Table. [5] to Table. [6] and Table. [§ to Table. [9] it is obvious that color pro-
jection from CT values to color images does not indeed improve performance.
Meanwhile, comparing from Table. [f] to Table. [7] and Table. [9] to Table.
it is obvious that when used combined with circular sampling, the generated
color images definitely help to raise accuracy. With all techniques in the multi-
view multi-scale fashion, we are achieving an overall classification rate as high
as 92.1% (Table. [7] msnodulecircles) on LIDC-IDRI and 90.3% (Table. m-

snodulecircles) on ELCAP, denoting the promising performance of our method.

4.5. Discussions and Limitations

Although the proposed method achieves promising results on both LIDC-
IDRI and ELCAP data set, the overall classification rate on ELCAP is slightly
lower than LIDC-IDRI. The most obvious reason is LIDC-IDRI contains more
various testing cases and all cases distribute more normally than ELCAP. How-
ever, the other important reason should be nodule sizes on ELCAP are too small
to be estimated using threshold based method, leading to wrong classification

results. Therefore, a better investigation based on the proposed method against
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Table 5: Confusion Matrix for nodules/ms-nodules on LIDC-IDRI

G \%% N P \% J

0.80 / 0.47| 0.00 / 0.09 | 0.20 / 0.35 | 0.00 / 0.01 | 0.01 / 0.08 | 0.00 / 0.00
0.01 / 0.00 |0.83 / 1.00| 0.05 / 0.00 | 0.00 / 0.00 | 0.13 / 0.00 | 0.01 / 0.00
0.05 / 0.02 | 0.07 / 0.05 |0.92 / 0.87| 0.06 / 0.02 | 0.04 / 0.02 | 0.07 / 0.02
0.00 / 0.01 | 0.00 / 0.01 | 0.12 / 0.08 [0.91 / 0.89| 0.05 / 0.00 | 0.00 / 0.00
0.07 / 0.01 | 0.04 / 0.03 | 0.02 / 0.05 | 0.00 / 0.00 |0.88 / 0.89]| 0.01 / 0.01
0.01 / 0.01 | 0.00 / 0.00 | 0.19 / 0.10 | 0.00 / 0.00 | 0.00 / 0.00 |0.86 / 0.89

“ < v Z 20

Table 6: Confusion Matrix for colornodule/ms-colornodule on LIDC-IDRI

G \\% N P A% J

0.62 / 0.65( 0.00 / 0.00 | 0.38 / 0.35 | 0.00 / 0.00 | 0.00 / 0.00 | 0.00 / 0.00
0.00 / 0.02 |0.86 / 0.89| 0.03 / 0.04 [ 0.00 / 0.01 | 0.11 / 0.04 | 0.00 / 0.00
0.00 / 0.01 | 0.02 / 0.03 [0.94 / 0.95| 0.02 / 0.00 | 0.00 / 0.01 | 0.03 / 0.00
0.02 / 0.01 | 0.12 / 0.04 | 0.07 / 0.03 [0.79 / 0.93( 0.00 / 0.01 | 0.00 / 0.00
0.02 / 0.03 | 0.07 / 0.06 | 0.05 / 0.02 | 0.03 / 0.00 [0.83 / 0.89] 0.00 / 0.00
0.00 / 0.00 | 0.00 / 0.00 | 0.23 / 0.20 | 0.00 / 0.02 | 0.00 / 0.00 |0.76 / 0.78

w < " Z 20

Table 7: Confusion Matrix for nodulecircles/ms-nodulecircles on LIDC-IDRI

G \\% N P A% J

0.80 / 0.83) 0.01 / 0.02 | 0.20 / 0.13 | 0.00 / 0.02 | 0.00 / 0.00 | 0.00 / 0.00
0.01 / 0.01 |0.97 / 0.97| 0.03 / 0.01 | 0.00 / 0.00 | 0.00 / 0.02 | 0.00 / 0.00
0.00 / 0.00 | 0.01 / 0.01 |0.98 / 0.99( 0.01 / 0.00 | 0.00 / 0.00 | 0.01 / 0.00
0.01 / 0.00 | 0.00 / 0.00 | 0.14 / 0.10 [0.86 / 0.90| 0.00 / 0.00 | 0.00 / 0.00
0.01 / 0.01 | 0.01 / 0.06 | 0.05 / 0.01 | 0.00 / 0.00 |0.94 / 0.92| 0.00 / 0.00
0.00 / 0.00 | 0.00 / 0.00 | 0.21 / 0.09 | 0.00 / 0.01 | 0.01 / 0.00 [0.79 / 0.90

w < " Z 20

tiny nodules (< 3mm) will draw our more attention in the future.
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Table 8: Confusion Matrix for nodules/ms-nodules on ELCAP

G

\\%

N

P

Y

J

w < " Z 20

0.74 / 0.81
0.00 / 0.02
0.00 / 0.00
0.00 / 0.08
0.03 / 0.01
0.01 / 0.02

0.21 / 0.02
0.61 / 0.86
0.00 / 0.00
0.00 / 0.00
0.05 / 0.01
0.00 / 0.00

0.05 / 0.17
0.37 / 0.03
1.00 / 1.00
0.23/0.17
0.14 / 0.09
0.40 / 0.16

0.77 / 0.75

0.00 / 0.00
0.00 / 0.01
0.00 / 0.00

0.00 / 0.00
0.01 / 0.00

0.78 / 0.82

0.00 / 0.00
0.01 / 0.08
0.00 / 0.00
0.00 / 0.00

0.00 / 0.00

0.00 / 0.00
0.01 / 0.01
0.00 / 0.00
0.00 / 0.00
0.00 / 0.06

0.58 / 0.81

Table 9: Confusion Matrix for colornodules/ms-colornodules on ELCAP

G

W

N

P

A%

J

w < " Z 20

0.57 / 0.79
0.03 / 0.01
0.01 / 0.00
0.00 / 0.09
0.04 / 0.02
0.00 / 0.01

0.00 / 0.00
0.84 / 0.85
0.01 / 0.00
0.02 / 0.00
0.07 / 0.06
0.00 / 0.00

0.43 / 0.21
0.06 / 0.09
0.97 / 1.00
0.18 / 0.1
0.09 / 0.06
0.28 / 0.36

0.00 / 0.00
0.00 / 0.00
0.00 / 0.00
0.79 / 0.79
0.00 / 0.00
0.00 / 0.00

0.00 / 0.00
0.07 / 0.04
0.00 / 0.00
0.02 / 0.02

0.79 / 0.83

0.02 / 0.01

0.00 / 0.00
0.00 / 0.01
0.00 / 0.00
0.00 / 0.00
0.01 / 0.03
0.70 / 0.62

Table 10: Confusion Matrix for nodulecircles/ms-nodulecircles on ELCAP

G

W

N

P

Y

J

w < " Z 20

1.00 / 1.00
0.04 / 0.00
0.10 / 0.04
0.04 / 0.02
0.10 / 0.05
0.02 / 0.05

0.00 / 0.00
0.92 / 0.95
0.00 / 0.04
0.01 / 0.00
0.00 / 0.00
0.01 / 0.00

0.00 / 0.00
0.03 / 0.05
0.90 / 0.92
0.11 / 0.06
0.09 / 0.02
0.32 / 0.20

0.00 / 0.00
0.00 / 0.00
0.00 / 0.01
0.83 / 0.92
0.00 / 0.00
0.02 / 0.00

0.00 / 0.00
0.01 / 0.00
0.00 / 0.00
0.01 / 0.00
0.82 / 0.93
0.00 / 0.00

0.00 / 0.00
0.00 / 0.00
0.00 / 0.00
0.00 / 0.00
0.00 / 0.00
0.63 / 0.76
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5. Conclusion

In this paper, we have devised a multi-view multi-scale CNNs model for
lung nodule type classification. We employed concentric circles and icosahedra
to conduct sampling over nodule volume normally. A threshold-based method
is used to approximate nodule radii. We made use of high frequency content
analysis to select the views. Finally, the built multi-view, multi-scale, color-
projected images are used to first pre-train an independent CNNs and then fine-
tune the pre-trained model with maximum pooling. The overall classification
rates have reached 92.3% for almost 1000 cases on LIDC-IDRI and 90.3% for
690 cases on ELCAP, and such impressive results have shown the promising
performance of the proposed method. It is our hope that our newly-proposed
method could be of great assistance for radiologists to diagnosis of lung cancer
in clinical practice. Future work will lie in two aspects. One is a scale in-variant
and more robust radius estimation method towards very tiny nodules (radius
< 3 mm) and juxta-pleural nodules. The other is automatically labeling out
types, positions and sizes for nodules not centered in images with less human

interactions.
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