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a b s t r a c t 

Fish animation generation is an interesting topic since it plays an important role in building virtual un- 

derwater worlds. Accurate motion capture and flexible retargeting of fish is difficult, in particular with 

the challenges of underwater marker attachment and feature description for soft bodies. Little research 

into this problem has been published and real-time fish motion retargeting with a desirable motion pat- 

tern remains elusive. Motivated by our goal of achieving high-quality data-driven fish animation with a 

light-weight, mobile device, this paper develops a novel framework of motion capturing, retargeting, and 

fine tuning for a fish. We demonstrate a markerless technique for the motion capture of an actual fish 

using a monocular camera. The elliptical Fourier coefficients are then integrated into the contour-based 

feature extraction process to analyze fish swimming patterns. This novel approach can obtain motion in- 

formation in a robust way, utilizing the smooth medial axis as the descriptor for a soft fish body. For 

motion retargeting, we propose a two-level scheme to transfer the captured motion into new models, 

such as 2D meshes (with texture) generated from pictures or 3D models designed by artists, regardless 

of the body geometry and fin proportions amongst various species of fish. Both the motion capture and 

retargeting processes operate in real time. Hence, the system can obtain video sequences of real fish us- 

ing a monocular camera and simultaneously create fish animation with variation. In addition, a motion 

fine tuning method is provided for animators to efficiently refine the retargeted frames in an interactive 

manner. It can enhance the final output animation to an appropriate level of fidelity. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Fish animation is an interesting research topic due to its im-

ortant role in building virtual underwater world. Generally, the

otion style in animation tends to be more realistic, if the data-

riven animation approach is utilized to provide more accurate

otion details. In data-driven approaches, the motion data can be

aptured from the real world by motion capture (or Mo-cap) tech-

ique. Motion capture has been widely used in video game pro-

uction and film industry for the last two decades, with the goal

f creating natural character animation and special effects. Real-

stic motion data of an actor can be captured by a mo-cap system

nd then retargeted to new characters, creating animation with the

ame motion as the actor but with new appearances. Nonetheless,

raditional mo-cap systems suffer from noisy motion data resulting

rom occlusion, interference [1] or skin artifact [2] , and specialized

igh-end devices which are too expensive to afford by the gen-

ral public [3] . Moreover, it is extremely difficult to attach mark-
∗ Corresponding author. 
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rs to certain types of characters such as underwater creatures

e.g., fish). 

To address the limitations above, we develop a markerless mo-

ion capture technique to record the motion of an underwater fish

n this paper. Since the most movement of a fish takes place in the

orizontal plane, we simply employ a monocular camera to record

he fish movement from the top of a fish tank. The swimming fish

i.e., foreground region) is segmented by a background subtraction

lgorithm. Based on the extracted fish contour, the head and tail

an be located successively. However, the accurate medial axis of

 fish body serving as a spine is difficult to represent, due to the

symmetric motion of the fish fins. To solve this problem, we em-

loy elliptical Fourier coefficients [4] to convert the fish contour

rom the original physical domain to the frequency domain, and

hen, reconstruct it with fewer coefficients. Similar to the low pass

lter, it gives rise to a smoothed contour. Then a smooth medial

xis, which is considered as the deformable spine, can be gener-

ted for the soft fish body. Finally, the remaining feature points

an be located based on the medial axis and the original contour.

y retargeting such feature points as fish motion to 2D/3D meshes

ith texture information, the final fish animation can be obtained.

ith our proposed data-driven method, even the general public

https://doi.org/10.1016/j.cag.2017.12.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2017.12.004&domain=pdf
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without specially-trained artistic skills is capable of creating fish

animation with low-cost mobile devices, such as a cellphone with

a camera. 

Motion retargeting technique has been widely studied among

characters which can be represented with skeleton models. Mo-

tion retargeting of fish, however, is more challenging for the flex-

ible body and variant fin locations. Essentially, fish motion can be

decomposed into two parts: the global motion including position

and orientation, and the local motion which is the deformation un-

der local coordinates. The estimation and recovery of global motion

are straightforward since it consists of a rotation and a translation

only. As for the local deformation, simply scaling the motion w.r.t.

the skeleton according to the fish body ratio will cause unnatu-

ral geometry distortion, especially in the vicinity of the fins area.

In this paper, we propose a two-level motion retargeting scheme,

in which the local shape transferring process is divided into two

steps. At the first step, we only transfer the body motion into the

target model, during which the junction points between the fish

body and two fish fins are regarded as a part of the fish body

and can be accurately retargeted. Afterwards, we transfer the fin

motion through the junction points, serving as both local control

points and relative positions of fin motion. With this two-level mo-

tion retargeting approach, we can properly transfer the motion of

a real fish into a target model. 

To improve the final output animation to an appropriate level

of fidelity, we propose a motion fine tuning approach to interac-

tively editing the retargeted frames. During the refinement stage,

each editing operation on a certain frame will influence the neigh-

boring frames. It avoids the tedious frame-by-frame manipulation

from users. 

In particular, the innovative contributions of our research can

be summarized as follows: 

• We develop a data-driven based technique for fish animation

generation with a low-cost device. Using a monocular camera,

the motion sequences of a real fish can be captured and re-

targeted to a 2D/3D fish or fish-like model in real time. With

comprehensive functionalities, our system also supports inter-

actions from users to edit retargeted frames for final animation

production. 
• The smooth medial axis of a soft fish body is hard to ac-

quire, due to the asymmetry of its fins and contour during fish

swimming. We incorporate elliptical Fourier coefficients into

the contour-based feature extraction. Then, we reconstruct the

contour with low-frequency harmonics, which can effectively

attenuate the asymmetry of the fins while preserving the fish

global shape. Finally, a preferable medial axis can be extracted. 
• We propose a two-level motion retargeting scheme to trans-

fer the motion from an original fish sequence to new models.

The major challenge is to handle various body proportions and

fin locations. Here, we decompose the local motion retargeting

process into two steps. First, the motion of a fish body is trans-

ferred to the target model, with the positions of junction points

determined. At the second step, the motion of fins can be accu-

rately retargeted with the junction points, serving as both local

control points and relative positions of the fin motion. 

2. Related work 

Motion capture and motion retargeting have been studied

widely in computer vision and computer graphics. However, both

of them remain open and challenging problems. Given the signif-

icant literature in these areas, we focus on the most relevant re-

searches. 
.1. Video-based motion capture 

Most video based mo-cap systems employ a number of syn-

hronized cameras to acquire multiple views of the character with

arkers or sensors, which has been well studied in the existing

iterature [5] . Motion capture from the video is more challenging

or the lack of depth information and occlusion of feature points

r markers. Most video-based approaches estimate the pose by

earching from the state space [6] or relying on Bayesian filtering

ith the prior models of dynamics [7] and focus on human or ar-

iculated characters only [8–10] . In contrast, our mo-cap system is

esigned for fish or fish-like creatures. 

In the field of motion capture for animals, Ju et al. [11] present

 mo-cap system for a bird but their method is marker-based

nd needs multiple high-speed video cameras. Wilhelms and

elder [12] propose an interactive video-based mo-cap system

or character animation. They identify features and establish fea-

ure relationships from frame to frame, but their method is

eveloped only for articulated characters such as horses. Lee

t al. [13] present a video-based fish animation generating sys-

em which is the most similar work to ours, but their work relies

n multi-view cameras and does not take the motion of fins into

onsideration. Yu and Terzopoulos [14] present a synthetic motion

apture to render plenty of fish at an interactive rate. However,

he motion data they use is generated from the simulation of the

iomechanical model, while we directly use captured videos as a

eliable data source. 

Video-based motion capture can be regarded as extracting mo-

ion from image sequences. There are some classic approaches for

oint tracking [15] or object tracking [16] . Shi and Tomasi present

he famous KLT tracking algorithm [15] to track good features

hich are selected under the principle that a good feature is the

ne that can be tracked well. The features selected by KLT tracker

re mostly corners while the body of fish is too flexible to ob-

ain stable tracking across a large number of frames. Comaniciu

t al. [16] propose the mean-shift tracking approach for real-time

on-rigid object tracking, which is used in the mo-cap system pre-

ented in [8] to track the motion of a human body. However, the

ean-shift algorithm calculates the shift vector based on the his-

ogram of the object region, which makes it hard to track a patch

f a fish due to its self-similar texture. In contrast, our contour-

ased feature extraction avoids the direct tracking to a specific

oint or patch, thus is able to provide robust motion information. 

.2. Motion retargeting 

Motion retargeting is a classic topic which aims to transfer the

otion from one character to another, while keeping styles of the

riginal motion. Most existing work is either offline or requires a

arge database of example motion. An offline method presented by

leicher [17] uses spacetime constraints on example motion. They

onsiders different segment lengths but identical structure of char-

cters with fewer degrees of freedom (DOF). Similar limitations ex-

st in many other offline methods [18,19] . Shin et al. [20] present

n online method using inverse kinematics (IK), but only take iden-

ical skeletal topologies into consideration. Kulpa et al. [21] pro-

ose an approach to supporting different numbers of bones in

imbs by using IK in real time, but only on humanoid topolo-

ies. Popovi ́c and Witkin [19] applies the principles of physical-

ased animation and constraint optimization formulation on mo-

ion data. But like most other approaches, it retargets the motion

o articulated figures only. An interesting method proposed by Bre-

ler [22] is able to retarget the motion from a cartoon character

o another. It needs the user to define each key-shape motion to

ynthesize the final animation. Hornung et al. propose a retarget-

ng approach [23] similar to ours that can animate photos of 2D
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Fig. 1. Flow chart of our technique. (a) The motion of a swimming fish in water is captured. (b) The target model is constructed from a hand-drawn cartoon fish. (c) Body 

motion, fin motion, and global motion are retargeted sequentially. (d) Animation can be reproduced by the recorded motion and an imported model, along with interactive 

editing. Both (a) and (c) are executed synchronously in real time. (b) is executed only once. (d) is an interactive post-process for animation production. 
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haracters. They present a solution to reconstruct a projective cam-

ra model and a 3D model pose which matches best to the given

D image. However, the motion types are limited and the anima-

ion characters must be humanoid. 

Several sketch-based motion editing techniques can also be

onsidered in the scenario of motion retargeting since they hold

everal high-level shape descriptors to achieve the character pos-

ng [24,25] . However, some of them relied on stick figures [26,27] .

s the major concern of sketch-based character posing is to de-

cribe the motion as abstract shape descriptors, few of them can

ork in real time [28] . 

In terms of fish motion retargeting, it’s difficult to treat the

sh as an articulated character and represent it with a traditional

keleton model, due to the flexibility of the fish body and the vari-

nt locations of the fins. The two-level retargeting scheme we pro-

ose treats the fish topology as two parts. The body part can deal

ith the flexibility of fish body, and the fin part is able to handle

he variance of fin locations. 

. System overview 

Our motion capture and retargeting technique aims at provid-

ng a framework to drive a 2D/3D fish or fish-like model to swim

ively with the same motion style as the real one in the video. The

otion fine tuning technique is a postprocessing tool which allows

sers to efficiently edit the retargeted frames to output the final

nimation with a high level of fidelity. Fig. 1 shows the pipeline. 
.1. Motion capture 

After acquiring a swimming fish video, we employ an adaptive

ackground subtraction method: ViBe [29] to detect the foreground

f each frame. A morphological filter and a connected component

lter are applied to remove the salt and pepper noise and the

on-significant foreground region, leaving salient connected com-

onents as the foreground objects. Once the user selecting a cer-

ain object, the system will regard it as the swimming fish and

eep tracking on it. While the fish is being tracked, its motion will

e continuously recorded by the contour-based feature extraction

rocedure and then delivered to the motion retargeting module. 

.2. Target model construction 

In Fig. 1 (b), the target model is constructed from a hand-drawn

artoon fish. The aim of this module is generating a target 2D/3D

odel with several control points to achieve the animation. This

ask is processed off-line and only once. Given a picture contain-

ng a cartoon fish, we preprocess the image to acquire the con-

our, then the control points will be extracted by the contour-based

eature extraction process. Finally, the fish model is generated by

onstrained Delaunay triangulation [30] . For 3D models, we take

 snapshot on the top view of the fish model, extract the control

oints from the 2D snapshot (as same as the 2D fish picture), and

nally, recover them to the 3D coordinate system. 
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Table 1 

Fish motion attributes. 

Attribute Explanation 

center Fish center 

dir Major direction, representing the fish orientation 

head Fish head 

tail Fish tail 

l _ fin The left pectoral fin tip 

r _ fin The right pectoral fin tip 

jun _ tl The top-left junction point 

jun _ tr The top-right junction point 

jun _ bl The bottom-left junction point 

jun _ br The bottom-right junction point 

up _ axis { 1 , 2 , ... ,u _ num } Sample points in the upper segment of the medial 

axis, from center towards head 

low _ axis { 1 , 2 , ... ,l _ num } Sample points in the lower segment of the medial 

axis, from center towards tail 

Fig. 2. Motion attributes of a fish. (For interpretation of the references to color in 

this figure, the reader is referred to the web version of this article). 
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3.3. Motion retargeting 

The recorded motion consists of global motion and local mo-

tion, where the former one is represented by a rotation and a

translation, and the latter one is represented by the positions of

the control points of the fish model. The control points can be di-

vided into two groups: body control points and fin control points.

At the first stage, we transfer the local motion to the body control

points of the fish model, then deform the model with body control

points only. Thus we can obtain the positions of junction points,

which are deformed as a local part of the fish body just now. At

the second stage, we transfer the local motion to the fin control

points with the help of junction points, then deform the fish model

with all control points. Afterwards, the final retargeted model is

obtained by applying a rotation and a translation according to the

global motion. For shape deformation, we choose a moving-least-

squares (MLS) based approach [31] £due to its high efficiency for

the closed-form solution and low distortion stemming from the

least square error. 

3.4. Motion fine tuning 

In extreme cases, several feature points of the fish may hardly

be located accurately. It can cause distortion frames. Besides, ani-

mators may want to modify the final output for special purposes,

such as exaggerated effects. Here we provide a motion fine tun-

ing function for users to edit consecutive frames interactively. The

editing manipulation in a certain frame will influence its neigh-

boring frames. The range of effected neighboring frames depends

on both the current frequency of the fish motion and the order of

current frame in a consecutive motion sequence. 

4. Motion capture 

In each frame, the foreground pixels are identified as binary

mask by using ViBe [29] . The salt and pepper noise is eliminated

through a morphological opening operation on the mask. Then we

identify the connected components and remove the components

whose areas are too small, leaving the salient components as fore-

ground objects. 

The system will start tracking once user selecting one object.

The reason why we do not automate this selecting process is that

the tracking algorithm needs time to initialize the background

model. Besides, there could be multiple objects in the scene at the

same time, we can import a simple user interaction to avoid intro-

ducing supervised learning to recognize which is a real fish. 

As shown in Fig. 1 (a), an adaptive threshold image segmenta-

tion method [32] is employed to eliminate the noise caused by

shadow. After we get an accurate contour of the fish, the motion

will be captured by a contour-based feature extraction process. 

Here we list the motion attributes (position or orientation) in

Table 1 and label them in Fig. 2 , where u _ num and l _ num are the

sampling numbers of the upper segment and lower segment of the

medial axis, respectively. 

The feature extraction process can be divided into four steps:

global motion estimation, head and tail recognition, medial axis

extraction, and fin recognition. 

4.1. Global motion estimation 

The aim of this step is to estimate the center position ( center )

and the orientation ( dir ) of the fish. We use PCA method to pro-

cess the coordinates of all pixels inside the closed contour to ob-

tain the mean value, eigenvalues and eigenvectors. The mean value

that representing the barycenter is assigned to center temporarily.

As the barycenter will sometimes drift apart from the medial axis
hen the fish forms “C-shape”, we’ll update the value of center

ater after the medial axis is extracted. 

As for orientation estimation, we firstly choose the eigenvector

ith the larger eigenvalue as dir . However, it is possible the neg-

tive direction of the fish head. So the direction of the eigenvector

ill be adjusted by the orientation of the last frame so that the

ngle of the orientations between two consecutive frames won’t

e larger than π /2. 

.2. Head and tail recognition 

The recognition of head and tail is straightforward. At first,

e calculate all the distances between contour points and the

arycenter. The point with the largest distance is treated as tail .

hen we divide the contour point sequence into two equal-length

egments such that tail is the midpoint of the one, leaving head

n the other. Therefore we can locate head as the point with the

argest distance in its own segment. Occasionally, there could be

 chance to misidentify head and tail in reverse order. In case of

hat, we will use the orientation dir as a calibration. 
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Fig. 3. The functionality of elliptical Fourier coefficients in medial axis extraction. 

(a) Jagged medial axis extracted directly from the original contour. (b) Smooth con- 

tour reconstructed by using elliptical Fourier coefficients. (c) Smooth medial axis ex- 

tracted from the reconstructed contour. (d) Sampled points in the medial axis. (e) 

Biased medial axis caused by the asymmetric fins. (f) Asymmetry is largely elim- 

inated by the reconstructed contour. (g) Smooth medial axis with little bias. (h) 

Sampled points in the medial axis. 
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For general purpose, considering some species of fish that have

wo tips in its caudal fin, we will detect whether there is another

ocal max-distance point near tail as the other tip. If the other tip

s found, tail will be updated as the point in the contour segment

etween the two local max-distance points and having the mini-

um distance. 

.3. Medial axis extraction 

The core part of the motion attributes is the fish medial axis

hich is drawn in red in Fig. 2 , since it is the most important de-

criptor of the flexible fish body. There exist plenty of medial axis

xtraction methods [33–37] . However, the time burden of them is

oo heavy to reach the real-time application. Thus it is preferable

or us to develop an efficient and effective medial axis extraction

ethod particularly for fish. 

At the beginning, we divide the closed contour into two seg-

ents, which is the two point sequences from head to tail in

ifferent ways. Without loss of generality, assume the number of

oints in the two sequences is l 1 and l 2 with l 1 ≤ l 2. Then the co-

rdinates of the two sequences can be represented by p { 1 , 2 , ... ,l1 } 
nd q { 1 , 2 , ... ,l2 } . And the medial axis can be given by 

 i = 

p i + q � l2 
l1 

i � 
2 

, i = 1 , 2 , . . . , l1 . (1)

However, this intuitive strategy has two problems. As we can

ee in Fig. 3 (a), the fish contour is not smooth enough thus is likely

o produce a jagged axis. In Fig. 3 (e), the medial axis is pretty

iased because the two pectoral fins are asymmetric. Under this

ircumstance, we believe that most information a contour carries

s used to represent the detail, and the body shape can be repre-

ented by only a small, and exactly the low-frequency part of the

hole contour’s information. 
The spatial filter could be a choice to smooth the contour to

liminate high-frequency part. However, it’s not easy to determine

ow large the filter template should be. Theoretically, we must

now both the amount of the whole information, and the amount

f the information we want to keep to describe the fish body. And

hen we can elaborately design a spatial filter to extract the low-

requency information. Apparently, there are two factors influenc-

ng the filter design, and the amount of the whole information is

trongly relevant to the size of the contour (which can be vari-

nt). Therefore, we employ the elliptical Fourier coefficients tech-

ology to transform the contour into the frequency domain, where

e only need to care about the amount of information to keep

how many coefficients we select). Once the frequency filter is de-

ermined, we can use it permanently as long as the complexity of

he fish model is not changed. 

Elliptical Fourier coefficients model a closed contour as sums

f elliptical harmonics. Each harmonic is described by four coeffi-

ients, interpreted geometrically as major axis length, minor axis

ength and the orientation of the ellipse. As shown in [4] , we re-

ard the contour as two periodic functions x ( t ) and y ( t ). For exam-

le, x ( t ) can be written as 

 (t) = a 0 + 

∞ ∑ 

k =1 

(
a k cos 

2 kπt 

T 
+ b k sin 

2 kπt 

T 

)
, (2)

here T is the perimeter of the contour, t = 2 π l/T , l is the arc

ength from a preset starting point, and the coefficients can be cal-

ulated as 

 0 = 

1 

T 

K ∑ 

p=1 

�x p 

2�t p 
(t 2 p − t 2 p−1 ) + ζp (t p − t p−1 ) , (3) 

 k = 

T 

2 k 2 π2 

K ∑ 

p=1 

�x p 

�t p 

(
cos 

2 kπt p 

T 
− cos 

2 kπt p−1 

T 

)
, (4) 

 k = 

T 

2 k 2 π2 

K ∑ 

p=1 

�x p 

�t p 

(
sin 

2 kπt p 

T 
− sin 

2 kπt p−1 

T 

)
, (5) 

ith K being the number of points in the contour, �x p = x p − x p−1 ,

t p = 

√ 

(�x p ) 2 + (�y p ) 2 , and 

p = 

p−1 ∑ 

j=1 

�x j −
�x p 

�t p 

p−1 ∑ 

j=1 

�t j . (6) 

 ( t ) can be defined in terms of the coefficients c 0 , c k and d k simi-

arly. 

After obtaining the coefficients from the original contour, we

se the first S harmonics to reconstruct a smooth contour accord-

ng to Eq. (2) with the same point number as the origin. The re-

onstruction result is shown in Fig. 3 (b) and (f) with S being 5.

fterwards, we use the reconstructed contour to update point se-

uences p { 1 , 2 , ... ,l1 } and q { 1 , 2 , ... ,l2 } . Then the medial axis can be ex-

racted according to Eq. (1) , as shown in Fig. 3 (c) and (g), which

ecomes much more smooth. The number of harmonics S is a hy-

erparameter which is chosen by experience. The convenience of

arameters choosing in elliptical Fourier coefficients is that S will

emain constant once the desired smoothness is fixed. It means

hat the variance of the size and the complexity of the original

ontour can be neglected. 

As mentioned in Section 4.1 , the barycenter is likely to drift

part from the medial axis when the fish body is really curved.

ince we already have the medial axis, we can choose the point

mong medial axis whose distance is the least to the barycenter,

hen record its position as the new center . 
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Fig. 4. The recognition process of jun _ tr . P denotes the head, Q denotes the right 

fin tip, R is an assistant point, and S denotes the recognized jun _ tr . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Simplified Curve Skeleton Construction. 

Input: Explicit model E 

Output: Bone length L 

1: Compute head _ len and tail _ len of L as the distances between 

head , tail and the uppermost, the lowermost ending sample 

points in the medial axis of E. 

2: Compute up _ len and low _ len of L as the piecewise lengths of 

the sampled points in the medial axis of E. 

3: Compute l _ f in _ len and r _ f in _ len of L as the length between 

E .C. l _ fin and E .C. jun _ tl and the length between E.C. r _ fin and 

E.C. jun _ tr 

4: L.body _ len = 

∑ u _ num 

i =1 up _ len i + 

∑ l _ num 

i =1 l ow _ l en i + L.head _ len + 

L.tail _ len 
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Since more feature points are required to represent the curved

body deformation in the lower part of the fish, we sample the me-

dial axis with different densities. We uniformly sampled u _ num

points in the segment of the medial axis from center point to-

wards head ( up _ axis { 1 , 2 , ... ,u _ num } ), and l _ num points in the segment

from center point towards tail ( low _ axis { 1 , 2 , ... ,l _ num } ). The result is

illustrated as Fig. 3 (d) and (h) with u _ num begin 3 and l _ num

being 15. 

4.4. Fin recognition 

Besides describing the body shape, the medial axis can offer a

great help to locate the fins. We divide the contour into two seg-

ments with head and tail as the breakpoints, then find the point

with the largest distance to the medial axis in each segment as the

left or right pectoral fin’s tip ( l _ fin and r _ fin ). Note that we only

extract the pectoral fins of the fish, for the pelvic fin and dorsal

fin are usually occluded by the fish body thus can hardly be rec-

ognized consistently. 

The remaining task is to locate four junction points ( Fig. 2 ). The

method to find each junction point is basically the same, so here

we only describe how to find the upper junction between right

fin and body ( jun _ tr ). For the contour segment from head to r _ fin

( Fig. 4 ), supposing P represents head and Q represents r _ fin , we

search a point R on the contour segment between P and Q to en-

sure � PQR is the maximum. Then the position of the point among

the segment ˜ QR with the largest distance to the line 
−→ 

QR is re-

garded as jun _ tr . 

5. Motion retargeting 

Before motion retargeting, we need to construct a target model

from 2D pictures or 3D meshes for retargeting. As shown in

Fig. 1 (b), the 2D target model is constructed from a hand-drawn

fish. We use a Canny edge detector to generate an edge image as

binary mask. Control points can be extracted through the contour-

based feature extraction process, which is basically the same as il-

lustrated in Section 4 . The mesh is generated from the contour by

constrained Delaunay triangulation [30] . Finally, the original pic-

ture is attached as the texture of the model. 

For a 3D fish model, we can directly import the mesh and tex-

ture into our system. In order to generate the positions of control

points, we use PCA to calculate three principle directions of the

vertices. Then we apply a translation and rotation to the model,

making it lying on the x –y plane, with its center at the origin,

head pointing to the positive y -axis. A 2D snapshot is taken at the

top view of the model, from which control points can be extracted

with planar coordinates. Then we recover the control points to the

3D coordinate system with z = 0 . 
The motion retargeting module consists of three stages – body

otion, fin motion and global motion. The first two stages are the

ore part of the two-level retargeting scheme we propose, and the

ast stage aims to restore the fish’s global motion. 

In fact, we have two fish models constructed after target model

onstruction. One is an implicit model which only works during

ody motion retargeting. The other is an explicit model which is

tilized in the fin motion retargeting and displayed on the screen

nally. The implicit model only has body control points while the

xplicit model contains all control points. In addition, the four

unction points are added to the implicit model as ordinary ver-

ices, thus can be transformed during body motion retargeting. 

For explanation, we define the implicit model I and explicit

odel E : 

 = < V, C >, (7)

 = < V, C > (8)

here V denotes the vertices 

.V = { v ; jun _ tl , jun _ tr , jun _ bl , jun _ br } , (9)

.V = { v } (10)

nd C denotes the control points 

.C = { center , head , tail , up _ axis , low _ axis } (11)

.C = { center , head , tail , up _ axis , low _ axis , 

jun _ tl , jun _ tr , jun _ bl , jun _ br , l _ fin , r _ fin } (12)

nd v denotes the vertices generated from the triangulation pro-

ess. 

To deform the target fish model, the motion structure of the tar-

et fish should be analyzed. Here we use a simplified curve skele-

on L to represent the structure of the fish model. 

 = { bod y _ len, head _ len, tail _ len, l _ f in _ len, r _ f in _ len, 

up _ l en { 1 , 2 , ... ,u _ num } , l ow _ l en { 1 , 2 , ... ,l _ num } } (13)

The construction of L is described in Algorithm 1 , which is exe-

uted only once after the target model is constructed. 

We choose angles of bones together with center and dir as

he intermediate motion parameters, which transfer between fea-

ure points of the actual fish and control points of the fish model.

pecifically, for each video frame, we acquire the value of all the

otion attributes listed in Table 1 , and then calculate an interme-

iate motion M : 

 = { center , dir , head _ angle, tail _ angle, l _ f in _ angle, r _ f in _ angle,

up _ axis _ angl e 1 , 2 , ... ,u _ num 

, l ow _ axis _ angl e 1 , 2 , ... ,l _ num 

}; (14)
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Algorithm 2 Intermediate Motion Calculation. 

Input: All motion attributes in one video frame 

Output: Intermediate Motion M 

1: M. center = center 

2: M. dir = dir 

3: M.head _ angle = angle ( head − up _ axis u _ num 

) 

4: M.tail _ angle = angle ( tail − low _ axis l _ num 

) 

5: M.l _ f in _ angle = angle ( l _ fin − jun _ tl ) 

6: M.r _ f in _ angle = angle ( r _ fin − jun _ tr ) 

7: v1 = [ center , up _ aixs 1 , . . . , M. up _ aixs u _ num −1 ] 

8: v2 = [ center , low _ aixs 1 , . . . , M. low _ aixs l _ num −1 ] 

9: M. up _ axis _ angle = angle ( up _ axis − v1 ) 

10: M. low _ axis _ angle = angle ( low _ axis − v2 ) 
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Algorithm 4 Explicit Model Deformation. 

Input: Explicit model E, bone length L and recorded motion M 

Output: The deformed explicit model E 

1: Copy the positions of the body control points from I.C to E.C. 

2: Copy the positions of the deformed four junction points from 

I.V to E.C. 

3: E.C. l _ fin = polarcart(L.l _ f in _ len, M.l _ f in _ angle ) + E.C. jun _ tl 

4: E.C. r _ fin = polarcar t(L.r _ f in _ len, M.r _ f in _ angle ) + E.C. jun _ tr 

5: Deform E.V according to E.C 
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Fig. 5. Our two-level motion retargeting scheme. (a) The tracked fish. (b) Extracted 

contour and feature points. (c) The deformed implicit model with body control 

points. (d) The deformed explicit model with all control points. 
The calculation of M is described in Algorithm 2 , which is exe-

uted per video frame after the motion attributes are acquired. 

.1. Body motion retargeting 

Body motion retargeting is realized by transferring the fish’s lo-

al motion to the control points of the implicit fish model I , and

hen applying a deformation on the mesh of I . The details of im-

licit model deformation are described in Algorithm 3 . 

lgorithm 3 Implicit Model Deformation. 

nput: Implicit model I, bone length L and intermediate motion M 

utput: The deformed implicit model I 

1: I.C. center = 0 

2: Sequentially construct I.C. up _ axis according to L.up _ len and

M. up _ axis _ angle 

3: Sequentially construct I.C. low _ axis according to L.l ow _ l en and

M. low _ axis _ angle 

4: I.C. head = polarcart(L.head _ len, M.head _ angle ) + 

I.C. up _ axis u _ num 

5: I.C. tail = polarcart(L.t ail _ len, M.t ail _ angle ) + I.C. low _ axis l _ num 

6: Deform I.V according to I.C 

The function polarcart ( len , angle ) is used to translate coordi-

ates from polar coordinate system to Cartesian coordinate sys-

em. We employ a point-based deformation method [31] to de-

orm the target model under the principle of moving least squares.

ts closed-form solution can provide high computation perfor-

ance. Meanwhile, unlike some other deformation approaches

38,39] which require control points belonging to the existing ver-

ices of the mesh, this method allows control points to be added

t any positions, thus provides convenience for our sampled me-

ial axis points ( up _ axis and low _ axis ) serving as control points. 

After body motion retargeting, we can obtain an intermediate

esult of the target fish model ( Fig. 5 (c)), in which the fish body is

eformed but the fins remain the same as the rest pose. 

.2. Fin motion retargeting 

Once the implicit model I is deformed, the positions of the four

unction points are determined. Then we can retarget the fin mo-

ion to the explicit model E with four junction points serving as

elative positions. The details are described in Algorithm 4 . The re-

ult is shown in Fig. 5 (d). 

.3. Global motion retargeting 

After the first two stages, we are able to retarget the local mo-

ion accurately to the fish model. In the end, we need to trans-

orm the deformed model E to the world coordinate system with
 rotation and a translation. The rotation angle can be directly de-

ermined by orientation M . dir , while the translation needs to be

djusted to meet the difference of the scales between the actual

sh and the target fish model. Here we use a straightforward way

o obtain the position of the fish model E after translation as 

.C. center = 

L.body _ len 

init _ len 

M. center , (15) 

here init _ len is the medial axis length of the actual fish which is

ecorded in the first tracking frame. 

Finally, for the smoothness of the final animation, we linearly

nterpolate 5 animation frames between two consecutive video

rames, and use Kalman filters to estimate the control points’ po-

itions in each frame. 

. Motion fine tuning 

While the fish animation is generated in real time during the

otion capture and retargeting process, we store the recorded mo-

ion in a database. Another interface is then provided to reproduce

he fish animation using the stored motion data together with a

sh model. When the animation is being reproduced, users are

llowed to interactively pause the process in one frame, and edit

he position of the control points in the fish model to manipulate

ts deformed shape. Each editing operation to a certain frame will

xert influence on its neighboring frames with various extent in

nimodal distribution (such as Gaussian distribution), of which the

pecific distribution parameter depends on both the frequency of

he fish motion, and the order of the current frame in its effected

rame sequence. 

Specifically, the motion fine tuning function should meet the

ollowing requirements: 

• One editing operation should influence not only the current

frame, but also the neighboring frames. Meanwhile, the influ-

enced frames must be limited inside the current effected frame

sequence. 
• The influence extent should be in unimodal distribution, with

the current editing frame as the peak. And the farther the

frame distance is, the less the motion will be influenced. 
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Fig. 6. Motion fine tuning process. The top row contains 11 clipped frames from a sequence window of retargeted animation. The second row shows the same animation 

frames after motion fine tuning. The bottom row illustrates the specific four control points edited in fine tuning. 
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• Naturally, if the editing operation tends to adjust the extent of

the original motion(e.g., enlarge or narrow the bend angle of

the fish tail), the result animation should be the average of the

edited value and the original motion. Otherwise, if the editing

operation tends to reverse the original motion (e.g., change the

bend direction of the fish tail to the opposite side), the result

animation should be set by the edited operation directly, as the

original motion is incorrect. 

6.1. Formalization of motion fine tuning 

Since we regard the intermediate motion M as a motion pa-

rameter to transfer between feature points of the actual fish and

control points of the fish model, we simply save M for each video

frame to a data file. For a fish video containing t valid frames,

its corresponding motion data can be represented by a motion se-

quence: 

M = { M i : 1 ≤ i ≤ t} , (16)

where M i is the motion of the i th frame and defined as same as Eq.

(14) . To record the modified motion, we construct a new motion

sequence 

N = { N i : 1 ≤ i ≤ t} (17)

and initialize it with the original motion sequence M . 

Assume that an editing operation occurs at frame r on a certain

property M r . u . M 

′ denotes the edited motion. Then we update N as

N i .u = I(1 − f (i ; r, p, q )) ∗ M i .u + f (i ; r, p, q ) ∗ M 

′ .u, p ≤ i ≤ q 

(18)

where I is a symbol variable to indicate whether this editing is

an extent adjustment ( I = 1 ) or a motion pattern reversal ( I = 0 ),

f ( x ) is the unimodal influence function, and p and q are the lower

and upper bound of the motion sequence window which M r . u

belongs to. 
.2. Motion sequence window identification 

For the rest pose of a fish model, we can acquire an interme-

iate motion M 0 . For M r . u , we define its motion sequence window

ith a lower bound p and an upper bound q as 

p = min (i ) , ∀ i ≤ k ≤ r, (M k .u − M 0 .u )(M r .u − M 0 .u ) ≥ 0 (19)

 = max ( j) , ∀ r ≤ k ≤ j, (M k .u − M 0 .u )(M r .u − M 0 .u ) ≥ 0 (20)

To ensure the real-time fine tuning, we support editing all

roperties of an intermediate motion except center and dir , due

o the computation cost. 

.3. Motion effect range function 

The motion effect range function can be defined as unimodal

istribution function. Here we use a quadratic form: 

f (i ; r, p, q ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 − (r − i ) 2 

(r − p) 2 
, i ≤ r 

1 − (r − i ) 2 

(r − q ) 2 
, i > r 

. (21)

ith this function, we can achieve the unimodal influence for the

otion editing. 

We choose a sequence of consecutive retargeted animation

rames which includes several flawed frames. In general, the dis-

orted frames may come from the wrong location of feature points

uring motion capture due to the occlusion of the fish, or the dis-

ortion of the deformation result. In the frame sequence we chose,

he distortion is produced because the target fish has pectoral fins

ith a considerate large area rather than small fin tips. The dis-

ortion is inevitable with the current deformation algorithm when

he fin angle is too extreme. 

We edit one frame among the segment, and the motion fine

uning tool can apply the editing operation to its neighboring

rames. As shown in Fig. 6 , the top row shows the original ani-

ation frames from frame 1038 to frame 1048 in the original an-

mation sequence. The area around the fish head and the right fin

s distorted and need to be refined. We move four control points
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Fig. 7. Sample frames in our experiments. The top row contains nine clipped frames from the video. The remaining five rows are the corresponding animation frames of the 

target models. The target models from top to bottom are carp, cartoon fish, 3D whale, mermaid, flower, and lobster. The first column on the left shows the rest poses of the 

target models. 

Table 2 

The motion fine tuning parameters. 

u I r p q M 0 . u M r . u M 

′ . u 

up _ axis _ angle 2 1 1042 1040 1049 1.6589 0.9704 1.1062 

up _ axis _ angle 3 1 1042 1039 1050 1.5965 0.7586 1.0261 

head _ angle 1 1042 1039 1052 1.4987 0.5493 0.8666 

r _ f in _ angle 1 1042 1040 1132 5.5535 4.1450 5.2623 

o  

m  

c  

s  

t  

t  

a

7

 

a  

1  

c  

9  

a  

w  

a  

e

 

T  

2  

e  

5  

c  

t  

b  

n

 

t  

t  

i  
n frame 1042 to make this frame expended and smooth. Then the

otion fine tuning can effect to its neighboring frames automati-

ally. The second row shows the result animation frames in the

ame frame number as the top row. The only editing occurs on

he frame 1402, and the moved control points are marked in the

hird row. Table 2 shows the detail parameter of Eq. (18) . Note that

ll angle values are represented by radian in Table 2 . 

. Experimental results 

We have implemented the system using C++ and OpenCV, and

ll the experiments are run on an I7-3970x CPU (3.5 GHz) with
Table 3 

The experimental performance statistics. 

Target model # Vertices # Triangles Tracking 

Background 

subtraction 

Filter Fe

ex

Carp 2445 3827 12.48 ms 9.11 ms 6.3

Cartoon fish 2667 4136 

3D Whale 6003 9200 

Mermaid 3033 4710 

Flower 3492 5431 

Lobster 3924 5829 
6 GB RAM. A video of a goldfish is captured by a monocular

amera with a resolution of 1920x1088 pixels yet we resize it to

60x544 pixels to process. For 2D animation, we use a carp and

 cartoon fish as the target models. For 3D animation, we use a

hale as the target model. We also deliver a hand-drawn mermaid

nd a flower picture to the system, to test the motion retargeting

ffect of our technique for other fish-like characters. 

Fig. 7 shows the results. The performance statistics are listed in

able 3 . The memory consumption is in the range of 130 MB to

00 MB proportional to the number of vertices. As for the param-

ter setting, we set u _ num being 3, l _ num being 15, and S being

 to describe the flexible body of a fish. One exceptional case oc-

urs when the flower is treated as the target model. l _ num is set

o be 25 and S is set to be 8 to keep more information of the lower

ody of the fish to make the deformation of the flower stem more

atural. 

The current implementation is not time optimized and the en-

ire pipeline can operate at around 20 FPS. We also compare our

echnique with others’ work. The only research we have found

n data-driven fish animation is presented by Lee et al. [13] .
Motion 

retargeting (ms) 

Rendering (ms) Total time 

cost (ms) 

ature 

traction 

4 ms 1.11 10.35 39.39 

1.23 10.95 40.11 

7.78 10.96 46.67 

1.45 11.06 40.44 

2.08 10.81 40.82 

2.02 11.03 40.98 
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Table 4 

Time costs for one-frame processing. 

Method [8] [9] [10] Ours 

Camera number 4 3 4 1 

Image size 320x240 320x240 250x250 960x544 

Average time (ms) 236.5 33 33 41.40 
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However, they have not shown any convincing figures or tables.

Other similar work such as [40,41] concentrates on detection and

trajectory tracking which is similar to the global motion estima-

tion task under our framework (their methods can handle multiple

fishes yet). Since we hardly find other valid researches for motion

capture for fish, we compare our method with several video-based

mo-cap systems for human [8–10] . The comparison result is shown

in Table. 4 which is made with statistics published by peers. Given

the image size and camera number, our time cost is competitive

among these video-based mo-cap systems. 

8. Conclusion and discussion 

In this paper, we have presented a novel framework of creat-

ing fish animation by motion capture, retargeting, and fine tuning.

The fish motion can be captured by a monocular camera without

any marker. We employ elliptical Fourier coefficients to analyze

the swimming patterns of a fish. The fish motion is represented

in a robust way, with smooth medial axis serving as the descrip-

tor for the soft fish body. A two-level motion retargeting scheme

is proposed to properly transfer the captured motion into fish-like

models. The system can then drive a static pictured fish to swim

with the same motion style of the actual fish in real time. We also

provide an interactive tool for motion fine tuning, which is able to

edit retargeted frames with high efficiency. Besides, 3D models and

fish-like characters can also be animated vividly in this framework.

The proposed method for medial axis extraction can be ex-

tended to describe the shape of flexible objects. Instead of the spa-

tial filter, the elliptical Fourier coefficients technology allows users

to select the number of remaining harmonics directly according to

the amount of information they want to keep, without regard to

the noise or detail carried by the original contour. Moreover, once

we reconstruct a contour from the frequency domain, the contour

itself can be represented by sums of elliptical harmonics, thus is

not only continuous but even derivable. This property benefits us

a lot when we want to find out more useful feature of the object,

for example, finding correspondences across various contours us-

ing energy models in differential domain [42] , or executing mani-

fold learning on a set of contours to learn a certain kind of object’s

shape and probability density [43] . 

The two-level motion retargeting scheme can be considered

as a multi-scale skeleton model together with point-based defor-

mation. The fish model is represented by a two-level skeleton

(body and fins), and correspondingly, the local motion retargeting

is achieved by two steps sequentially. Such a multi-scale scheme

greatly enlarges the range of retargeting models – making the

motion retargeting process much more easily accessible between

models that have similar structures at the corresponding scales. 

Nevertheless, our technique still suffers from several limita-

tions. First, our technique can only capture the fish motion from

the top view, thus loses the fish’s visual information from the side

view. Second, the simplified fish model we employ limits the gen-

eralization of our system. For example, we cannot model the com-

plex fin motion of a lionfish, or the body motion of a porcupine

fish. Finally, the fish needs to move properly in a small aquarium

to be tracked. 

Our ultimate motivation in this paper is to showcase a cheap

yet effective way for the common users to create data-driven fish
nimation with a low-end mobile device. In the near future, we

lan to transplant this system to a cellphone platform, so that any

ellphone user could capture a swimming fish in a pool or aquar-

um and generate a fish character animation in an augmented-

eality (AR) environment. The motion fine tuning tool will be ex-

ended to edit the depth information of the animation frames

hen a 3D fish model is imported. To extend our system compre-

ensively to 3D animation, we can utilize depth estimate technique

o fetch the depth information from the video, and 3D deformation

lgorithm such as [44] to achieve the retargeted animation results.
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