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Point clouds have been extensively employed to represent 3D shapes with the increasing 
availability of various data acquisition devices/technologies. As a result, more novel 
techniques are urgently needed for point clouds’ analysis and processing. To date, empirical 
mode decomposition (EMD) has become a powerful and effective analytical tool for non-
stationary, non-linear signals, and has been widely applied to time series processing. 
Despite the fact that EMD has exhibited its potential in 3D geometry processing, extending 
the existing techniques of EMD to operate directly on point clouds remains to be extremely 
challenging. This is primarily because of imperfect point clouds, as well as their absence of 
topological information. In this paper, we develop a multi-scale mesh-free EMD algorithm 
for point clouds and their analysis and processing. The multi-scale mesh-free EMD is 
achieved by iteratively extracting the detail level from the input signal and leaving 
the overall shape in residue. Furthermore, in order to preserve sharp features during 
point-based EMD analysis/processing, we devise an anisotropic structure measurement 
assisted envelope computation scheme. The structure measurement is computed by the 
eigenvalue decomposition of voting tensor, which could faithfully characterize the structure 
of any input model. Under the guidance of the structure measurement, the envelope is 
computed in a structure-aware manner and the sharp features are well preserved. Unlike 
previous feature-preserving EMD methods for meshed models, our algorithm does not 
explicitly resort to sharp feature detection, which is more suitable for complex geometric 
models. With the well decomposed multi-scale representation, we could explore various 
applications of point clouds, such as detail enhancement and smoothing, feature points 
extraction, and feature-preserving denoising. We showcase comprehensive experimental 
results to demonstrate the utility of our novel multi-scale mesh-free EMD algorithm.
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1. Introduction

In digital geometry processing, point clouds are one of the most commonly-available types of data and they have been 
extensively employed to represent 3D shapes with the increasing availability of modern hardware devices and data acqui-
sition technologies. The explosive growth of the data brings us more opportunities and challenges, as a result, more novel 
techniques are urgently needed for point clouds’ analysis and processing. To date, empirical mode decomposition (EMD) has 
become a powerful and effective analytical tool for non-stationary, non-linear signals, which could decompose a signal into 
a number of intrinsic mode functions (IMFs) and could represent the signal at different scales ranging from higher-frequency 
to lower-frequency in a multi-scale manner. EMD is first proposed by Huang et al. (1998) and has shown its advantages in 
handling non-linear and non-stationary signals. Benefiting from the attractive properties, there are plenty of EMD-based 
methods that have been proposed in 1D signal processing (Huang et al., 1998, 2003; Kopsinis and McLaughlin, 2009;
Mandic et al., 2013; Di et al., 2014) and 2D image analysis (G. Xu et al., 2009; Subr et al., 2009; Çelebi and Ertürk, 2012;
Niang et al., 2012; Krinidis and Krinidis, 2013; Xie, 2014; Zang et al., 2014, 2015; Ali et al., 2015).

Recently, EMD has attracted much attention in computer graphics and a few EMD-based methods for triangular mesh 
are proposed in Qin et al. (2009), H. Wang et al. (2012), Hu et al. (2014, 2016), Wang et al. (2015, 2017), Zhang et al.
(2017). Despite the fact that EMD has exhibited its potential in 3D mesh processing, extending the existing techniques of 
EMD to operate directly on point clouds remains to be extremely challenging. This is primarily because of the point clouds 
are unorganized without topological information.

Furthermore, for irregular, curved, and complex geometric models, sharp features are usually contained in point clouds, 
more efforts should be taken to preserve them during EMD-enabled geometry processing. The original EMD is conducted 
via the sifting process by iteratively computing the mean envelope of the signal, in such a way the sharp feature could not 
be preserved. In the literature, a few attempts have modified the original EMD to achieve a feature-preserving EMD-based 
algorithm on triangular meshes, such as H. Wang et al. (2012) which was seeking an interpolation by minimizing a quadratic 
function that measures the similarity between the current vertex with its neighbors. However, the proposed feature-aware 
interpolation method is not sufficiently robust. In Hu et al. (2014), Hu et al. explicitly detected the feature vertices as soft 
constraints during envelope computation. In another way, a divide-and-conquer scheme of EMD is proposed in Wang et 
al. (2015) by explicitly separating the feature signals from non-feature signals. However, they have a drawback that the 
effectiveness of feature-preserving heavily depends on the result of sharp feature detection. If the models are contaminated 
with heavy noise, and features are not faithfully extracted, unpleasant artifacts emerge and sharp features turn out to be 
absolutely blurred.

In this paper, in order to overcome these limitations, we propose a multi-scale mesh-free EMD algorithm directly func-
tioning over point clouds without building explicit connectivity among discrete points. We further explore its widespread 
applications in geometry analysis and processing. The multi-scale mesh-free EMD is achieved by iteratively extracting the 
detail level from the input signal and leaving the overall shape in residue. Furthermore, in order to preserve sharp fea-
tures during point-based EMD analysis/processing, we devise a new envelope computation scheme aided by an anisotropic 
structure measurement. Inspired by the work of Zang et al. (2015), Park et al. (2012), the structure measurement is first 
constructed from the unstructured point clouds by the eigenvalue decomposition of voting tensor, which could faithfully 
characterize the micro-structure of any input model. Under the guidance of the structure measurement, the envelope is 
computed in a structure-aware manner and the sharp features could be well preserved. Then, the mean envelope is com-
puted by creating adaptive shocks near salient structures and the input signal of the scattered point clouds is the finally 
represented in a multi-scale manner with features preserved in residue. The pipeline of proposed EMD algorithm on point 
clouds is illustrated in Fig. 1.

In comparison with previous works, the main contributions of this paper can be summarized as follows:

• Generalizing the classical EMD algorithm from Euclidean space to the setting of surfaces represented as unorganized 
point clouds, we are proposing the multi-scale mesh-free EMD. To the best of our knowledge, this is the first attempt 
to devise the EMD algorithm directly over discrete point clouds without the need of explicit mesh construction.

• Under the guidance of the structure measurement, we develop an efficient and novel feature-preserving EMD algorithm. 
Unlike previous feature-preserving EMD methods for meshed models, our algorithm does not explicitly resort to sharp 
feature detection, as a result, our new algorithm is more robust to noise and suitable for much more complicated 
point-based models.

• With the well decomposed multi-scale representation, we could explore various applications of point clouds, such as 
detail enhancement and smoothing, feature points extraction, and feature-preserving denoising, which collectively can 
demonstrate the utility of our novel multi-scale mesh-free EMD algorithm.

2. Related work

EMD is an important multi-scale decomposition method and initially proposed by Huang et al. (1998). In this section, 
we briefly introduce the related work of EMD on Euclidean space, 3D surfaces, and the feature-preserving EMD.
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Fig. 1. Mesh-free empirical mode decomposition on point clouds. (a) Original model. (b) Input signal defined in Eq. (2). (c) Empirical mode decomposition. 
Top: IMFs and the residue. Bottom: The models corresponding to IMFs are reconstructed using its IMFs together with the residue, and are denoted as 
IRCs and RRC. For visualization, the models are shown in surfaces by utilizing the ball pivoting algorithm (Bernardini et al., 1999). (d) The applications of 
geometry detail enhancement and feature point extraction.

2.1. EMD on Euclidean space

The original EMD is designed for 1D signal processing, especially for nonlinear and non-stationary signals. By using 
this decomposition algorithm, the given signal can be represented as different scale oscillatory modes. Comparing with 
traditional time-frequency analysis methods, such as Fourier and wavelet analysis, EMD is fully data-driven and does not 
depend on any predefined basis functions. Benefiting from its elegant property, EMD has been broadly applied in 1D signal 
analysis and processing (Huang et al., 1998, 2003; Kopsinis and McLaughlin, 2009; Mandic et al., 2013; Di et al., 2014;
Luo et al., 2003; Gemmrich and Farmer, 2004; Wu et al., 2008; Schneider et al., 2009).

In addition, EMD has been generalized to process the high-dimensional signals defined on regular domains, such as 2D 
images and 3D volume data (Linderhed, 2002; Nunes et al., 2003; Xu et al., 2006; Long, 2005; Wu et al., 2009; Gao et al., 
2013). The critical problem of such generalization is how to compute envelopes, which interpolate the extrema of the signal 
during the sifting process. Linderhed (2002) used a thin-plate spline for surface interpolation to develop 2D EMD algorithm 
for an image compression scheme. Nunes et al. (2003) generated envelope surfaces by radial basis function interpolation and 
used the Riesz transform for image analysis. Xu et al. (2006) directly used a mesh fitting method based on bi-cubic spline 
interpolation to compute the local mean surface of 2D data directly. Long (2005) processed each row or each column of 2D 
image data respectively by 1D EMD. Wu et al. (2009) proposed a similar slice approach to reduce the high-dimensional data 
into 1D data. In volume data processing, following the idea of dimensionality reduction, Gao et al. (2013) firstly used Hilbert 
curve to flatten 3D data into 1D signal, and then decomposed the 1D signal by the classical 1D EMD method. Following this 
way, Ren et al. (2013) computed spatial Hilbert spectrum on 3D fluid data by 1D Hilbert transform after transforming the 
signal to 1D signal, which is applied in flow field modulation.

2.2. EMD on 3D surfaces

Different from the regular domains in Euclidean space, 3D surfaces are irregular, curved, and possibly have complex 
structure, which further give rise to new challenges for EMD generalization on 3D geometry processing. The EMD based 
fairing algorithm for meshed surface was proposed by Qin et al. (2009), in which the spherical parameterization is used to 
transform the 3D surface signal to a 2D planar signal, then decompose the signal using the 2D EMD algorithm. However, the 
spherical parameterization prevents its further application to more complex surfaces in topology. To address this issue, an 
alternative algorithm based on bi-harmonic interpolation was proposed by H. Wang et al. (2012) and further employed in 
the work of Hu et al. (2014). In addition, in order to speed up the EMD on mesh processing, Wang et al. (2015) proposed an 
accelerating algorithm via the strategy of dimensionality reduction and explicitly utilized the concept of space filling curve. 
To our best knowledge, EMD algorithms have not yet appeared in point cloud processing.

2.3. Feature-preserving EMD

Due to the over-smoothing effect inheriting from the original EMD, the sharp feature could not be preserved both in 2D 
images and 3D surfaces. To achieve feature-preserving image smoothing, a joint contrast-based filtering step for structure 
consolidation is applied on the result of empirical mode decomposition in Zang et al. (2014). Despite the fact that the 
post-processing step is adopted, blur effects still occur along salient edges. This problem is further addressed by restoring 
to extend extreme and structure measurement in Zang et al. (2015).
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In 3D geometry processing, inspired by the extreme-based image smoothing (Subr et al., 2009), H. Wang et al. (2012)
resorted to an interpolation by minimizing a quadratic function with an edge-aware Laplace operator, which measures the 
similarity between the current vertex and its neighbors. However, the proposed feature-aware interpolation method is not 
sufficiently robust. In Hu et al. (2014), Hu et al. explicitly detected the sharp feature vertices as soft constraints in envelope 
computation. Similarly, a divide-and-conquer scheme of EMD is proposed in Wang et al. (2015) by explicitly separating the 
feature signals from non-feature signals. Either applying the post-processing (Zang et al., 2014) or using the explicit feature 
vertices as constraints (Hu et al., 2014; Wang et al., 2015), our observation is that, the feature-preserving property of EMD 
has not yet been essentially achieved. More importantly, the experimental results are sensitive to the accuracy of feature 
detection. If features are not properly or precisely extracted, unpleasant artifacts will emerge and sharp features will be 
blurred.

3. EMD on point clouds

In this section, the original 1D EMD is illustrated briefly and then its direct extension to 3D point clouds is introduced.

3.1. The original 1D EMD

The original 1D EMD was first developed by Huang et al. (1998) and was designed for 1D signal processing. The main 
idea of EMD is decomposing a signal into a finite number of intrinsic mode functions (IMFs), where the first IMF starts with 
the finest scale, and the subsequent IMFs gradually exhibit coarse scales. The IMFs represent the natural oscillatory modes 
embedded in signals and play a role of the basis functions, which can be obtained by a sifting process. In this process, the 
extrema are first identified for a given signal X , and then the upper and lower envelopes are computed from the maxima 
and minima by a cubic spline, separately. Next, the difference h1 = X − m0 between the input signal X with the mean 
envelope m0 is defined as the first IMF, if it satisfies the stopping criterion of an IMF. Otherwise, h1 is treated as the input 
data, and repeat the above process.

Denote the first IMF as d1, and set r1 = X − d1 as the first residue. The second IMF is extracted by repeating the sifting 
process to the first residue r1. This process will be terminated if the residue becomes a constant or monotonic function or 
the number of IMFs is more than a given threshold. The sifting process severs as two purposes: to eliminate riding waves 
and to make the wave-profiles more symmetric (Huang et al., 1998). Finally, the input signal X is presented as

X =
N∑

i=1

di + rN , (1)

where N is the total number of IMFs, and rN is the final residue of the input signal X . The sifting process of EMD on 1D 
signal is illustrated in Fig. 2. More details of EMD can be found in Huang et al. (1998), H. Wang et al. (2012), Hu et al.
(2014), Wang et al. (2015).

3.2. 3D EMD on point clouds

Given a point set P = {pi, i = 1, · · · , n} sampled from an unknown manifold S , the signal should be defined first in 
EMD-based point clouds processing. The signal f defined on point clouds either represents the original geometry shape or 
characterizes the geometry feature of the input model, which could be simple geometric coordinates of point clouds, normal 
function, certain variant of curvature measurement, height field over some base surface. In our work, the signal is defined 
by the inner product of Laplacian coordinate with the corresponding point normal

f(pi) = n(pi) · δ(pi), (2)

which could be regarded as a direct height field defined over the smoothed point clouds via Laplacian-based smoothing. 
The normal of point clouds can be estimated and orientated by the algorithm of Liu et al. (2014).

The Laplacian coordinate δi is calculated by

δi =
∑

p j∈N(pi)

wij(p j − pi), (3)

where N(pi) is the set of the neighbor points of pi and wij is defined by Gaussian weight

wij = 1

4πα2
exp (−‖pi − p j‖2

4α
), (4)

with the parameter α to control the influence region. The signal is rotation-invariant, translation-invariant, and can be used 
as the input in EMD-based point cloud processing.
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Fig. 2. Illustration of sifting process on 1D signal. (a) Input signal and detected maximum points (green) and minimum points (blue). (b) The computed 
upper (green), lower (blue) and mean envelopes (red). (c) The difference between the input signal with the mean envelope. (d) The input signal is decom-
posed into a first IMF and a residue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

Algorithm 1 EMD on point clouds.
Input: A signal f defined on point clouds
Output: IMFs hk, k = 1, . . . , d and a residue rd

Initialization: Set k = 1 and initial residue r0 = f;
1: repeat
2: s0 = rk−1, i = 1;
3: for each i do
4: Find local minima and local maxima of si−1;
5: Compute the lower envelope li−1 and upper envelope ui−1 by interpolating all local minima and maxima by solving the bi-harmonic field with 

Dirichlet boundary conditions;
6: Compute the mean envelope mi−1 of si−1 by mi−1 = (li−1 + ui−1)/2;
7: si = si−1 − mi−1;
8: if si satisfies the stopping criterion then
9: Get the k-th IMF hk = si and the k-th residue rk = rk−1 − hk ;

10: k = k + 1;
11: break;
12: else
13: i = i + 1;
14: end if
15: end for
16: until The residue is a constant or monotonic function or the number of IMFs is larger than a user-specified value

For the signal f defined on points of P , it can be decomposed into multi-scale representation via EMD algorithm

f =
d∑

i=1

hi + rd, (5)

where hi is the i-th IMF of f, and rd is the residue of the signal. Usually, the leading IMFs represent the fine details of 
a signal, while the trailing IMFs encodes the smooth shape of a model. The algorithm of EMD on point clouds involves 
three main steps of local extrema identification, envelope computation, and stopping criteria, which is briefly presented in 
Algorithm 1.

Extremum identification. For point clouds, the topology information is unavailable, a maximum/minimum of a signal is 
defined in the following, which will be used as a anchor in envelope computation.

• pi is a maximum if f(pi) ≥ f(p j), p j ∈ N(pi)
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• pi is a minimum if f(pi) ≤ f(p j), p j ∈ N(pi)

Envelope computation. To compute the envelope from the local extrema of the signal on S , the interpolation method 
by minimizing the linearized thin-plate energy is adopted (H. Wang et al., 2012)∫

S

(�S f)2dP , (6)

which defines a measure of smoothness of f and the corresponding Euler–Lagrange equation of the energy is

�2
S f = 0, (7)

where �S is the Laplace–Beltrami operator of surface S .
For point clouds P , there are several ways to construct the discrete Laplacian for point clouds (Belkin et al., 2009;

Luo et al., 2009; Luo, 2014). In this work, the Voronoi–Laplacian proposed by Luo et al. (2009), Luo (2014) is adopted with 
the elements of the Laplacian matrix being

Li j =
{

wij A j, i f i �= j
wii Ai − ∑n

j=1 wij A j, i f otherwise
, (8)

where Ai is the Voronoi weight of point pi , which roughly accounts for the area of the underlying manifold represented by 
the sample point pi and can be calculated by considering the points within a certain distance around point pi . The weight 
wij is computed in Eq. (4).

To obtain the interpolation function g = (g(p1), g(p2), · · · , g(pn)) with the interpolated anchors and corresponding values 
{(pi, fi), i ∈ �}, a sparse n × n linear system is constructed

L2g = 0, s.t. g(pi) = f(pi), i ∈ �, (9)

where � is the set of interpolated anchors for the signal f and this system can be solved by the direct elimination method 
(K. Xu et al., 2009).

Stopping criteria of the sifting process and the entire EMD processing. Following the computational strategy of the 
original 1D EMD, the stopping criteria of the sifting process of EMD on point clouds is controlled by restricting the size of 
the standard deviation

S D =
n∑

t=1

|si−1(pt) − si(pt)|2
|si−1(pt)|2

, (10)

with si−1 and si are two consecutive sifting functions in one iteration. The smaller the value is, the more IMFs we will 
obtain. The typical value of S D is set in the range of 0.1 to 0.3.

The entire EMD process will be terminated when either the component hk or the residue rk becomes so small that it is 
less than the pre-determined value of substantial consequence, or the residue rk becomes a monotonic function from which 
no more IMFs could be extracted (Huang et al., 1998). In practice, the process of EMD can be stopped when the number of 
IMFs is larger than a pre-determined threshold or the numbers of local minima and maxima of the residue is smaller than 
the user specified value.

Surface reconstruction. According to different requirements of various applications, such as smoothing, detail enhancing 
and denoising, the decomposed IMFs are modified to generate a new signal f′ . The processed point clouds with new point 
P ′ = {p′

i, i = 1, · · · , n}, corresponding to the new signal f′ can be reconstructed in the least-squares sense with the original 
points P = {pi, i = 1, · · · , n} as constraints. The reconstruction process is enabled by minimizing the following energy

‖LP′ − diag(f′)N‖2 + τ 2
n∑

i=1

‖p′
i − pi‖2, (11)

where diag(f′) returns a square diagonal matrix with the elements of vector f′ on the main diagonal and the parameter τ
is a weight of original points, the default value is set to be 0.01, and N is the point normal matrix and L is the Laplacian 
matrix.

Minimizing the energy of Eq. (11), a linear system is obtained,
[

L

τ In×n

]
P′ =

[
diag(f′)N

τP

]
, (12)

then it can be efficiently solved in the least-squares sense with AT AṼ = AT b by Cholesky factorization.
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Fig. 3. The map of structure measurement on different models. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

4. Feature-preserving EMD on point clouds

In geometry processing, sharp features have been playing an important role in shape modeling, representation, recon-
struction, and should be completely preserved during data processing. However, directly extending the original EMD from 
1D signal to deal with 3D point clouds could not preserve the sharp features well. To overcome this limitation, we further 
improve the algorithm presented in the previous section to achieve a feature-preserving EMD algorithm on point clouds 
under the assistance of the structure measurement.

4.1. Structure measurement and its computation

For characterizing the feature structure of input point clouds, we seek to define the structure measurement via tensor 
voting theory, which has been widely used for feature and salience detection in images (Zang et al., 2015; Baghaie and 
Yu, 2006; Manh et al., 2015), triangular meshes (Tsuchie and Higashi, 2012; Kim et al., 2009; X. Wang et al., 2012) and 
point clouds (Park et al., 2012). The tensor voting is a powerful and robust technique for feature and saliency detection. 
Motivated by these works, we utilize the tensor voting theory to describe the feature structure of point clouds and integrate 
the structure measurement into the EMD algorithm to achieve the feature-preserving EMD algorithm on point clouds.

Tensor voting for point clouds. To calculate the structure measurement, the voting tensors are first collected from the 
neighboring points, which encode the underlying geometry information in the local region. Specifically, for a point pi , and 
its neighbor point p j , the voting tensor Tpi

of point pi is obtained by integrating the weighted covariance matrices of its 
neighbor points

Tpi
=

∑
p j∈N(pi)

μ j · (pi − p j) · (pi − p j)
T =

∑
p j∈N(pi)

μ j · Ti j, (13)

where N(pi) is the set of neighborhood of point pi and μ is the weight measuring the contribution of each point to the 
voting procedure, which is decided by the distance between the point and its neighbors. Oftentimes, the Gaussian function 
is utilized

μ j = exp(−‖pi − p j‖2/θ2), (14)

with the parameter θ to control the influence of propagation range. The parameter θ should be adjusted based on the 
degree of noise contained in the model. For noise-free models, the smaller value will be used, while a larger value will be 
adopted for the models contaminated with heavy noise. In practice, we find that θ ranging from 1.5 to 3 times the mean 
nearest-neighbor distance of the point clouds accommodates well for the experiments shown in this paper.

Voting analysis. According to Eq. (13), the voting tensor is a symmetric positive semi-definite second-order tensor, there-
fore, it can be reorganized by using its eigen-values and eigen-vectors as

Tpi
= λ1e1eT

1 + λ2e2eT
2 + λ3e3eT

3 , (15)

where e1, e2, e3 are the eigen-vectors corresponding to the eigen-values λ1, λ2, λ3 with λ1 ≥ λ2 ≥ λ3 ≥ 0.
After the tensor decomposition, the structure measurement is computed as (Park et al., 2012)

Dpi
= λ2 + λ3

λ1
, (16)

which measures the intrinsic feature intensity of each point and is normalized to the range of [0, 1]. The value of the 
measure is very small in flat region and increases for the point locating on sharp and detail regions. Fig. 3 shows the 
saliency measurement map of different models, including both organic models and a mechanical CAD model, in which the 
structures are faithfully described.
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4.2. Feature-preserving EMD algorithm on point clouds

To overcome the limitation of EMD and preserve the sharp features, the structure measurement is integrated into the 
process of EMD as the guidance in envelope computation and mean envelope computation.

4.2.1. Envelope computation
Following the idea of envelope computation of EMD on triangular meshes, bi-harmonic interpolation is used to gen-

erate the upper and lower envelopes in present of point clouds. Unlike previous methods (Hu et al., 2014; Wang et al., 
2015), where the feature vertices are explicitly detected in advance, we utilize the structure measurement to construct the 
anisotropic point cloud Laplacian matrix.

The anisotropic Laplacian matrix L is computed in Eq. (8) by integrating the structure measurement as feature-aware 
weight

wij = 1

4πα2
exp (−‖pi − p j‖2

4α
) exp (−|Dpi

− Dp j
|2

2β2
), (17)

where D is the structure measurement computed in Eq. (16) and β is the local standard deviation of D in its neighborhoods.
With the interpolated anchors and corresponding values (pi, fi), i ∈ �, the values of interpolation function at vertices 

g = (g(p1), g(p2), · · · , g(pn)) can be obtained by minimizing the following energy function

‖Lf‖2 + μ2
∑

p j∈N(pi)

|g(pi) − f(p j)|2, (18)

with the interpolated anchor constraints

g(pi) = f(pi), i ∈ �, (19)

where μ is the weight factor for balancing the smoothing term and the interpolated term, and the default value is set to 
be 0.1 in all of our experiments.

4.2.2. Mean envelope computation
An important reason that the original EMD could not preserve sharp feature is largely due to the mean envelope com-

putation scheme, in which the mean envelope is calculated by simply averaging the upper and lower envelopes and thus 
results in feature blurring. Therefore, we expect to further improve the mean envelope computation scheme in order to 
design a feature-preserving EMD algorithm on point clouds.

Inspired by the work of Zang et al. (2015), Weickert (2003), we compute the mean envelope using shock filter (Osher and 
Rudin, 1990; Kramer and Bruckner, 1975; Prada, 2015) with the help of the structure measurement defined in this paper. 
The shock filter was first proposed by Kramer and Bruckner (1975) for image enhancement and it has been further used 
in geometry processing (Prada, 2015). The goal of the shock filter is to produce the sharp discontinuity at the borderline 
between different influence regions. Under the guidance of structure measurement and the scheme of shock filter, the mean 
envelope is computed by

m(pi) = 	(
1 − sign(ni · δi) · D(pi)

2
)u(pi)

+ (1 − 	(
1 − sign(ni · δi) · D(pi)

2
))l(pi),

(20)

where l and u are the lower and upper envelopes of the signal f, respectively. D is the structure measurement computed in 
Eq. (16). sign(·) is determined by the inner product of the normal ni and the Laplacian coordinate δi of point pi . In practice, 
for noisy point clouds, sign(·) is computed on an over smoothed data to reduce the effect of noise.

The degree of shock filter is measured by the function 	(·) and is defined by the following function

	(x) = 1 + tanh(γ (x − 0.5))

2
, (21)

with parameter γ to control its sharpness. Usually, the larger the γ is, the sharper result will be obtained. In our experi-
ments the default value of γ is set to 6 for sharp feature preserving.

The ultimate goal of the newly developed mean envelope computation scheme is to preserve sharp feature. In feature 
region, the structure measurement lies in larger value and approximates to 1, the mean envelope m approaches to

m(pi) =

⎧⎪⎨
⎪⎩

u(pi) i f sign(pi) < 0,

(u(pi) + l(pi))/2 i f sign(pi) = 0,

l(p ) i f sign(p ) > 0,

(22)
i i
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Algorithm 2 Multi-scale feature-aware EMD on point clouds.
Input: A signal f defined on point clouds
Output: IMFs hk, k = 1, . . . , d and a residue rd

Initialization: Set the index of IMFs k = 1 and initial residue r0 = f;
1: repeat
2: Find local minima and local maxima of rk−1;
3: Compute the structure measurement by Eq. (16) and discrete Laplacian operator for point clouds by Eq. (8) with the feature-aware weight by 

Eq. (17);
4: Compute the lower envelope lk−1 and upper envelope uk−1 using Eq. (18);
5: Compute the mean envelope mk−1 using the shock filter by Eq. (20);
6: Extract the k-th level hk by hk = rk−1 − mk−1 and set the k-th residue by rk = mk−1;
7: k = k + 1;
8: until The number of levels reaches a user-specified number

Fig. 4. Illustration of the processed signal on a cube mode. (a) A cube model corrupted with Gaussian noise of 5% of average distance between neighboring 
points. (b) Input signal. (c) and (d) are residue obtained by EMD without and with structure measurement assistance, respectively. (For interpretation of 
the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 5. Illustration of feature-preserving EMD algorithm. (a) and (d) are input cube and Fandisk model. (b) and (e) are denoising results by using EMD. (c) 
and (f) are denoising results using feature-preserving EMD.

with the feature effectively preserved. On the other hand, in smooth and flattened regions, the value of structure measure-
ment D is close to 0, then Eq. (20) degrades to the conventional definition of mean envelope (u + l)/2.

To accelerate the decomposition process, following the scheme of the work (Subr et al., 2009; Hu et al., 2014), our 
decomposition algorithm obtains the detail level by subtracting the mean envelope from the input signal instead of the it-
erative sifting process. The multi-scale representation will be obtained by repeating the process until reaching the required 
number of levels. The algorithm of our feature-preserving EMD on point clouds is summarized in Algorithm 2. Fig. 4 il-
lustrates the decomposition results of EMD on a noisy cube. From Fig. 4(c) and Fig. 4(d), it is evident that the EMD with 
structure measurement assistance achieves much clearer feature preserving in the residue than the EMD without structure 
measurement assistance. Furthermore, Fig. 5 shows the results using EMD and feature-preserving EMD. From the results, 
we can see that the sharp features are smoothed using the EMD algorithm, while they are well preserved using the feature-
preserving EMD.

5. Experimental results and applications

In this section, the applications of point clouds including detail smoothing and enhancing, feature point extraction, as 
well as feature-preserved denoising, are shown to illustrate the efficiency and performance of our proposed EMD algorithm 
on point clouds. The algorithm is evaluated on both synthetic and real scanned point clouds, and the results are shown in 
surfaces reconstructed from the corresponding point clouds by the ball pivoting algorithm (Bernardini et al., 1999).
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Fig. 6. Smoothing and enhancing results of Gargo model. (a) The smoothing result reconstructed from the residue. (b) The smoothing result with the scaling 
coefficients (0, 0, 1). (c) The original model. (d–e) The enhancing results with scaling coefficients (2, 1, 1) and (4, 1, 1), respectively.

Fig. 7. Comparing results between our method with the Laplace-based detail modification method. (a–c) Laplace-based results from smoothing to enhancing. 
(d–f) Our results, which are obtained from the residue with parameter ϕi = (0, 0, 0, 0, 0), enhancing the middle-scale with ϕi = (0, 4, 4, 4, 0), enhancing 
the first IMFs with ϕi = (5, 0, 0, 0, 0), respectively.

5.1. Detail smoothing and enhancing

As stated above, the leading IMFs encode the fine scale details and the trailing IMFs contain the smoother shape of 
the signal. Therefore, it is natural to execute the enhancing and smoothing filters by scaling corresponding IMFs with the 
residue unchanged,

f′ =
d∑

i=1

ϕihi + rd, (23)

where ϕi is the scaling coefficient with ϕ> 1 for enhancing and 0 ≤ ϕ< 1 for smoothing. In the following experiments, the 
signal is usually decomposed into three IMFs by the algorithm of point clouds EMD in the applications of smoothing and 
detail enhancing.

Benefiting from the multi-scale representation of EMD, smoothing and detail enhancing can be easily carried out on 
point clouds. Fig. 6 shows the results from smoothing to enhancing on Gargo model. Fig. 6(a) is the smoothing result 
reconstructed from the residue, in which the general outline of the shape is presented with details smoothed out. With the 
third IMF added, the detail features of the data appear gradually. Fig. 6(d–e) give the two enhancing results with the IMFs 
scaled by the factors (2, 1, 1) and (4, 1, 1), respectively. From these figures we can see that the detail features are apparently 
enhanced. These results further confirm that the detail features are encoded in the leading IMFs.

In Fig. 7, we compared our method with Laplace-based algorithm in detail modification on a frog model. To modify 
the details based on Laplace-based framework, we first compute the Laplacian coordinates of the model, then modify the 
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Fig. 8. Comparing EMD with MHBs (Vallet and Lévy, 2008) and SGWs (Hammond et al., 2011) for the detail editing. (a)–(b) The MHB-based results with 
editing coefficient {0}, {4} for the detail extracted by separating the low frequency component in MHBs from the original signal, respectively. (c)–(d) 
The SGWs-based results with editing coefficient {0}, {4} for the detail extracted by separating the wavelet representations in SGWs from the original 
signal, respectively. (e)–(h) Our results with parameter ϕi = (0, 0, 0, 0, 0, 0), (0, 4, 4, 4, 4, 0), (5, 0, 0, 0, 5, 5), (5, 5, 5, 5, 5, 0) for the decomposed five IMFs, 
respectively.

Laplacian coordinates by multiplying different scale values. Finally, the geometry shapes are reconstructed from the mod-
ified Laplacian coordinates via Laplacian framework. Fig. 7(a–c) are the results from smoothing to enhancing with scale 
values 0.2, 0.5, and 2.0, respectively. In our algorithm, we first decompose the signal into five IMFs and a residue, then the 
multi-scale detail modifications can be obtained by using different IMFs together with the residue. Fig. 7(d) is the smoothing 
result reconstructed from the residue. Fig. 7(e) is the middle-scale enhancing result obtained by enhancing the second to 
fourth IMFs with five times. Fig. 7(f) is the detail enhancing result with five times of the first IMFs. From the results we 
can see that Laplacian-based method can obtain the detail modifications from smoothing to enhancing. However, it is hard 
to modify the different scale details. In contrast, benefitting from the multi-scale decomposition of EMD, our method can 
easily and effectively modify different scale details, which can be seen from Fig. 7(d–f).

Furthermore, to demonstrate the advantage of EMD, we conducted some detail editing experiments to compare EMD with 
the well known manifold harmonic bases (MHBs) (Vallet and Lévy, 2008) and spectral graph wavelets (SGWs) (Hammond et 
al., 2011). MHBs are the eigenvectors of the Laplacians as the “Fourier-like” bases and the corresponding eigenvalues describe 
the space frequency of 3D models. SGWs are defined as bivariate kernel functions with the time and Laplacian eigenvalue 
variables expanded on the manifold harmonic bases where the time variable represents the scale parameter. Unfortunately, 
both of these two methods need a massive number of eigenvectors to describe high frequency detail information. For ex-
ample, in the detail editing of 3D model with more than 120, 000 vertices (Fig. 8), the eigenvectors corresponding to the 
smallest 1000 eigenvalues of the mesh Laplacians in MHB can only describe the low frequency information, and SGWs in 
the time interval [2/λmax, 40/λmax] selected in Hammond et al. (2011) can not well represent the detail information us-
ing these eigenvectors either, where λmax is the upper bound of the Laplacian eigenvalues. Obviously, it is impractical for 
large-sized models to compute a massive number of eigenvectors due to the limitation of physical memory and compu-
tational efficiency. Therefore, in our comparisons, we described the details of a 3D model according to the signal residue 
by separating the low frequency component in MHBs and the wavelet representations in the above time interval in SGWs 
from the original signal respectively (1000 eigenvectors are used in the eigenvalue decomposition). Accordingly, MHBs and 
SGWs based on the small amount of eigenvalue decomposition can only regard the modified details as one scale. As shown 
in Fig. 8, the results generated by these three methods are almost similar if the modified details are only edited in one 
scale. However, when adding more multi-scale controls, our method can generate more meaningful detail editing results 
(Fig. 8(e)–(h)) owing to the adaptive multi-scale representation ability of EMD for the geometry details.

5.2. Feature points detection

Our proposed EMD-based algorithm can also be applied to feature detection on point clouds. As demonstrated in the 
above sections, EMD decomposes the signal into multi-scale representation with IMFs encoding features of different scales. 
Therefore, the feature points can be extracted from the local extrema of each IMF. In general, more feature points will 
appear at the leading IMFs, and the number of feature points decreases in the subsequent IMFs. That is to say, some feature 
points extracted in the first few IMFs might not be the feature points in the subsequent IMFs, which describe the overall 
shape of the data in a global way. To obtain the feature points on point clouds, the feature point is identified to be a real 
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Fig. 9. Feature points detection on different data, including Camel model, Dragon model, Octopus model and Armadillo model.

Fig. 10. Denoising results of two simple models. (a) is a noisy torus with two handles. (b) is the denoising result of (a). (c) is the noisy Fertility model. (d) 
is the denoising result of (c).

Fig. 11. Denoising results on a noisy toy model. (a) is a noisy toy model. (b) is the denoising result of MLS (Guennebaud and Gross, 2007). (c) is the 
denoising result of RIMLS (Öztireli et al., 2009). (d) Our result.

feature point if its appearance times in all IMFs exceeds a specific threshold. For enhancing the robustness of feature points 
detection, more IMFs are needed for achieving feature points detection. In feature points detection, the number of IMFs is 
set to be 10 as a default and the threshold number of identifying feature points is set to be 8 in our experiments. Fig. 9
shows the feature points extraction on different models within the framework of our proposed EMD-based algorithm.

5.3. Feature-preserving denoising

For noisy models, the noise are contained in the leading IMFs, and will be removed to achieve point clouds denoising. 
Fig. 10 shows the denoising results of two handle torus and a Fertility model. The two input models are corrupted by 10%
Gaussian noise of average distance between neighboring points. Fig. 10(b) is the denoising result reconstructed from the 
residue, from which we can see that the noise are effectively removed with the overall shape well preserved, as well as the 
denoising results shown in Fig. 10(d).

Fig. 11 shows the comparing denoising results with moving least squares (MLS) (Guennebaud and Gross, 2007) and 
robust implicit moving least squares (RIMLS) (Öztireli et al., 2009) on a toy model contaminated with significant noise. 
Fig. 11(b) is the result of MLS (Guennebaud and Gross, 2007) and Fig. 11(c) is the result of RIMLS (Öztireli et al., 2009), 
while Fig. 11(d) is our result. From these results, we can see that the significant noise can be removed by the three methods. 
Since MLS is based on least square approximation, it obtains much smoother result. In contrast, adopting robust local kernel 
regression and structure measurement, RIMLS and our method generate the denoising result with feature-preserving.

Furthermore, in Fig. 12 the denoising results on two scanned point clouds are shown. Fig. 12(b) is the result obtained by 
RIMLS, and Fig. 12(c) is the result of our method by abandoning the first two IMFs in signal editing. The noise contained in 
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Fig. 12. Denoising results with detail preservation. (a) is a scanned AfroMax model. (b) is the denoising result of RIMLS (Öztireli et al., 2009). (c) Our result. 
(d) is a scanned archaeological artifact. (e) is the denoising result of RIMLS (Öztireli et al., 2009). (f) Our result.

Fig. 13. Comparisons between our method with the previous point clouds denoising algorithms. (a) Input noisy point clouds of cube contaminated with 5%
Gaussian noise of average distance between neighboring points. (b) Result of WLOP (Huang et al., 2009). (c) Result of EAR (Huang et al., 2013). (d) Result 
of MLS (Guennebaud and Gross, 2007). (e) Result of RIMLS (Öztireli et al., 2009). (f) Our result.

the input model are effectively removed while retaining the detail features, which can be observed from the regions of eyes 
and nose in Fig. 12(b) and Fig. 12(c). Fig. 12(d) is the scanned archaeological artifact with rich details, which is contaminated 
with noise and geometric details. To obtain the clean model, the proposed mesh-free EMD algorithm is applied to Fig. 12(d). 
With the assistance of structure measurement in EMD decomposition, the details of the archaeological are well preserved 
with noise removed (see Fig. 12(f)). Comparing with the results of RIMLS, our method obtains more smoothing results while 
preserving the geometric details than RIMLS.

Directly applying the extended EMD algorithm on point clouds, the sharp features could not be well preserved. For 
preserving the sharp features, we further propose a feature-preserving EMD algorithm on point clouds under the assistance 
of structure measurement. During point cloud denoising, the signal is decomposed using the proposed algorithm and the 
surface reconstructed from the residue is treated as the final smoothing result. To evaluate the efficiency of our method, we 
compare the algorithm with the state-of-art algorithms on point clouds denoising, including the weighted locally optimal 
projection operator (WLOP) (Huang et al., 2009), edge-aware resampling (EAR) (Huang et al., 2013), moving least squares 
(MLS) algorithm (Guennebaud and Gross, 2007) and RIMLS (Öztireli et al., 2009) in Fig. 13. The results of WLOP in Fig. 13(b) 
and EAR in Fig. 13 (c) are obtained by using the software of Huang et al. (2013) under the guidance provided by the released 
codes. Fig. 13 (d) and (e) are the result of MLS (Guennebaud and Gross, 2007) and RIMLS (Öztireli et al., 2009), which are 
obtained by utilizing the software of MeshLab. It is observed that all methods can remove noise lying on planar region. 
However, the WLOP produces a large gap around the sharp edges and results in many crossing artifacts. To overcome this 
limitation, the upsampling is used to approach the sharp edges in EAR algorithm. The result can be improved to certain 
extent, but the sharp features still could not be well recovered. In Fig. 13(d), the MLS method performs a smoothing 
transition around the feature region. In Öztireli et al. (2009), the RIMLS is proposed and the obtained feature-preserving 
denoising result is shown in Fig. 13(e). Comparing with these algorithms, our method produces a much better result than 
most previous work and the sharp features are faithfully preserved as well as the result of RIMLS (Öztireli et al., 2009) (see 
Fig. 13(e) and Fig. 13(f)).

In Fig. 14, Fandisk model is used to further demonstrate the capability of our algorithm to handle noisy data with 
sharp feature preservation. The Fandisk model is corrupted with 5% Gaussian noise with the average distance between 
neighboring points. The results shown in Fig. 14(a–g) are obtained by the algorithms of WLOP (Huang et al., 2009), EAR 
(Huang et al., 2013), MLS (Guennebaud and Gross, 2007), Wang’s method (H. Wang et al., 2012), feature-centric EMD (Hu 
et al., 2014), bilateral filtering (Fleishman et al., 2003) and RIMLS (Öztireli et al., 2009), respectively. From the results shown 
in the first row, we can see that the sharp features are smoothed together with the noise, although the edge-aware Laplace 
operator is adopted. Differently, with the sharp feature points extraction, the method of Hu et al. (2014) obtains the sharp 
feature-preserving result in Fig. 14(e) as well as the results obtained by the bilateral filtering (Fleishman et al., 2003) and 
RIMLS (Öztireli et al., 2009) in Fig. 14(f) and Fig. 14(g). However, there are still some artifacts occurring on smooth regions 
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Fig. 14. Feature-preserving result of Fandisk model. Input Fandisk model corrupted by 5% Gaussian noise of average distance between neighboring points. 
(a) Result of WLOP (Huang et al., 2009). (b) Result of EAR (Huang et al., 2013). (c) Result of MLS (Guennebaud and Gross, 2007). (d) Result of Wang’s 
method (H. Wang et al., 2012). (e) Result of feature-centric EMD (Hu et al., 2014). (f) Result of bilateral filtering (Fleishman et al., 2003). (g) Result of RIMLS 
(Öztireli et al., 2009). (h) Our result.

Table 1
Run times (in seconds). #P: number of points. #IMF: number of IMFs. #NB: number 
of neighbors. SM: time of structure measurement computation. LB: time of discrete 
Laplacian operator construction. EMD: time of signal decomposition. Total: total time 
of our method.

Figs #P #IMF #NB SM LB EMD Total

Fig. 1 165954 3 15 36.08 144.11 276.37 470.80
Fig. 6 25038 3 25 3.88 21.76 36.66 64.57
Fig. 9(a) 40240 10 25 6.44 34.78 51.17 111.08
Fig. 9(b) 69827 10 15 12.24 60.45 57.15 151.50
Fig. 9(c) 16944 15 30 2.66 15.78 31.92 65.47
Fig. 9(d) 16805 10 15 2.501 14.42 3.87 36.36
Fig. 10(b) 14142 3 25 2.13 10.59 14.82 30.07
Fig. 10(d) 42514 3 25 6.94 36.89 54.87 103.81
Fig. 12(b) 93047 3 25 17.54 84.15 132.55 247.24
Fig. 12(d) 44445 3 25 7.30 40.17 58.45 111.01
Fig. 12(f) 108744 3 25 20.51 84.15 148.6 279.07
Fig. 13 24578 1 15 3.61 18.65 8.51 37.23
Fig. 14 27827 1 15 5.10 22.42 11.34 42.20

and along the feature lines. With the guidance of structure measurement, our EMD-based algorithm obtains satisfactory 
result and retains sharp features fully preserved in Fig. 14(h).

5.4. Time performance and parameters

The proposed algorithm is implemented in MATLAB 2013a on a laptop with the Intel Core i7-4790 CPU @ 3.60 GHz 
with 16.0 GB memory. There are three main stages in our algorithm, point clouds Laplacian operator construction, EMD 
decomposition, and structure measurement computation in feature-preserving EMD. The time consumption of the entire 
algorithm dependents on the size of input point clouds. It may be noted that, the time performance of three stages is 
primarily affected by the size of involved neighbors and the number of decomposed IMFs. The more IMFs and the larger 
number of neighbors are used, the more time will be consumed. Usually, for the point set with the presence of large 
amount of noise, more neighbors are needed to improve the robustness of the algorithm in applications of smoothing and 
denoising. On the other hand, smaller size of neighbors should be adopted to capture the small-scale detail features as 
well as preserve sharp features. Generally speaking, our algorithm is not sensitive to the size of neighbors, and the 15–35
neighbors are typically considered in our experiments.

Apart from the important parameters of neighbor size discussed above, all important parameters are fully discussed in 
corresponding sections. To obtain satisfactory results, we start the experiments with all parameters in default values, then 
tune the parameters according to the demands from various applications and the conditions of the input data, such as the 
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degree of noise and the sharpness of features. The implementation was done in MATLAB without any specific optimization 
and the used parameters as well as the time of main steps are presented in Table 1.

5.5. Limitation

The proposed EMD-based algorithm represents our first research attempt that aims to extend the EMD on point clouds, 
even though it has shown significant promise, it still has room for improvement. Suffering from the mode mixing problem of 
original EMD, the proposed method may not completely distinguish different components in narrow-band signals. That will 
result in similar scale features appearing in two different IMFs or different scale features mixed in one IMF. This limitation 
may be ameliorated by restoring to ensemble EMD algorithm and after that we can edit each feature in an independent 
manner.

6. Conclusion

In this paper, we have developed a novel multi-scale mesh-free EMD algorithm without the need of building explicit 
connectivity among discrete points. As a result, the salient advantages of EMD techniques on meshed surfaces could be 
extended directly to unorganized point clouds, hence enhancing the modeling and processing potential of EMD-relevant 
technologies and broadening their application scopes. The multi-scale representation is achieved by iteratively extracting the 
detail level from the input signal and retaining the overall shape in residue. For point-based EMD analysis and processing, 
we further devised a new envelope computational scheme enabled by an anisotropic structure measurement to preserve 
sharp features with high fidelity. In sharp contrast with available feature-preserving EMD methods for meshed models, our 
algorithm does not explicitly rely on sharp feature detection, which has made our algorithm more robust to noisy and 
complex point clouds. A wealth of experiments and comparisons have been provided to demonstrate the utility and efficacy 
of our multi-scale mesh-free EMD algorithm in various applications of point clouds smoothing and detail enhancing, feature 
points detection, and feature-preserving denoising.

As for ongoing and near-future research, we will make great efforts to make the algorithm to deal with significant 
noise, outliers, close-by surface, multi-scale geometric features for point clouds. We are also focusing on the challenging 
mode-mixing problem of EMD and aiming to achieve a clear separation of features at different scales. In addition, more 
applications on point clouds (that could be facilitated by the newly-developed EMD algorithm) shall be explored, such as 
large-scale point clouds editing, point clouds compression, and point clouds completion.
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