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Convolutional neural network (CNN) has demonstrated its superior ability to achieve amazing accuracy in 

computer vision field. Nevertheless, for practical domain-specific image recognition tasks, it still remains 

difficult to obtain massive high-quality labeled datasets due to the strong requirements for extensive, te- 

dious manual processing. Inspired by the well-known observation that human brain can accurately recog- 

nize objects without relying on massive congeneric examples, we propose a novel deep variance network 

(DVN) to further enhance the generalization ability of CNN in this paper, which could still produce higher 

recognition accuracy even with unbalanced training datasets than original CNN. The key idea of our DVN 

is built upon the intrinsic exploitation of inter-class homogeneity and intra-class heterogeneity. Towards 

such goal, we make the first attempt to incorporate a hierarchical Bayesian model into the powerful 

CNN framework, which can transfer the joint feature distribution from certain object’s complete training 

dataset to other object’s incomplete training dataset in an iterative way. In each training cycle, the CNN- 

resulted features are clustered into discrimination-related subspaces to guide the learning and adaptive 

adjustment of homogeneity and heterogeneity over unbalanced training datasets. In practice, we furnish 

several state-of-the-art deep networks with our proposed DVN, and conduct extensive experiments and 

comprehensive evaluations over CIFAR-10, MNIST, and SVHN benchmarks. The experiments have shown 

that, most of the furnished deep networks can benefit from our DVN, wherein they gain at most 6.9% 

accuracy improvement over CIFAR-10 benchmark, 52.83% error reduction over MNIST benchmark, and an 

improvement of 6.2% over SVHN datasets. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The accurate and rapid classification of wild images plays a crit-

ical role in computer vision related applications. In practice, deep

learning methods typically require thousands of well-labeled train-

ing samples to learn new concepts. Specifically, different categories

often involve unbalanced samples, which means the sample num-

ber of each class is not equal. The instinct of unbalance problem is

the unequal difficulties to obtain the labeled images of each class

[4,5,30,56,60] . For example, the samples of automobiles and planes

can be more easily obtained from the internet than those of ships

and rockets, and the samples of cats and dogs can be more easily

obtained than those of any other rare animals. Furthermore, even

if the numbers of the samples are equal, the class-specific accuracy

is affected by the diversity of the class samples. Thus, the balance

of training dataset is vital for classification tasks. 
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Deep learning methods can achieve satisfactory performance

ith sufficient well labeled data sets [50,54] , but still face the

nbalanced challenges. It should be noted that the performance

ains achieved from existing deep networks can be attributed to

he increase of network depth and large-scale well-labeled train-

ng dataset. For example, some works [16,50,54,55] employ the

locks mode to increase the depth of deep convolutional archi-

ecture, and rank tops in recognition and detection tasks for Im-

genet [46] challenges. However, deep models increase the depen-

ence of the well-labeled training dataset at the same time [38,39] .

nfortunately, the annotation of the dataset is expensive and time-

onsuming. Imagenet dataset needs tens of thousands of people to

anually annotate 1500-class objects over fifteen million images

n a crowdsourcing way, which costs about five years. It is hard

o guarantee the balanced number of each class. However, the bal-

nce of sub-datasets is not essential for human’s complex neurons

ystem, while only a few examples are sufficient for human to un-

erstand a new category and further make meaningful reasoning

bout other similar instances. Therefore, the learning method is to

https://doi.org/10.1016/j.patcog.2018.03.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.03.035&domain=pdf
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e improved in the sense of extracting more information on the

nbalanced dataset. Thus, we aim to improve the learning ability

f CNNs over the unbalanced dataset. 

To solve the unbalance problem in deep learning field, previ-

us works mainly focus on the re-sampling over numbers and dis-

ributions in-between categories [4,5,8,30,31,51,56] and the cost- 

ensitive loss [18] . The traditional methods can benefit to the

shallow” learning methods [13] , however, it is not the most effec-

ive way to deal with unbalanced data in the context of deep learn-

ng. Moreover, such works commonly have inherent limitations

18] . For instance, over-sampling [36] can easily introduce unde-

irable noise, which gives rise to overfitting risks. Such limitations

re also negative to deep learning methods [18] . These methods do

ot consider the essential problems during the unbalanced learn-

ng process, which can be summarized as three main challenges

elow. The first one is how to properly leverage practical unbal-

nced dataset with complex variances in scales, qualities, and ac-

uisition difficulties. With this method, overfitting problem can be

voided as much as possible. The second one is how to adaptively

nrich the information of scale-limited training dataset. With this

ethod, unbalanced dataset is trained sufficiently. The third chal-

enge is how to effectively accommodate the inexhaustible feature

hanges involved in the same-class instances. With this method,

he generalization ability can be guaranteed. 

Furthermore, the unbalance problem defined by traditional clas-

ifiers is limited to the number of each class. According to the

revious works [2] , the balanced dataset should satisfy two prin-

iples: (1) each of the involved sub-dataset has equal number of

raining samples; (2) the sub-datasets corresponding to each class

hould play an equal role in the training phase. This number-based

efinition makes the previous works focus on expanding number

f samples, which can not expand the information for minority

lasses. When trained in an information-insufficient way, the CNNs

asily produce an overfitting problem. Besides, the two principles

re more or less ignored in the training process, which depends on

he difficulty degrees of each class, and it is the instinct factor for

raining datasets of CNNs. Therefore, we extend the number-based

nbalanced dataset to the accuracy-based unbalanced dataset for

NNs. On that basis, current CNNs-related methods typically suf-

er from unbalanced training datasets (such as MNIST, CIFAR-10,

IFAR-100, and SVHN datasets). In addition, the classification ac-

uracy on the number-based unbalanced datasets, such as, CIFAR-

0, CIFAR-100 (we re-organize them as number-based unbalanced

ataset on purpose) can also be improved when adopting proper

nbalanced learning schemes in the training phase. Therefore,

he accuracy-based unbalance principles are more general than

umber-based ones (unbalance refers to accuracy-based unbalance

n this paper unless otherwise specified). However, unbalanced

earning will inevitably give rise to great challenges in CNNs, as

t becomes very hard to learn from the samples of the minority

lasses [4,5,8,30,31,51] . 

Bayesian based techniques, which are able to learn the dis-

ribution based on the training datasets, show potential over the

mall-scale dataset [49] . And the techniques can avoid the overfit-

ing in large-scale datasets. For instance, Bayesian Program Learn-

ng (BPL) [26] is capable of learning a large class of visual concepts

rom a single example and generalizes in ways that are mostly in-

istinguishable from people. One-shot learning [48] developed a

eep generative model to combine the representational power of

eep learning with the inferential power of Bayesian reasoning. In

act, such methods are hard to represent high diversity in visual

eatures. Motivated by both of the learning methods, we propose

o learn the features via deep learning and further resort to the

ayesian network to augment the distribution, so as to solve the

nbalance problem during CNNs training. Our method is based on
t  
he observation that the inter-class objects may have similar sam-

le distribution, while the intra-class objects may have variations. 

To tackle the aforementioned challenges, we propose to inte-

rate the advantages of probability graph method built on the

nter-class and intra-class distributions based on Bayesian hierar-

hical model to embed into CNNs. It is firstly trained on the CNNs

o extract features, the features are clustered into groups via hyper-

raph. The groups are further clustered into three subspaces based

n the degree of data overlapping among different classes. Then

ased on the inter-class and intra-class distributions, new virtual

amples are generated to augment the training datasets to solve

he unbalance problem. Specifically, the salient contributions of

his paper can be summarized as follows: 

(1) We pioneer a generic deep variance network (DVN) by inte-

grating three subspaces as the prior in the Bayesian network

to iteratively back propagate into the powerful CNN frame-

work, which can greatly improve the CNN performance for

unbalanced training datasets. 

(2) We propose a hierarchical Bayesian model for the transfer

learning of intra-class heterogeneity and inter-class homo-

geneity over CNN-produced feature space, which can intrin-

sically transfer the joint feature distribution from certain

complete training dataset to other incomplete datasets, and

expedite the training convergence of CNN. 

(3) We propose a virtual example generation method based on

Gaussian kernel density estimation, which conduces to com-

plete the unbalanced training dataset via passing the infor-

mation from feature level to image level in a top-down way.

(4) We verify our DVN by using it to furnish several state-of-the-

art CNN networks , and conduct extensive experiments and

comprehensive evaluations over CIFAR-10, CIFAR-100, MNIST 

and SVHN benchmarks, which demonstrate its superiorities

in effectiveness and universality. 

The rest of the paper is organized as follows. Section 2 firstly

nalyzes the unbalance problem in detail, and then briefly re-

iews the deep neural networks from three different perspectives.

ections 3, 4 and 5 detail our DVN framework. Section 6 eval-

ates our DVN over four datasets under accuracy-based and

umber-based unbalanced settings. Section 7 discusses the theo-

etic boundary of the proposed DVN. Finally, Section 8 makes con-

lusions and conducts discussions for future work. 

. Related work 

This section discusses problems caused by the utility of unbal-

nced training datasets first and then briefly reviews deep neural

etworks from three different perspectives. 

.1. Unbalanced datasets 

To solve the unbalanced(number-based) learning problem, there

re mainly two types of methods. The first one is to balance the

ample number of different-class training images according to the

overing the ratios of each class’ samples (resampling) [32,64] .

mong the resampling methods, the most famous one is the syn-

hetic minority over-sampling technique (SMOTE) [7] . It generates

ynthetic samples, which are interpolations of intra-class neigh-

oring samples, to augment the minority class. And its underly-

ng assumption is that, the augmented interpolations deviate from

 locally linear feature space instead of the original class distri-

ution. Recently, Tzelepis et al. [56] proposed re-sampling via a

ulti-dimensional Gaussian distribution and reformulated a max-

mum margin classifier. Such methods are efficient for isotropic

lasses. Most works in this field commonly use classifiers to adjust

he hyperplane to discriminate the classes. For example, Li et al.
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[30] proposed a deep generative model, and Brun et al. [5] used

dynamic classifier selection to improve the unbalanced datasets.

Some other works focused on augmenting the dataset. For exam-

ple, Son et al. [51] proposed to cluster the dataset via exemplars

from heterogeneous data, which further showed the analysis of

data distribution could improve the unbalance dataset learning. Li

et al. [32] proposed a class-specific feature group method. And Zhu

et al. [64] studied the synthetic minority over-sampling technique

for multi-class imbalance problems. However, most of the existing

over-sampling methods are demonstrated to generate wrong syn-

thetic samples for minority incomplete classes in some cases, and

thus, making the unbalanced learning tasks much harder. 

The second one focuses on the class-wise weights’ adjustment

in training phase according to the accuracy of each class’ learn-

ing results (cost-sensitive) [15] . Wang et al. [57] proposed class-

weighted loss to enhance the minority class accuracy. The diver-

sity of each class’ samples could also affect the performance of

the cost-sensitive based methods. Considering F-measure is a more

reasonable performance metric compared to accuracy, some recent

works proposed to systematically optimize F-measures for the clas-

sification and feature selection in unbalance datasets. For example,

Dembczynski et al. [11] optimized the F-measure in multi-label

classification tasks, Liu et al. [34] employed F-measures for cost-

sensitive feature selection, and Puthiya Parambath et al. [42] op-

timized F-measures via cost-sensitive classification. Furthermore,

Brun et al. [6] suggested that the problem was not solely caused

by class imbalances, but was also related to the difficulty of data

overlapping among the classes. 

In deep learning techniques, some works proposed to extend

the previous two types of works to facilitate CNNs. Peng et al.

[40] proposed feature fusion from several unbalanced datasets.

Ando and Hensman [3] extended the synthetic samples, but was

limited to the number-based unbalanced dataset. Masko and Hens-

man [36] demonstrated the over-sampling method could improve

the accuracy of the unbalanced datasets, but it was limited to sim-

ply replicating images of the minority class. 

Recently, to make CNN available on general devices, many

works try to compress the CNN models. For example, Wang et al.

[58] leveraged K-means clustering to compress the convolutional

layers of CNNs in discrete cosine transform space. Rastegari et al.

[45] proposed Xnor-net by approximating the convolutions with

primarily binary operations, and it could save 32 times memory.

Luo et al. [35] focused on the filter level pruning, which did not

change the original network structure but could be perfectly sup-

ported by any off-the-shelf deep learning frameworks. 

In summary, the two methods are initially designed for the un-

balance problem in traditional classifiers without CNNs and some

limited works try to extend the methods to improve CNNs’. How-

ever, the works fail to balance the CNN classes, and they are not

efficient for the large-scale dataset and can not totally learn the

semantic features from CNNs. To the best of our knowledge, we

are the first to embed the bayesian network into CNNs (DVN) to

learn the semantic features over unbalanced datasets. 

2.2. Improved convolution neural networks via depth increasing 

The CNNs mostly focus on improving the accuracy of the un-

balance classes, but choose to ignore the unbalanced distribution

and weights. Most of the existing deep neural network meth-

ods improve the feature capture capability for many visual recog-

nition tasks by increasing the depth of CNNs. Krizhevsky et al.

[24] proposed a network with 60 million parameters, which sig-

nificantly improved the accuracy with respect to the original neu-

ral network. Since then, more complex and deeper networks have

been proposed to further increase the performance. For exam-

ple, Szegedy et al. [54] introduced the inception deep convolu-
ional architecture in GoogLeNet/Inception. Besides, Simonyan Zis-

erman [50] investigated a very deep network (VGG) to improve

he performance on large scale datasets. Lin et al. [33] proposed a

Network In Network” (NIN) structure to enhance model discrim-

nability within the receptive field. And Srivastava et al. [52] intro-

uced a highway network architecture to overcome the gradient-

anishing problem, which could be trained with hundreds of lay-

rs. In practice, this network is hard to guarantee the convergence

or different datasets. Meanwhile, He et al. [16] presented a resid-

al learning framework to ease the training of deeper networks,

hich achieved higher accuracy in object recognition, detection,

nd segmentation. Recently, Yu et al. [61,62] and Hong et al. [17] ,

espectively, proposed multi-layer deep neural network and multi-

odal features to add the data diversity via multiple tasks com-

inations. However, most of the proposed depth-increasing CNNs

re limited to the well-labeled and balanced dataset. For the ideal

ataset, the deep models perform better than the “shallow” mod-

ls. Thus, it is significant to propose a framework to learn sufficient

nformation from the unbalanced datasets. 

.3. Improved convolution neural networks via information 

xpanding 

Recently, some works also focus on the information expand-

ng of scale-limited training datasets. For example, Jaderberg et al.

20] and Rasmus et al. [44] augment the information learned by

NNs on the fixed dataset to capture more features. At the same

ime, some works propose to improve feature information extrac-

ion. For example, von Noord and Postma [39] , Nogueira et al.

38] and Li et al. [31] , respectively, improved the multi-class classi-

cation performance via improving the feature information of the

ame classes. Jiao et al. [22] proposed a lightweight nonlinear CNN.

hen et al. [8] proposed to encode localized and second-order

eature into the network. Bohne et al. [4] learned local metrics

rom pairwise similarity data. Afridi et al. [1] demonstrated that,

t is possible to automatically rank pre-trained CNNs for a given

ask. In addition, some works [9,10] focus on focus on the lever-

ge of image structure features. Furthermore, the GANs are pro-

osed to produce interpretable and diverse candidates. The GANs

nd their variants cover most of the data generation tasks, includ-

ng semi-supervised learning, domain adaption, image inverting,

tc. [12,63] . The ability of GAN is strong under the condition of suf-

cient datasets (labeled or unlabeled). However, in the unbalance

earning field, the GANs face some of the main challenges: The re-

uire of large scale of training dataset and the limited quality of

mages. Meanwhile, one-shot learning [48] is proposed to learn the

uman ability to recognize a new concept and then generate com-

elling alternative variations of the concept, which is limited for

epresenting the elementary simple features. 

.4. Bayesian networks augmented convolution neural networks 

In contrast to the methods to improve the CNN performance,

ayesian network considers the distribution of the classes instead

f enlarging the model and the datasets. Bayesian network, deep

oltzman machine [47] , etc. show strong ability in automatically

earning discriminative features. And the ability in multiple-layer

earning allows capturing sophisticated domain-specific features.

or example, Salakhutdinov and Hinton [47] proposed Boltzmann

achines, of which, data-dependent expectations were estimated

sing a variational approximation, and data independent expecta-

ions were approximated using persistent Markov chains. Li and

erona [14] proposed a hierarchical Bayesian model to represent

odewords in an unsupervised way. Brenden et al. [26] proposed

 computational model to explain the observed examples under a
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Fig. 1. The pipeline of our DVN framework. 

Fig. 2. Feature visualization of original Lenet network (top row) and DVN (bottom row). Each row of the feature matrix is a 500-dimensional feature vector. Each column 

involves 10-classes image set, and each image set has 10 0 0 image samples, which are used to show their homogeneous and heterogeneous properties. 
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ayesian criterion, which could mimic the human’s learning abili-

ies in recognizing handwritten characters. However, this method

nly has limited generalization ability, which is hard to be em-

loyed to improve other existing deep networks. 

To enhance advantages and avoid disadvantages of the afore-

entioned works, this paper will design a deep variance network

ramework by integrating the deep neural network architecture

nd the Bayesian network, which is expected to further improve

he performance of most state-of-the-art networks. 

. Method overview 

As shown in Fig. 1 , an iterative hierarchical Bayesian model

s embedded in a CNN framework to transfer the feature distri-

ution among quality-varying training sub-datasets, which respec-

ively corresponds to different object classes. We briefly overview

he key technical elements of our framework as follows. 

Heterogeneity and homogeneity analysis. We define the hetero-

eneity and homogeneity by extracting the intra-class diversity and

nter-class similarity. We first extract features based on traditional

NN. And then, we construct a hyper-graph to automatically clus-

er the extracted CNN features into three subspaces according to

heir discriminations. Upon that, we further calculate and compare

he feature distributions in/across the classes grouped in the cer-

ain subspaces to obtain their intra-class heterogeneity and inter-

lass homogeneity (Please refer to Section 4 for details). 

Hierarchical Bayesian model. Based on our proposed heterogene-

ty and homogeneity, we further propose a hierarchical Bayesian

odel, wherein the feature distributions over well-labeled com-
lete (balance) training dataset can serve as conditions of in-

omplete training dataset (unbalance). Therefore, the hierarchical

ayesian model incrementally generate and refine multi-level fea-

ures top down for the incomplete training dataset in an itera-

ive way, so that it can expedite the performance improvement of

NN(Please refer to Section 5.1 for details). 

Virtual sample generation. Throughout our framework, we take

nto account the hierarchical Bayesian priors, which span from

ixel to class, image, subspaces gradually. And then, based on the

btained three subspaces and the priors of class distributions, we

enerate virtual images via kernel density estimation over the it-

ratively updated class distributions, so that we can obtain an

elatively-balanced accuracy for incomplete classes (please refer to

ections 5.2 and 5.3 for details). 

. Heterogeneity and homogeneity analysis on clustered CNN 

eatures 

.1. Hyper-graph based CNN feature subspace construction 

Given i training images belonging to the class C , we denote

hem as X C = (x 1 , . . . , x i ) . Let R denote the relationship between

ifferent classes. In essence, the challenge for recognition is the

uzziness (in some sense it reflects that certain classes have close

elations) among different classes. Therefore, we model R with

 hyper-graph to amplify the subtle differences among different

lasses. The hyper-graph enables the representation of non-linear

elationships among the whole classes rather than the pairwise

imilarities, wherein hierarchical priors and clustered subspace
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properties can be encoded in the latent variables L [41] . Given

the hyper-graph H = (V, E) , a set of vertices V represent the object

classes, edge e ∈ E represents the pairwise relationship, and the de-

gree d ( v ) of the vertex v is computed by summing all the weights

of the adjacent edges. 

The hyper-graph could then be employed to gather some

classes into a group according to their feature distances. Let ( S ; S C )

be a partition of the vertices V in H , with S ∪ S C = V . We gather

V into groups based on the graphcut method, and the discrimina-

tive ability of each group is encoded in d ( v ). The higher the value

is, the lower discriminative ability v has. Our goal is to adaptively

obtain three subspaces. The “flat” subspace, denoted by φf , con-

sists of groups that the involved classes have long distance from

one another. In other words, the involved features have the best

distinguishing capability. The “overlapping” subspace, denoted by

φl , consists of the groups that the involved classes are most indis-

tinguishable. The “normal” subspace φn , consists of the groups that

the involved classes are moderately discriminative. In our recurrent

framework, we would add a regularizer to the back propagation for

φf to slow down its gradient decrease, and respectively model the

features of φl and φn with Bayesian networks in their correspond-

ing back propagation procedures. Benefiting from such schemes, in

the training phase, the loss of φl is expected to be larger than that

without DVN, while the accuracy is higher. When we conduct back

propagation for φf , φl and φn , relatively stable and balanced gradi-

ents will be adaptively adopted to decrease their losses. The hyper-

graph based clustering involves two steps. The first is to cluster all

the classes into K groups ( K is computed based on the distances

between the classes, and we empirically set K = 70% of the total

class number). The second is to cluster the K groups into three sub-

spaces according to each group purity (the number of categories in

this group). In our implementation, φf consists of the groups with

10% object classes; φl consists of the groups with 20%; and the

others belong to φn . 

4.2. Definition of inner-class heterogeneity and inter-class 

homogeneity 

Based on the hyper-graph relation R , we can obtain three sub-

spaces. In order to generate virtual samples to enhance the differ-

ences of the classes in each subspace, we first define intra-class

heterogeneity H e and inter-class homogeneity H o . Inter-class ho-

mogeneity describes the general feature distribution involved in

two or more object classes, which will be employed to balance the

incomplete labeled dataset. Inner-class heterogeneity describes the

feature distribution variances within the same object class. Most

previous works focus more on the similar properties of the same

class, however, we find that the heterogeneity in the same class

is more valuable for the balance of training data in CNN-based ob-

ject recognition. Let �ξ denote the variances of the same-class fea-

ture distribution, in previous works [53] , it is linearly formulated

as x = ˜ x + ξ , ξ ∼ N(0 , �ξ ) , which is the most basic assumption to

represent the distribution of the low-level visual properties, such

as color and noise. However, it is hard to represent the object’s

variances in scale, rotation, position, and deformation. We resort to

modeling the variances by transforming the homogeneity and het-

erogeneity from feature level to image level. We employ the latent

parameter s = (s 1 , . . . , s k ) to describe such condition distributions,

wherein s i represents the variable related to feature distribution of

the i th group. The unbalanced dataset φl is adaptively refined on

the condition of the well-labeled dataset φn and φf . To embed the

constraint as a new layer in CNN, it can be defined as 

min λKL (p(x | s ) , p( ̃  x | s )) + log 
∑ 

j 

exp(z j ) − z y . (1)
ere, λ is a regularization parameter, which balances the weight of

he term KL (p(x | s ) , p( ̃  x | s )) in the loss function. z j represents the

 th element of softmax layer in CNN. KL( · ) is the Kullback–Leibler

ivergence, and s is the aforementioned latent parameter depict-

ng distribution. The inner-class heterogeneity and inter-class ho-

ogeneity can be formulated via nonlinear feature mapping as 

 e (x ) = cov (x − ˜ x , x − ˜ x ) , H o (x ) = 

1 

n 

∑ 

i 

( f (x i ) − f ( ̃  x j )) . (2)

ere, H o is a k -dimension vector, which describes the intrinsic

hange rule in different classes. In real world, an object’s appear-

nce may be influenced by several factors, such as color, shape,

cale, etc. And the objects belonging to different classes may be

ubject to similar change principles. H e is a matrix, which de-

cribes the variance of the CNN features resulted from certain-class

nstances. 

p( H e ) = 

∑ 

k 

p( H e | s k ) , p( H o ) = 

∑ 

k 

p( H o | s k ) . (3)

. Hierarchical Bayesian model for training data balance 

.1. Hierarchical Bayesian model construction 

Most previous methods for unbalanced training data process-

ng tend to transfer information among the same-level features

20] , however, at image level it is hard to eliminate the inner-class

eterogeneity only with the inner-class homogeneity information.

hus, we design a hierarchical Bayesian model to learn different-

lass homogeneity and same-class heterogeneity. Our model sup-

orts cross-level information transfer, spanning from pixel, low-

evel feature, image, object class, to subspace in a top-down way. 

Our Bayesian model is a dynamic hybrid model with

ierarchical-structure feature learning ability, which can leverage

ross-level feature interaction as prior relationships to compute

he conditional probability distribution of level-wise features. Thus,

iven the known feature distribution of certain layers in our hier-

rchical model, we can obtain other layer’s conditional probability

istribution function. Under the mean field assumption, by factor-

zing the same-level posterior knowledge into independent parti-

ions, the model can be defined as 

p(x i ) ∝ p(x i | w ) , p(x | w ) = 

∏ 

i 

p(x i | w i ) , 

p(w l ) ∝ p(w l | f (x )) , p(w | f (x )) = 

∏ 

l 

p(w l | f (x l )) , 

p( f (x i )) ∝ p( f (x i ) | s ) , p( f (x ) | s ) = 

∏ 

i 

p( f (x i ) | s i ) . (4)

ere, w is the neuron parameter of CNN, the subscript l denotes

ayer index of the Bayesian network. Based on Eq. (4) , the variance

egularity can be transferred from the feature level to image level.

iven unbalanced training datasets, based on the CNN features and

he cluster subspaces via hyper-graph (obtained in Section 3 ), we

ransfer H e from the well-labeled complete training dataset to the

ncomplete one. Given x l ∈ φl and y f ∈ φf , the distribution can be

omputed via 

p(x, y ) = 

∏ 

l, f 

p(x l | H e , H o ) p( H e , H o | y f ) p(y f ) . (5)

The challenge to solve Eq. (5) is that, the distribution of H e can

ot be obtained directly. Notice the hierarchical structure in Eq. (4) ,

e address this problem by introducing latent variable s as 

p(x ) = 

∑ 

k 

p(s k ) p(x | s k ) = 

K ∑ 

k =1 

πk N (x k | μk , �k ) . (6)
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ere , π k represents the distribution of the latent variable s , which

s related to H e , H o . With the relation between two images x, y ,

q. (5) can be rewritten as 

p(x, y ) = 

∑ 

k 

p(x | s k ) p(s k | H e , H o ) p( H e , H o | y ) p(y ) . (7)

esides, given x , we can get the distribution of the latent variable

 according to its distribution via 

p(s k | x ) = 

p(s k ) p(x | s k ) ∑ 

k p(s k ) p(x | s k ) 
= 

πk N (x | μk , �k ) ∑ 

k πk N (x | μk , �k ) 
. (8) 

n fact, π k serves as the weight coefficient, which can significantly

ffect the changing strength when generating virtual samples. 

.2. Bayesian prior guided virtual sample generation 

Based on the constructed hierarchical Bayesian model, accord-

ng to Eq. (6) , we can generate more virtual image samples for

he unbalanced training dataset. Here, the key challenge is how

o compute the distribution of s . In practice, we can analyze and

xtract the correlations between s and the features from the con-

olution and pooling layers of CNN. The relations between x and s

an be formulated as 

p(s | x, μ, �) ∝ p(x | s , μ) p(s | �) ∝ p(x | s , μ, �) , (9)

here μ, � are the parameters learnt from the ground truth. The

robability density function (PDF) of s can be derived from Eq. (9) .

f certain elements of s have been learnt, the unbalanced dataset

an be augmented by Eq. (5) , which biases to complement the fea-

ures missed in the original incomplete training dataset. Thus, for

riginal incomplete training dataset, we can remedy the limitations

ue to the lack of certain-class variations or changes. Therefore, to

ompute the distribution of s , we should first determine p ( x | s ) by

ntegrating over variables w and θ (see Eq. (10) ), and then estimate

 via Gibbs sampling in EM iterations. 

p(x | s ) = 

∫ 
p(w | s )( 

n ∏ 

i =1 

∑ 

θi 

p(θi | w ) p(x i | θi )) dw . (10)

In Eq. (10) , since the parameters w and θ are dependent on

ach other, p ( x | s ) can not be analytically computed. To this end,

e resort to variational approximation, which can maximize the

og-likelihood of the data and minimize the Kullback–Leibler diver-

ence (between the approximation and the posterior truth). And

e use the distribution of q ( s ) to approximate the true distribution

f p ( x | s ). We can optimize Eq. (10) by maximizing the lower bound

f the likelihood function. For a labeled image, its variational lower

ound of the marginal likelihood is bound via Jensen’s inequality

n the following way: 

og p(x | s ) ≥ J(x ) , (11)

(x ) = 

∫ ∑ 

w 

q (w , θ ) log p(w , θ, x | s ) ds 

−
∫ ∑ 

s 

q (w , θ ) ln q (w , θ ) ds , (12) 

(x ) = L(w , x, s ) = E q [ log p(w , θ, x | s )] − E q [ log q (w , θ )] , (13)

here q ( w, s | θ ) is an arbitrary variational distribution. Considering

qs. (11) –(13) we have 

og p(x | s ) = L(w , x, θ ) + KL (q (w , θ | s ) || p(w , θ | x, s )) . (14)
ur goal is to maximize log p ( x | s ). By maximizing the lower bound

( w , x, θ ) with respect to s it is the same as minimizing the KL

istance between the estimated posterior probability and the true

robability. 

.3. Back-propogation of DVN 

In fact, based on the examine the loss function in Eq. (1) , we

ave two basic constraints. One is the CNN loss (softmax loss),

hich enforces constraints on the differences between the pre-

icted label and ground truth. The other is about the distribution

stimation of x . By minimizing the loss function, we can estimate

he distribution of x , and further get the enhanced CNN model

rom the complete training dataset. In practice, we separately op-

imize the two components of the loss function. That is, when de-

reasing the KL divergence, the CNN related function is fixed, and

ice versa. The iterative algorithm alternates between the following

wo steps until convergence. The standard gradient decent flow is

epresented by following Eqs. (15) and (16) . 

∂L 

∂w 

l 
= x l−1 (δl ) T , (15) 

here δ is the loss from the higher layers l . w encodes the pa-

ameters of CNN nodes. x l is the feature map of layer l . And the

radient decent flow is computed as follows: 

W 

l = −η
∂L 

∂w 

l 
. (16) 

ere η denotes the learning rate. In E-step, for each class of im-

ges, the variational parameters s , θ are initialized or updated ac-

ording to Eq. (10) . The CNN weight w is updated via back prop-

gation, and s is updated via Gibbs sampling. The virtual image is

enerated by Gaussian mixture model based kernel density estima-

ion. The detailed algorithm is showed in Algorithm 1 . The back-

ard propagation process of the KL loss is computed by following

qs. (17) and (18) : 

= μt−1 + ρ

(
H o + 

∂L 

∂ p(x ) 

∂ p(x ) 

∂μ

)
, (17) 

here ρ is the learning rate for μ, which is set to 1.0 in our ex-

eriment. 

= σ t−1 + β

(
H e + 

∂L 

∂ p(x ) 

∂ p(x ) 

∂σ

)
. (18) 

ere, β is set to 1.0 as the learning rate of σ . In M-step, we up-

ate the subspaces, maximize the resulted lower bound of the log-

ikelihood function with respect to model parameters θ and w . We

onduct this task by finding the maximum likelihood estimation

ith expected statistics computed in E-step. 

. Experimental results and evaluations 

.1. Experimental settings 

We have implemented our DVN framework using Caffe [21] on

 GPU clusters with 32 NVIDIA Tesla k20ms and 8 K80s. Given the

eatures extracted from original CNN, we cluster them into three

ubspaces via hyper-graph cut. A hierarchical Bayesian model is

rained to transfer the latent variables H e and H o . Here H o and H e 

erve as prior knowledge of φl . On that basis, virtual images are

enerated for the “flat” subspace and “overlapping” subspace φl .

fter that, we feed the virtual images generated by current itera-

ion to CNN, and the training process will be stopped when the

oss function keeps stable. In our experiments, the epoch times

ay range from 1 to 5, which is related to the training dataset and

he practically-employed CNN structure. For each object class, we
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Fig. 3. The classification results’ comparison over MNIST datasets respectively based on the features resulted from original Lenet and DVN furnished Caffenet. 
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empirically generate 10% of its original training images according

to φl . 

We study the unbalanced image recognition task both on the

number-based and the accuracy-based unbalanced datasets. For

the first experiment, the classification of originally number-based

balanced dataset, such as, CIFAR-10 dataset. The CIFAR-100 [23] is

also studied to experiment with controlled unbalance levels. Fur-

ther, to verify our DVN framework on accuracy based unbal-

anced datasets, we apply it to equip three types of state-of-the-art

CNN networks, and conduct extensive experiments over five public

benchmarks: MNIST [29] , CIFAR-10, CIFAR-100, Imagenet and the

Street View House Numbers (SVHN) Dataset [37] . The first type

is the depth-unlimited networks, including Highway network [52] ,

dense network [19] and deep residual network [16] . The second

type is the task-oriented network, which can achieve remarkable

accuracy on certain datasets in spite of its shallower-depth struc-

ture, including the Lenet [28] over MNIST dataset, a 7-layer net-

work over MNIST dataset (denoted as Caffenet), and a 3-layer net-

work over CIFAR-10 dataset (denoted as Simple network). The third

type is a classic network with intermediate-depth structure, in-

cluding VGG [50] , network in network [33] and the Google in-

ception network [54] . All the involved networks are trained in

two ways: with DVN and without DVN. As for evaluation, we re-

implement these methods according to the experimental settings

documented in their original papers, and compare their testing er-

ror rates (only considering the top-one(five) accuracy rate) resulted

from the cases with and without DVN. 

6.2. Feature analysis 

As shown in Fig. 3 , the features extracted by DVN show con-

sistent characteristics for the same class images, and have clear

separations across different classes. The homogeneous features are

extracted from the MNIST testing dataset, wherein each class has

about 10 0 0 images to be tested. The employed network is Lenet,

whose network structure keeps the same with original paper, and

the features we used to represent the image are from the last fully

connected layer. In order to show the discriminative ability of het-

erogeneous features, we illustrate the feature distributions with

the t-Distributed Stochastic Neighbor Embedding (t-SNE) method

proposed in [27] . Fig. 3 (a) shows the original Caffenet features.

Fig. 3 (b) shows the features resulted from DVN furnished Caffenet,

wherein it has a relatively larger margin for each class and the

points in the same classes are close to each other. 

Thus, we can find that DVN can make the features extracted

from CNN more discriminative. Furthermore, to analyze the re-

sulted medium-level features, taking the intermediate convolution
ayers for example, we compare the feature maps resulted from

VN and original CNN. As shown in Fig. 4 , we randomly select

ome samples from the ten classes of CIFAR-10, and show the fea-

ure maps learned from the second convolutional layer for feature

ctivations. The second row shows feature maps extracted from

VN furnished GoogLenet, while the first row shows feature maps

xtracted from original GoogLenet. The DVN framework can acti-

ate a larger perception scope for high-level recognition tasks, so

hat the high level features focus more on the object related re-

ion than the original GoogLenet. The activations reserve more info

bout object-related features in the feature maps, while dropping

he background regions in the images. 

.3. Comparisons with the state-of-the-art 

We at first compare our DVN with two number-based unbal-

nced methods: cost sensitive [57] and oversampling [36] . Further,

e compare our method with two high performance methods for

mproving the performance of CNNs, generative adversarial net-

orks and center loss [59] . We re-organize the CIFAR-10 dataset

nto 11 levels of unbalanced datasets (unb1,... ,unb11) as described

n [36] (Table 1 in supplement material). To control the unbal-

nced level, the subsets contain 65% of the images in the origi-

al CIFAR-10 dataset. Here, higher percentages are not possible, as

ertain amounts of data need to be removed to achieve the un-

alanced distributions; and extremely small percentages are ex-

luded, since such subsets would not train the network sufficiently,

hich goes beyond the research. The distributions are selected to

e as mutually exclusive from each other as possible. All the set-

ings are designed with linearly unbalanced representation, expo-

entially unbalanced representation, and major/minor/singular un-

er/over representation according to the method [36] . With the re-

uced CIFAR-10, we conduct experiments with the oversampling

ethod and DVN framework based on the Alexnet. Fig. 5 (a) and

b) documents the class-wise accuracy on unb7 dataset. The ac-

uracies of 70% classes are improved ranging from 1% to 7%, and

he total accuracy is improved from 84.70% to 87.4%. The minor

lass is the airplane, which has an improvement of 7% than over-

ampling method. The ROC curves in Fig. 7 show improvements in

UC for most of the classes in “unb1” compared with the over-

ampling scheme [36] (The remaining results are provided in Fig.2

f the supplement material). The histogram in Fig. 6 shows 5%

mprovement over the equal-number distribution in “unb1”, and

he other unbalanced distributions have improvements from 1.8%

o 4.3%, respectively. The results shown in Fig. 6 illustrate that,

ur method performs better than the oversampling method un-

er all the distributions. In fact, oversampling based methods can
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Fig. 4. Comparison of the feature maps learned from the ‘conv17x7_s2’, ‘conv23x3’ and ‘inception_3bpool’ layers, (convolutional layer of original GoogLenet and DVN fur- 

nished GoogLenet). The DVN framework can activate a larger perception scope for high-level recognition tasks, so that the high level features could focus more on the object 

related region. (More are provided in Fig. 11 of the supplement material). 

Fig. 5. Confusion matrix of original and DVN furnished Alexnet over CIFAR-10 dataset. 

Fig. 6. Accuracy and F-measure comparisons of original CNN, MSFE loss and DVN furnished Alexnet on CIFAR-100. The unbalance levels on CIFAR-10. 
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ot expand the original distribution of training samples for all the

lasses via simple number measurement. Our DVN will learn the

nter-class homogeneity from the major classes so as to extend

he distribution of the minor ones. Then we compare our DVN

ith the cost-sensitive method MSFE [57] . We conduct the experi-

ent over CIFAR-100 by making the numbers of the classes unbal-

nced based on the original settings [57] (imb1, imb2, ... , imb9).
IFAR-100 contains 60,000 images belonging to 100 classes (600

mages/class), which are further divided into 20 super-classes. The

umbers of training and testing image samples for each class are,

espectively, 500 and 100. To evaluate our algorithm on various

cales of datasets, three different-size datasets are extracted. The

rst one is relatively large, a mixture of two superclass samples

household furniture and electrical devices). The other two small
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Fig. 7. ROC curves of DVN furnished and original Alexnet over CIFAR-10 dataset in a representative unbalance level “unb1” (more are provided in Fig. 2 of the supplement 

material). 

Table 1 

Unbalance levels of MNIST for GAN and center loss. The original MNIST dataset is 

split into 10 small datasets by random equally. ‘10’ represents all the samples. 

Class 0 1 2 3 4 5 6 7 8 9 

UNB1 1 1 1 1 1 1 1 1 1 10 

UNB2 10 10 10 10 10 10 10 10 10 1 

UNB3 10 10 10 10 10 1 1 1 1 1 

UNB4 5 5 5 5 5 5 10 10 10 10 
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ones have approximate sizes, each of which is the combination of

two-class samples, which are randomly selected from the super-

class trees [57] . The results in Fig. 6 (c) show that, our DVN fur-

nished network has similar stability with MSFE while improving

the accuracy for the number-based unbalanced dataset. The ex-

periments on the CIFAR-10 and CIFAR-100 datasets show that, the

accuracy-based methods can be benefit to the number-based un-

balanced datasets. 

In addition, we further explore the DVN with DCGAN [43] . In

order to test if DVN could benefit the classification task, and to

compare with the GAN single augmented CNNs, we conduct two

experiments on MNIST and CIFAR-10 datasets. The first is con-

ducted on MNIST-UNB4 with different levels in Table 1 . The re-

sults are shown in Table 2 . The proposed DVN furnished Alexnet

performs better than DCGAN from ‘UNB1’ to ‘UNB4’. The small

number of samples in unbalanced datasets also makes DCGAN fail

to generate reasonable images. We also conduct experiments with

DCGAN on CIFAR-10 dataset to test the effect on images with var-

ious backgrounds. The results show that, the performance of hier-

archical Bayesian is much better than DCGAN’s, although DCGAN

improves the Caffenet slightly by 1.2%. ( More results are listed in

Fig. 17 in the supplement material ). 

The center loss shows good performance when visualizing the

MNIST dataset. In order to compare with it, we conduct the ex-

periments on MNIST-UNB4 dataset and MNIST original dataset. The

results show that the performance of DVN furnished center loss is

better. Fig. 8 shows that, at ‘UNB3’ level, the DVN recognizes all

the 10 classes instead of 9 as the center loss do( Others are listed in

supplement material: Figs. 14–16 ). 

6.4. Performance evaluations 

In this section, we evaluate our method on accuracy-based un-

balanced datasets. Furthermore, in Fig. 9 , the original CIFAR-10,

SVHN, and MNIST datasets are demonstrated as accuracy-based

unbalanced ones with corresponding networks. After some (rang-
ng from 40,0 0 0 to 50,0 0 0 for different networks) times of iter-

tions, the loss is stable, but the diagonal elements of the con-

usion matrix are still not equal. Therefore, we classify the three

atasets as accuracy-based unbalanced datasets. For this unbal-

nced datasets, we use our DVN to improve the performance. 

Performance comparison. We have conducted extensive experi-

ents on both toy and real world dataset, the classes ranges from

igit handwritings to animals with complex backgrounds. The ex-

eriments can be classified into two types. 

Firstly, we conduct experiments on 8 networks over 5 datasets

ithout unbalance level control, as shown in Tables 3 and 4 . 

Secondly, we conduct experiments on imagenet100 dataset,

hich are randomly selected in the 10 0 0 classes. The dataset is

plit with train and test dataset as 8:2. Most of the images have

ore complex background and largely-varying objects. The results

re shown in Table 4 . 

In the first experiment, as documented in Table 3 , most of

he involved networks’ performances can benefit from our DVN.

he bold text is the highest of all the tested networks. On CIFAR-

0 benchmark, DVN-furnished VGG achieves nearly state-of-the-art

erformance (95.7% accuracy), where each class has a more bal-

nced accuracy than original VGG network. And other networks

an also gain performance improvement ranging from 2.3% to

.9%. On MNIST benchmark, the DVN-furnished Caffenet network

chieves state-of-the-art performance (only with 0.25% error rate),

hose error rate has been reduced by 52.83%. For other networks,

he largest decrease of error rate reaches to 50%. 

Particularly, in our defined three subspaces, the generated sam-

les are different, the samples in the “overlapping” subspace have

igher resolution than the samples in φf subspace. The obscure

nes are used for adding harder cases for the top K c ( K c is com-

uted based on the distances between the classes, and we empir-

cally set K c = 30% in the following experiments) easily-recognized

lasses, which are used as a regularizer to slow down the con-

ergence speed to avoid overfitting. The generated images demon-

trates that, Bayesian network tends to generate more varying sam-

les for the “overlapping” space φl . 

With the generated images, the accuracy of the φl subspace is

mproved, while the accuracies of the top 3 classes in “flat” sub-

pace φf are decreased slightly. As indicated in Fig. 11 (b), the loss

alues of the original network for CIFAR-10 and MNIST datasets are

ower than the loss values with DVN, but the accuracy is also lower

han DVN. Thus, for the unbalanced cases, the original Alexnet may

asily cause overfitting. Furthermore, we find that DVN performs

ven better when being combined with the deeper network. And
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Table 2 

Comparsions of GAN and DVN on MNIST-UNB4 datasets with different unbalance levels. 

ID ORI GAN DVN GAN + DVN 

Dataset Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss 

UNB1 0.978188 0.0590697 0.984398 0.0749743 0.980398 0.05468816 0.980099 0.0973185 

UNB2 0.983937 0.0293378 0.992838 0.0371489 0.992838 0.0314566 0.889201 1.63811 

UNB3 0.988625 0.0550345 0.985359 0.0717597 0.985359 0.0550024 0.984879 0.0826827 

UNB4 0.98975 0.0287776 0.993938 0.0363117 0.994625 0.0314365 0.985719 0.0698933 

Fig. 8. Features’ distributions in “ip1” layer of Lenet++ over MNIST dataset (center loss weight is set as 0.01). 

Fig. 9. Demonstrations of the accuracy-based unbalanced problem dealing with MNIST dataset. 
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he result confirms the belief that deep networks commonly per-

orm better than shallow ones. 

As for SVHN [37] dataset, we use their training-testing split data

ublished on the website. In order to test our DVN’s ability in han-

ling raw images and small scale training datasets, we train the

etworks without any preprocessing and data augmentation oper-

tions on the Alexnet [25] , Simple network [21] and GoogLenet

54] , VGGNet [50] , etc. In order to compare DVN with the sim-

le data augmented technologies (including cropping, horizontal

eflection and scaling), we respectively test such cases using the

GG network [50] and Network in network (NIN) [33] , using Global

ontrast Normalization (GCN) and Zero-Phase Component Analy-

is (ZCA) whitening to normalize the dataset. In the testing pro-

ess, the DVN resulted accuracy improvement of each class is more

alanceable than that benefitting from the simple data augmenta-

ion for original network. To verify all the classes are learned and

lassified in balance, we compare the multiple-classes ROC curves
ver the three datasets, and show the curves in Fig. 10 ( the ROC

urves of the SVHN and CIFAR-10 are provided in Figs. 9 and 10 of

he supplement material ). The results state that, most of the net-

ork furnished with DVN will be better than the corresponding

riginal ones. Besides, the DVN furnished VGG network has the

imilar improvement over the CIFAR-10 dataset. The performance

f the DVN on SVHN dataset is shown in Table 3 . The results show

wo advantages of DVN: the first one is to improve the perfor-

ance of the existed network including Simple Network, Caffenet,

oogLenet and Alexnet. The second is to improve the class-wise

ccuracy in a balanced way, including VGG network and NIN. 

The second experiment is conducted on Imagenet100 datasets

ith more deeper network including residual networks [16] ,

ensenet [19] . As Table 4 illuminated, The improvement ranges

rom 0.76% to 10.39%. The best performance is from the DVN-

urnished VGGNet with 50 0,0 0 0 iterations. DVN fails to improve

enet and Simplenet due to the large scale dataset with too sim-
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Table 3 

Performance comparisons of DVN-furnished networks over CIFAR-10, MNIST and SVHN datasets. VGGNet has 19 layers. 

ID Dataset Network Performance improvement Original performance DVN-furnished performance 

1 CIFAR-10 VGGNet(19) [50] 3.2 92.5 95.7 

2 CIFAR-10 GoogLenet [54] 2.3 87.1 89.4 

3 CIFAR-10 Simple network [21] 6.9 80.5 87.4 

4 CIFAR-10 Network in network (NIN) [33] 2.1 92.4 94.5 

5 CIFAR-10 Caffenet [21] 0.9 88.5 89.4 

6 CIFAR-10 Alexnet [25] 2.0 83.4 85.4 

7 CIFAR-10 Highway [52] 1.9 60.0 61.9 

8 CIFAR-10 Lenet [28] −0.5 65.9 65.4 

9 MNIST VGGNet(19) [50] 0.5 98.9 99.4 

10 MNIST GoogLenet [54] 0.3 99.2 99.5 

11 MNIST Simple network [21] 1.1 97.4 98.5 

12 MNIST Network in network (NIN) [33] 0.9 98.9 99.3 

13 MNIST Caffenet [21] 0.3 99.5 99.8 

14 MNIST Alexnet [25] 0.3 99.5 99.8 

15 MNIST Highway [52] 0.2 99.5 99.7 

16 MNIST Lenet [28] 0.1 99.1 99.2 

17 SVHN VGGNet (19) [50] 0.1 96.8 96.9 

18 SVHN GoogLenet [54] 0.9 94.6 95.5 

19 SVHN Simple network [21] 1.2 93.1 94.3 

20 SVHN Network in network (NIN) [33] 0.1 96.7 96.8 

21 SVHN Caffenet [21] – – –

22 SVHN Alexnet [25] 2.1 94.1 96.2 

23 SVHN Highway [52] 0.8 76.1 76.9 

24 SVHN Lenet [28] −0.6 87.4 86.8 

Fig. 10. ROC curves of DVN and original networks on MNIST dataset (More results are shown in Fig. 8 in supplement material.). 

Table 4 

Deep CNNs on Imagenet100 dataset.‘@ k ’ means top k ranking. Residualnet has 50 

layers, while Densenet has 121 layers. VGGNet has 19 layers. 

Imagenet100 Original (@1) Original (@5) DVN (@1) DVN (@5) 

Residualnet(50) [16] 75.46 94.21 79.24 96.73 

GoogLenet [54] 72.13 92.36 72.89 94.52 

NIN [33] 67.68 89.24 69.39 90.21 

VGGNet(19) [50] 89.27 98.29 89.99 98.49 

CaffeNet [21] 65.99 86.47 66.64 86.77 

SimpleNet [21] 41.76 68.17 33.06 59.59 

Highway [52] 42.64 – 48.07 –

Lenet [28] 19.21 22.83 14.89 19.37 

Densenet(121) [19] 75.28 93.21 78.89 95.62 

Alexnet [25] 54.97 79.61 65.36 85.20 
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ple and shallow networks. The results show that on more complex

dataset with a large number of classes, the DVN performs better

on deeper networks including residual net and VGGNet. 

Comparison of training cost and convergence. For the involved

networks, we compare their 450,0 0 0-iteration time costs with

that of our DVN. In fact, our method can benefit the unbalanced

datasets both in efficiency and performance in the early train-
ng procedure, while the efficiency and performance need to be

raded off in the late training procedure. We have compared the

lexnet with Caffenet on CIFAR-10 dataset. The efficiency and ac-

uracy curves are shown in Fig. 11 (d), where the red curve records

he single time cost of DVN framework, and the blue curve records

he single time cost of original network. For the original settings in

IFAR-10 dataset, the cost of DVN framework is a trade-off choice

etween accuracy and iteration times. To reach the same accuracy

f original networks, the efficiency is not decreased. Before point

, which is the first turning point of the accuracy curve, the effi-

iency is lower than original networks. During the processing be-

ween point A and point B, the efficiency is close to original net-

orks, but after point B, the efficiency is higher than original ones.

fter point B, both original and DVN-furnished networks keep sta-

le. 

To evaluate the convergence of our DVN, we compare the train-

ng process of Simple network and Highway network by measur-

ng the gradient decrease of the loss functions. Simple network is

rained with the “basic learning rate” of 0.1 and the “momentum”

f 0.9, while Highway network (10 layers) is trained on MNIST,

hose learning policy is the same as that in [52] . As shown in

ig. 11 benefitting from the additional term added in our loss func-
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Fig. 11. Comparisons of the convergence of DVN over original networks. (Zoom in to see more clearly.) 

Algorithm 1 DVN training process. 

1: Input: Original Training Dataset: x 

2: Output: Virtual images with Bayesian network 

3: Initialize x ∼ ∑ 

s N(μ, �) 

4: while KL term not converged do 

5: for i ∈ [1 , 2 , . . . , t] do 

6: Sample { x i } m 

i =1 
∼ P a mini batch from real data 

7: Randomly generate virtual samples: 

8: s i 
1 

∼ p(S 1 = s 1 | S 2 = s i −1 
2 

, S 3 = s i −1 
3 

, . . . , S K = s i −1 
K 

) 

9: s i 
2 

∼ p(S 2 = s 2 | S 1 = s i −1 
1 

, S 3 = s i −1 
3 

, . . . , S K = s i −1 
K 

) 

10: …

11: s i 
K 

∼ p(S K = s K | S 1 = s i −1 
1 

, S 2 = s i −1 
2 

, . . . , S K−1 = s i −1 
K−1 

) 

12: f (x ) ← CNN forward and back propagations 

13: g w 

← 	w 

E 

14: w ← w + η SGDProp (w, g w 

) 

15: end for 

16: Cluster [ φ f , φl , φn ] ← hyper − graph ( f (x )) 

17: Kernel density estimation of p(x ∈ φp= { f,n,l} ) 
18: p(x ∈ φp= { f,n,l} ) ← 

1 
s 

∑ s 
j=1 K h (x − x j ) ← 

1 
sh 

∑ s 
j=1 K( 

x −x j 
h 

) (h 

is set by grid search by each class) 

19: f (x | s ) ← N (μ(H o , H e ) , �(H o , H e )) 

20: H o ← 

∑ 

f (x φ ) / 
∑ || φ|| 

21: H e ← cov (x φ, x φ ) 

22: end while 

t  

l  

s  

i  
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s
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ion, DVN converges faster than original networks, of which, our

oss function converges faster than the original loss function at the

tarting and middle stages of the training process (DVN is initial-

zed from 10 0 0 iterations original Networks). At the last stage, our

oss function’s performance is stable, whose curve remains rela-

ively higher than that of Simple network but lower than that of

ighway network. It indicates that, DVN could provide an effective

cheme to avoid the overfitting problem in shallow networks. 
. Discussion 

We try to find the proper theoretic boundary of our DVN via

he analysis in the aspects of features’ distribution and loss dom-

nation. (1) Features’ distribution in training dataset. To make each

inority class learn balanced homogeneity from majority class,

e suggest an empirical equation to calculate the theoretical least

raining sample number for each class. The equation is under the

ssumption that, the majority class’ samples can cover most of the

haracteristics involved in the corresponding object instances, and

hose feature distribution in some sense has similarity with the

inority class. 

 min = σ ∗ max 
i 

(N i ) /C. (19)

ere, N i is the number of the i th class’ samples. C is the total num-

er of all the classes involved in the training data set. In MNIST-

NB4 datasets, N max = 60 0 0 is considered sufficiently enough to

over most of the characteristics [16,19] . Here, C = 10 , based on

q. (19) , N min = 600 . For “UNB1”, “UNB2” and “UNB3” datasets,

he sample numbers of the minority classes are right close to the

oundary ( N min = 600 ), our DVN’s effect on accuracy ranges from

0.003 to 0.001. For “UNB4”, the sample number of the minority

lasses are 30 0 0, which are larger than N min , thus, the total ac-

uracy gain of our DVN is 0.01. For the well-balanced levels, the

VN-furnished Alexnet improves the accuracy by 0.005. (2)Domi-

ation of loss. In the training process, the majority class samples

re most likely to dominate the loss, which can be observed from

he trend of the class-specific loss (accuracy confusion matrix). To

btain relatively-balanced training loss, our DVN facilitates to en-

orce the minority class having the same or relatively higher vot-

ng weight for the total loss. If the classification accuracy of certain

lass is significantly lower than others’, it is hard to be improved

y the DVN-furnished network. Therefore, with the training dataset

atisfying our empirically theoretical boundary of unbalance level,

ur DVN can achieve better accuracy gain than that achieved on

he datasets out of the theoretical unbalance boundary.(More val-

dation experiments are conducted in section ‘Discussion’ in sup-

lement material). 
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8. Conclusion and further work 

In this paper, we have presented an iterative, improved CNN

framework to handle unbalanced training datasets. It provides

a universal and powerful scheme to further enhance the per-

formance of the sate-of-the-art deep neural networks. Mean-

while, many of the involved technical elements, including hyper-

graph based CNN feature subspace construction, inner-class het-

erogeneity, and inter-class homogeneity definition, multi-level

features/distributions involved hierarchical Bayesian model, and

Bayesian prior guided iterative generation of virtual training sam-

ples, collectively contribute to many other pattern recognition re-

lated applications in computer vision and other related fields.

Moreover, different types of experiments have demonstrated our

framework’s advantages in terms of accuracy, robustness, conver-

gence, efficiency, and versatility. 

However, at present our framework still has some limitations.

According to our experiments, both GoogLenet and deep residual

networks, trained over the willfully-tailored subset of the well-

balanced Imagenet dataset, perform worse than those trained over

complete Imagenet dataset. It indicates that, the synthetic images

generated by our DVN may have some semantic conflicts with the

real-captured images. Therefore, in the near future, we will also

endeavor our upcoming effort s to exploit and encode more seman-

tically meaningful priors in our framework. 
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