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a b s t r a c t 

In this paper, we propose a novel classification method for lung nodules from CT images based on 

hybrid features. Towards nodules of different types, including well-circumscribed, vascularized, juxta- 

pleural, pleural-tail, as well as ground glass optical (GGO) and non-nodule from CT scans, our method 

has achieved promising classification results. The proposed method utilizes hybrid descriptors consisting 

of statistical features from multi-view multi-scale convolutional neural networks (CNNs) and geometri- 

cal features from Fisher vector (FV) encodings based on scale-invariant feature transform (SIFT). First, 

we approximate the nodule radii based on icosahedron sampling and intensity analysis. Then, we ap- 

ply high frequency content measure analysis to obtain sampling views with more abundant information. 

After that, based on re-sampled views, we train multi-view multi-scale CNNs to extract statistical features 

and calculate FV encodings as geometrical features. Finally, we achieve hybrid features by merging statis- 

tical and geometrical features based on multiple kernel learning (MKL) and classify nodule types through 

a multi-class support vector machine. The experiments on LIDC-IDRI and ELCAP have shown that our 

method has achieved promising results and can be of great assistance for radiologists’ diagnosis of lung 

cancer in clinical practice. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Lung cancer has been the leading cause of cancer-related deaths

in United States in 2016 [1] . There are over 150,0 0 0 deaths caused

by lung and bronchus cancer, accounting for over 25% of all cancer-

related deaths in the past year. A total of over 220,0 0 0 new lung

and bronchus cancer cases are projected to occur in 2017. In con-

trast to the steady increase in survival for most cancers, advances

have been slow for lung cancer, for which the overall five-year sur-

vival rate is only 18% . Among all lung cancer cases, more than

one-half are diagnosed at a distant stage, decreasing the survival

rate to 4%. Lung nodule is a significant sign of lung cancer. Among

all the cases with nodules, approximately 20% represent lung can-

cer [2] . Early detection and localization of nodules can greatly im-

prove the survival rate for lung cancer, which requires identifica-

tion of nodules from malignant to innocent as an essential part

for diagnosis [3,4] . However, few work has done for lung nodule

classification. In this paper, we propose a lung nodule classification

method based on hybrid features. 
∗ Corresponding author. 

E-mail address: houfei@ntu.edu.sg (F. Hou). 
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The appearances of lung nodules vary greatly. Typical shape of

odules is spherical, but can be very complicated when attached

r surrounded by other anatomical structures. The malignancy of

ung nodules is correlated with nodules types. Intra-parenchymal

nd ground glass optical (GGO) type nodules have higher chance to

e lung cancer than those only connected with surrounding struc-

ures. The type of nodules depends on their corresponding inten-

ity distribution and relative positions [5] , which can be catego-

ized as: well-circumscribed ( W ), located in the center of the lung

ithout any connection to other tissues; vascularized ( V ), the same

s W except for connecting to vascular structures; juxta-pleural ( J ),

ully connected to pleural surface; pleural-tail ( P ), close to pleural

ut only connected with a thin tail; GGO ( G ), the same with W

xcept for its non-solid CT value distribution. 

In clinical practice, Computer Tomography (CT) can capture

ne-grained details for both lung nodules and surround structures,

cting as the golden standard for diagnosis. However, lung nodules

re so complex that even experienced radiologists cannot confirm

alignancy in some cases. Based on the coherence between nod-

le malignancy and type, this paper proposes an efficient nodule

ype classification method, which is expected to help radiologists

or early cancer diagnosis in practice. 

http://dx.doi.org/10.1016/j.cag.2017.07.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2017.07.020&domain=pdf
mailto:houfei@ntu.edu.sg
http://dx.doi.org/10.1016/j.cag.2017.07.020
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Fig. 1. Typical cases for nodule types. 1st column, original images with radii labeled 

in red circles. 2nd–5th columns, 3-D models (red arrow) for different nodule types. 

Top to bottom: well-circumscribed ( W ), vascularized ( V ), justa-pleural ( J ), pleural- 

tail ( P ), GGO ( G ), non-nodule ( N ). (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article). 
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. Related work 

.1. Previous work 

To better help radiologists’ diagnosis for lung nodules at early

tages, the most straightforward way is applying enhancement to-

ards original medical images. Image intensity-based threshold-

ng or edge preserving smooth is most commonly used because

f their ability of overcoming large image contrast between lung

egion and surrounding body tissues [6–8] . Gao et al. [9] propose

 threshold-based approach considering anatomical information.

lthough simple and fast, it is extremely hard to determine the

hreshold value due to the correlations with image acquisition

ypes, protocols, intensities ,and especially when there are severe

ung pathologies [10] . 

Despite image enhancement, researchers also emphasize on de-

igning features that can best describe nodules’ characteristics. The

rey-level distribution represented as a histogram [11] has been ef-

ectively used to characterize intensity variations. Filter-based fea-

ure extraction techniques are widely applied to highlight the edge

nd shape information for images [12,13] . Scale-invariant feature

ransform (SIFT) [14–16] provides a robust way invariant to image

ransformation, scaling and rotation. Histogram of oriented gradi-

nts (HOG) [17,18] is interpreting objects by occurrences of gra-

ient orientation in localized portions of an image. Local binary

atterns (LBP) [19,20] provides a powerful tool for local texture

lassification by applying multi-scale and rotation-variant property.

iompi et al. [21] have encoded the nodule intensity distribution

atterns into frequency domain and classified nodules in a bag-

f-words fashion. Kim et al. [22] focus on CT imaging biomarkers

uch as tumor volume, tumor mass, ground-glass opacities, per-

usion parameters and texture features to explore their clinical

sefulness with respect to the malignancy differentiation, treat-

ent response monitoring, and patient outcome prediction. Ciru-

eda et al. [23] propose an imaging biomarker of lung cancer re-

apse through 3-D Riesz-wavelets of morphological nodular tissue

roperties. Chen et al. [24] utilize the multi-task regression (MTR)

cheme that leverages deep learning models of stacked denois-

ng autoencoder (SDAE), convolutional neural networks (CNNs) and

aar-like features to analyze the relations among semantic features

nd achieve more accurate rating scores. 

Recently, inspired by a large amount of available data and more

owerful computational resources, especially parallelization abil-

ty empowered by Graphic Processing Units (GPUs), convolutional

eural networks (CNNs) [25,26] have shown their abilities of out-

erforming the state-of-the-art in classical computer vision ap-

lications [27,28] , as well as in the field of medical image analy-

is [29–31] . Since CNNs can be trained end-to-end with the layers

utomatically learning discriminative features without handcraft-

ng design, they are best suitable for lung nodule type classifica-

ion considering the complex intensity and surrounding anatom-

cal structure distributions. Lo et al. [32] propose the CNNs-based

ethod for pulmonary nodule detection in chest radiology images.

rnaud et al. [33] have used the multi-view CNN for pulmonary

odule false positive reduction in CT images, with a complete per-

ormance discussion over different fusion methods [30,34] . A few

ther studies have also extended the use of 2-D CNNs to 3-D vol-

metric analysis on 3-D images, i.e., CT and Magnetic Resonance

MR) images. Among all these methods, volumetric images are

rojected to fixed views (planes), followed by that each view is

rocessed under 2-D CNNs and finally integrated under a multi-

iew fashion with the best fusion methods. Besides, Dou et al. [35]

ropose the 3-D CNN to process voxels from MR images for

erebral microbleeds. The 3-D CNN structure ensures contextual

nd spatial information well encoded and helps to achieve great

esults. 
Besides intimate connection with local image analysis, Com-

uter Aided Diagnosis (CADx) systems have been developed and

idely used to assist radiologists in diagnosis and thereby mak-

ng screening more effective [36,37] . Cheng et al. [38] performs a

omprehensive study on deep-learning-based CADx approaches for

odule malignancy estimation and classification. 

While many studies have reported detection and segmenta-

ion of pulmonary nodules, limited researches focus on nodule

ype classification. Farag et al. [39] have reported some basic stud-

es in classification problem. Zhang et al. [14] designed an overlap-

ing nodule identification procedure for nodules located at inter-

ections among different types. After that, in light of prior work

roposed by Song et al. [40] , Zhang et al. [41] have proposed a mul-

ilevel patch-based context analysis for nodule classification. Al-

hough contextual information is considered, their method can

nly handle solid nodule types. 

.2. Our approach 

Inspired by the prior works, this paper focuses on nodule type

lassification based on hybrid features by fusing statistical features

rom CNNs and geometrical features from dense SIFT vectors. The

ajor contributions of our work include: 

• A normalized spherical sampling pattern based on icosahedra,

a nodule radius estimation method based on intensity analy-

sis and a best view selection method based on high frequency

content analysis. 
• A multi-view multi-scale CNN to extract the most discrimina-

tive statistical features from original data automatically. 
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Fig. 2. Pipeline for the proposed method. First, we apply spherical sampling based on icosahedra, followed by threshold-based nodule radii estimation and high-frequency- 

content-based view sorting. Then, we calculate FV encodings from dense SIFT vectors and CNN features from the multi-view multi-scale CNN. Finally, we utilize MKL to 

transform both features into unified space by weight adjustment of different kernels and use a multi-class SVM to classify nodule types. 
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• An approach to combine CNN features and FV encoding features

into hybrid features and use to classify nodule types accurately.

The pipeline of our method is described in Fig. 2 . First, we re-

sample original CT data using a linear interpolation method to

make data isotropic. Then, we use icosahedra to divide the nod-

ule volume and construct concentric circles from the inner centers

to sample the original volume in different views. With this sam-

ple data, we calculate the nodule radii based on thresholding and

sort the sampling views based on high frequency content analysis.

After that, we build 2-D slice images from nodule volume based

on the approximated radii and sorted views, which are used to

both train the multi-view multi-scale CNN and construct the FV

encodings after the dense SIFT calculation. Finally, we adopt mul-

tiple kernel learning to fuse the statistical CNN features with the

geometrical FV features and apply the hybrid features into classifi-

cation of nodule types. 

The proposed method has obvious advantages towards clas-

sical nodule processing approaches. In sampling step, the icosa-

hedron partition scheme ensures normalized sampling in original

nodule volume. Meanwhile, the multi-view multi-scale CNN fash-

ion guarantees the corresponding statistical features to capture not

only nodule characteristics but also the correlations between nod-

ules and their surrounding anatomical structures. Besides, the FV

encodings from dense SIFT descriptors of different views ensure

global geometrical correlations well encoded. Finally, the multiple

kernel learning method helps to transform CNN features and FV

encodings to unified dimensional hybrid features, which are most

discriminative for nodule types. 

This paper is organized as follows. Section 3 describes the data

sets used to train and validate the proposed method. Section 4 de-

tails the sampling fashion, followed by the estimation method for

nodule radii and sorting method for views according to impor-

tance. Section 5 describes the multi-view multi-scale CNN fashion

to extract nodule statistical features and the FV encoding scheme

for nodule geometrical feature extraction, followed by the multiple

kernel learning approach to fuse both features into unified space

as hybrid features. Finally, Section 6 validates the proposed method

and applies comparisons on LIDC-IDRI and ELCAP data sets, show-

ing the promising results. 

3. Materials 

3.1. LIDC-IDRI 

The Lung Image Database Consortium and Image Database Re-

source Initiative (LIDC-IDRI) [42] consists of totally 1018 chest CT

image cases, where each consists of a clinical thoracic CT scan and
n associated annotation file. These CT cases are from different fa-

ilities and the imaging quality varies. The annotations are pro-

uced by four experienced thoracic radiologists from reading CT

mages separately, followed by non-blind communication to con-

rm their final diagnosis. 

From the original LIDC-IDRI data sets, the count of radiologists

abeling the area as nodules is called agreement level. To reduce

rror caused by human annotations, in our approach, only nod-

les at least agreement level 2 are considered. Nodule types are

nnotated by an experienced radiologist. Totally, we extract 1738

odules ( W : 905, 52.0%; P : 329, 19%; V : 219, 12.5%; G : 82, 6%; J :

03, 11.5%) and 10 0 0 non-nodules from 744 chest CTs. The original

T is 512 × 512 pixels with in-plane spacing as 0.4–1.0 mm and

lice thickness as 0.5–3 mm. We re-sample the original CT images

ith normalized in-plane spacing 1 mm and extract 64 × 64 ×
4 mm 

3 volumes centered at the nodule gravity center. In our ap-

roach, we randomly select 80% of nodules for each type as train-

ng and validation cases while the rest 20% as test. Data augmen-

ation is applied for both training and testing cases separately to

nrich varieties. 

.2. ELCAP 

Early Lung Cancer Action Program (ELCAP) [43] consists of 50

ow-dose documented whole lung CT scans with labeled nod-

les annotated by two experienced radiologists. Scans are achieved

ith 1.25 mm slice thickness, 0.5 mm in-plane spacing, while most

odule sizes range from 2 to 5 mm. Nodule types are annotated by

n experienced radiologist. 

In our approach, we select 46 cases with 421 nodules ( W : 92,

1.8%; V : 49, 11.6%; P : 155, 36.8%; J : 106, 25.2%, G : 19, 4.6%). All EL-

AP data are used as testing cases with data augmentation applied

o validate the performance of the proposed method. 

.3. Data augmentation 

Extracted nodules from LIDC-IDRI are greatly unbalanced for

ach type, which will mislead the optimization of CNNs to local

inima and CNN predictions biased towards more frequent sam-

les. Data augmentation is an efficient approach to avoid model

verfit and biases by adding variances based on original data. 

In our approach, both training and testing data are augmented

ccording to two strategies. On one hand, classical methods includ-

ng image rotation, scaling, flipping are randomly applied. On the

ther hand, augmentation is obtained with random selection based

n the estimated nodule radii and sorted views. 
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Fig. 3. Icosahedron-based sampling. Top row, icosahedron division at level 0, level 

1 and level 2. Bottom row, corresponding sampling patterns with sampling planes 

(grey planes) and plane normals (red lines) shown. Due to symmetry, only top half 

sphere is considered. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article). 
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After augmentation, we achieve almost 640 training cases and

60 testing cases for each nodule type on LIDC-IDRI, while 690

esting cases in total on ELCAP. 

. Nodule spherical sampling, radii estimation and view sorting

Sampling is an important step for the proposed method. Instead

f extracting features from segmented CT images, we divide nod-

le volumes by icosahedron pattern to analyze the characteristics

f both nodules and their surrounding anatomical structures. With

hese sampling vectors, a threshold based approach is applied to

stimate the nodule radii, followed by high frequency content anal-

sis to sort sampling views according to nodule informatics each

iew holds. With estimated radii and sorted views, we first train

he multi-view multi-scale CNN to use the corresponding fully con-

ected layers to describe nodule statistical features and then calcu-

ate FV encodings to represent geometrical features between SIFT

ey-points. Finally, we apply the multiple kernel learning to fuse

he obtained statistical and geometrical features to unified dimen-

ions and classify nodule types according to hybrid features based

n the support vector machine. 
ig. 4. Detailed scheme of spherical sampling. (a) 3-D view for the n th sampling circular 

ottom left in red rectangle. (b) Sampling pattern for n th plane. Inner and outer nodule s

ircle), K points (green dots) are sampled in a counter clockwise direction. (d) Sampled v

s referred to the web version of this article). 
.1. Preprocessing 

The imaging qualities of original CT images are various. Besides,

he inner-plane spacing and slice thickness are also different, mak-

ng these data anisotropic. Towards this fact, we first linearly re-

ample original images to unified spacing and slice thickness as

 mm. Then, all CT values are clamped to [ −10 0 0 HU, 10 0 0 HU]

Hounsfield Unit, HU) to remove noises and artifacts. This step is

ssential to reduce needless computations. 

.2. Nodule spherical sampling 

There is significant difference between nodule type and classi-

al natural image classification. It is commonly agreed that nod-

le type is related to not only nodule intensity distributions

ut also surrounding anatomical structures. Therefore, we apply

he icosahedron-based sampling method which is described in

ig. 3 to capture both structures. The detailed sampling pipeline 

s described in Fig. 4 . The algorithm for sampling is presented in

lgorithm 1 . 

Algorithm 1: SPHERE_SAMPLING. 

Input : V , nodule volume. r max , maximum sampling radius. 

N / M / K,specified parameters. 

Output : S, sampled matrix with size N × M × K for V . 

1 C ← generate N inner centers; 

2 � r ← r max /M; 

3 for n = 1 → N, m = 1 → M do 

4 r cur ← � r × m ; 

5 circle ← build _ circle (C n , r cur ) ; 

6 for k = 1 → K do 

7 S nmk ← linear _ interp(V, circle ) ; 

8 return S; 

Denote the candidate nodule volume as V and the correspond-

ng gravity center as v xyz . First, we apply the icosahedron cen-

ered at v xyz with given radius r max and l e v el , within which the

nner centers of each triangle on the divided mesh surface are

alculated as C = { c 1 , c 2 , . . . , c N } . The characteristics of icosahe-

ra assure these N centers spread uniformly, making a homo-

eneously sampling for nodule volume V . Then, we calculate N

lanes which cross v xyz with plane normal vector normal n = (c n −
 xyz ) , n ∈ { 1 , 2 , 3 , . . . , N} as the so-called views. We use these views

o slice the original CT volume and obtain corresponding 2-D
plane (view) with concentric circles. The corresponding view angle is described on 

ampling are described using red and blue circles separately. (c) For m th circle (red 

alues. (For interpretation of the references to color in this figure legend, the reader 
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images, as described in Fig. 4 (a). After that, we generate M concen-

tric circles on each view (sliced 2-D image) with r m 

= � r × m, m ∈
{ 1 , 2 , 3 . . . , M} and � r = r max /M, as described in Fig. 4 (b). Finally,

we sample K points along counter clockwise direction on each

concentric circle, resulting in vectors describing CT values along

corresponding circles, described as S nm 

= { S nm 1 , S nm 2 , . . . , S nmK } in

Fig 4 (c) and (d). Totally, sampling vectors S consist of data from N

views, which is composed of M concentric circles and each circle

of K data points. 

4.3. Nodule radii estimation 

Calculation of volume of interest (VOI) is essential for both data

dimension reduction and feature accuracy increase. The intensity

distribution of nodules on different sam pling circles has discrimi-

native characteristics. Intensity values change severely along nod-

ules’ contours, while remain stably low or high outside or inside

nodule volume, separately. Therefore, we apply threshold method

on sampling results S to estimate nodule radii. The algorithm is

described in Algorithm 2 . 

Algorithm 2: RADIUS_ESTIMATION. 

Input : S, sampled 3-D matrix with size 

N × M × K for V . N / M / K, specified parameters. 

Output : r est , estimated radius for V . 

1 C ount er ← 0 ; 

2 for n = 1 → N, m = 1 → M, k = 1 → K do 

3 if S nmk > threshold then 

4 C ount er nm 

= C ount er nm 

+ 1 ; 

5 R _ C ount er ← 0 ; 

6 for m = 1 → M, n = 1 → N do 

7 R _ C ount er m 

← R _ C ount er m 

+ C ount er nm 

; 

8 if R _ C ount er m 

< count er _ threshold then 

9 r 1 ← m ; 

10 break; 

11 r 2 ← l ocal _ min (R _ C ount er) ; 

12 r est = min (r 1 , r 2 ) ; 

13 return r est ; 

In our approach, with sampling results S , N circular planes

generated by icosahedra and M concentric circles, we first calcu-

late the count of K sampled values greater than given threshold ,

resulting in a counter matrix Counter with size N × M ( Algorithm 2

Ln.2-Ln.4). Then, we accumulate the counter through all N views

for each concentric circle, resulting in vector R _ C ount er with size

M ( Algorithm 2 Ln.6-Ln.10). Finally, the indices of first zero value

and local minima in R _ C ount er are extracted as r 1 and r 2 , sepa-

rately. The estimated radius is calculated as the minimum between

r 1 and r 2 . Estimated radii for typical nodule cases are presented in

Fig. 2 . 

4.4. View sorting 

CT images are natural 3-D data, which are hard for human di-

rect observation and diagnosis. The most practical way to have a

better view for radiologists is to project 3-D voxel volumes to three

2-D fixed planes called Axial, Sagittal and Coronal planes, which is

reasonable both for reducing complexness of CT images with many

anatomical structures and for radiologists’ better understanding.

However, it should be noticed that nodules have various appear-

ances and even severe irregular pathological areas. Therefore, Axial,

Sagittal and Coronal views which are at fixed angles cannot display

the most discriminative characteristics of nodules in many cases. 
In our approach, we assess the quality of projection as how

any irregular distributions, namely the variational changes pre-

ented in projected 2-D images. More irregular distributions 

aptured by corresponding projected views should lead to better

isualization for the appearances and characteristics of candidate

odules. The schematic view of the sorting procedure is shown in

ig. 5 . 

Based on the extracted nodule VOI, we re-sample nodule vol-

me V again with r est as the maximum radius to obtain more uni-

ed nodule distribution samples. Inspired by aforementioned anal-

sis and unified sampling patterns by icosahedra, the problem of

iew sorting is transformed into how to sort N sampling views

rom icosahedron-based division according to their corresponding

mportance. In fact, according to our spherical sampling pattern,

iews with more abundant information should present more vari-

tional changes in their corresponding sampling vectors S n , which

an be straightforward solved in frequency domain since variations

f signals in spatial domain definitely imply presence of high fre-

uency components in frequency domain. Therefore, we apply the

igh frequency content analysis [44] as quantization of frequency

hanges in sampling data S n for n th view, defined as, 

f req n = 

M ∑ 

m =1 

D C (S nm 

) , (1)

here D C ( S nm 

) is the complex domain difference between target

nd observed Short Time Fourier Transform (STFT) and defined as,

 c (S nm 

) = 

1 

K 

K ∑ 

k =1 

| ̂  X k − X k | , (2)

here X k is the STFT value of S nmk and 

̂ X k is the polar form of X k ,

 is sampling count for each concentric circle. 

Based on sampled intensity S , we first calculate the STFT and

requency for the K data points in S nm 

corresponding to the m th

oncentric circle on n th view. Then, we accumulate all M frequen-

ies for the n th view as f req n , n ∈ { 1 . . . N} , which is an quantiza-

ion standard and indicator for the corresponding view. Finally, all

 views are sorted by freq n in descending order, indicating from

ost important to less. 

Typical results for view sorting procedure are shown in Fig. 7 .

or each case, the top row shows the original slices on axial plane;

he middle row presents slices sorted by freq ; the bottom row

hows 3-D views for corresponding nodules. It can be obviously

bserved that nodule characteristics in sorted slices are better ex-

ressed than those on fixed axial planes, which can also be con-

rmed in 3-D views. 

. Hybrid feature extraction 

.1. Multi-view multi-scale CNN feature extraction 

Multi-view CNNs have been proven efficient in 3-D natural ob-

ect classification [45] , which is most suitable for nodule classifica-

ion since CT images are naturally 3-D. However, it is also com-

on sense that nodule types are related to not only nodule in-

ensity distribution but also relative positions with surrounding

natomical structures. Therefore, inspired by the multi-view ap-

roach, with estimated nodule radius r est and sorted views, we

uild 2-D images from slicing original volumes to capture charac-

eristics of both nodules and the surround anatomical structures.

he process for building slices is presented in Algorithm 3 . 

After building input images according to calculated scales and

iews, we build the proposed CNN, whose structure is described

n Fig. 6 . We have conducted the CNN as an end-to-end classifier

ith first 224 × 224 pixels input, then classical convolutional and
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Fig. 5. View sorting based on high frequency content analysis. Short Time Fourier Transform (STFT) is applied to transform sampling data from spatial domain to frequency 

domain. High Frequency Content Analysis is utilized as quantization of variations. 

Fig. 6. The proposed CNN architecture. The pre-trained model is without max-pooling layer to train an independent CNN without affection of views. This model is then 

fine-tuned by combining all views together through the max-pooling. 

Algorithm 3: BUILD_SLICES. 

Input : V , candidate volume. Scales , given multi-scales. r max , 

maximum sampling radius. 

Output : Slices , generated nodule slices. 

1 S ← sphere_sampling ( V , r max ); 

2 r est ← radius_estimation ( S); 

3 Slices ← �; 

4 for scale in Scales do 

5 S ← sphere_sampling ( V , r est × scale ); 

6 V iews ← view_sort ( S); 

7 slice ← sample V with V iews and current scale ; 

8 Slices ← Slices ∪ slice 

9 return Slices ; 

p  

t  

u

 

a  

c  

T  

m

 

o  

t  

u  

p  

s  

w  

n  

d  

A

5

 

b  

d  

S  

t  

w  

M  

r  

r  
ooling layers, finally three fully connected layers, within which

he first two are used to extract nodule features and the last is

sed as input for the soft-max classifier. 

The initialization of weights for CNN layers also can definitely

ffect the final performance of CNN model. Random initialization

an lead the optimization of CNNs into local minima in some cases.

herefore, in our approach, we adopt the pre-trained VGGNet [28]

odel as base to initialize the weights in pre-train stage. 

After initialization, we apply a two-stage training scheme to

btain the CNN model. First, for each training case, we adopt

hree scales and four selected views, leading to twelve images and

se each image to train the CNN, separately. Then, based on the

re-trained CNN model, each twelve images corresponding to the

ame nodule are grouped as a batch to fine-tune the CNN model
ith a max-pooling layer. Finally, we extract the CNN fully con-

ected layer responses as statistical features for each nodule can-

idate. The algorithm for CNN feature extraction is described in

lgorithm 4 . 

Algorithm 4: CNN_FEATURES. 

Input : V , candidate volume. Scales , given multi-scales. r max , 

maximum sampling radius. 

Output : f c , CNN extracted statistical features. 

1 Slices ← build_slices (V, Scales, r max ) ; 

2 CNN ← initialize f rom based model; 

3 for slice in Slices do 

4 CNN ← pre _ train (slice ) ; 

5 CNN ← f ine _ tune (max _ pool (Sl ices )) ; 

6 f c ← CNN fully connected layer responses; 

7 return f c ; 

.2. Fisher vector feature extraction 

Scale-invariant feature transform (SIFT) [46] is a stable and ro-

ust local feature extraction method based on extrema in spatial

omain, which is broadly applied in many computer vision areas.

IFT vectors focus on local features, which cannot express correla-

ions between key-points due to lack of global information. Mean-

hile, Fisher vector (FV) [47] obtains model by applying Gaussian

ixture Model (GMM) to input samples, resulting in unified rep-

esentations which can encode both local features and global cor-

elations between data points. It is straightforward to use FV to
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Fig. 7. View sorting results for typical cases. For each case, top row, original slices 

on axial plane; middle row, view sorting slices; bottom row, 3-D views for nodules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

b  

t

5

 

t  

p  

p  

s  

s  

i

F  

w  

t

 

s  

l  

T  

i  

c  

v  

h  

n

6

 

f  

C  

u  

n  

p  

L  

2  

t  

t  

t  

a

6

 

M  

t  

t  
encode SIFT features to obtain unified descriptors. However, it is

also obvious that medical images are different from natural im-

ages due to their low lumen and low contrast, making it hard to

locate the classical SIFT key-points. Therefore, we apply the dense

SIFT method [48] to calculate uniform SIFT vectors. Besides, we also

apply the improved FV method [49] with normalization and non-

linear additive kernel to obtain encodings. 

The pipeline of FV feature extraction is shown in Fig. 8 . In our

approach, we first build image batches according to estimated nod-

ule radii and view order, and calculate dense SIFT features for each

slice corresponding to the same nodule. Then, we stack all SIFT

vectors and apply principle component analysis (PCA), followed by

a whitening operation for dimensionality reduction, noise removal

and feature correlation decoupling. Finally, we utilize the Gaus-
ian Mixture Model (GMM) [50] and encode SIFT vectors grouped

y nodule to build corresponding unified FV presentations. The ex-

raction algorithm is described in Algorithm 5 , 

Algorithm 5: FISHER_FEATURES. 

Input : V , candidate volume. Scales , given multi-scales. r max , 

maximum sampling radius. 

Output : f s , Fisher geometrical features. 

1 Slices ← build_slices (V, Scales, r max ) ; 

2 Si f ts ← {} ; 
3 for slice in Slices do 

4 si f t ← dense _ si f t(slice ) ; 

5 Si f ts ← Si f ts ∪ si f t; 

6 P CA _ Si f ts ← P CA (Si f ts ) ; 

7 mean, cov ar, prior ← GM M (P CA _ Si f ts ) ; 

8 f s ← f isher _ encoding(P CA _ Si f ts, mean, cov ar, pr ior ) ; 

9 return f s ; 

.3. Feature fusion based on multiple kernel learning 

The achieved CNN features represent patterns of intensity dis-

ribution, regarded as statistical features. Meanwhile, FV features

rocess inner differences and distances between sample data

oints, regarded as geometrical features. Both features are mea-

ured by different dimensions and simply combing them with

tacking is unreasonable. In fact, the unified feature vectors comb-

ng both features can be described as, 

 (x i , x j ) = 

∑ 

k ∈ K 
w k · f k (x i , x j ) , (3)

here f is the original features and w is the weights to transform

he stacked features for unified non-dimensional vectors. 

The schematic description for achieving hybrid features is de-

cribed in Fig. 9 . In our approach, we apply the multiple kernel

earning (MKL) [51] method for heterogeneous information fusion.

he key step lies in learning corresponding weights w from orig-

nal feature space. Therefore, we first project features with linear

ombination of multiple kernels and utilize a multi-label support

ector machine (SVM) to assess the weights. Finally, we obtain the

ybrid features as f and train SVM model to classify corresponding

odule types. 

. Experiments 

In our approach, we apply the proposed method on LIDC-IDRI

or training, while validate the model on both LIDC-IDRI and EL-

AP data sets. All cases are extracted as 6 4 × 6 4 × 6 4 mm 

3 vol-

me. For LIDC-IDRI, we totally select 1738 nodules and 10 0 0 non-

odules from 744 chest CTs, which are then annotated by an ex-

erienced radiologist to label corresponding nodule types. 80% of

IDC-IDRI candidates are used for training and validating, while

0% are used for testing. For ELCAP, we treat all 421 nodules as

esting cases. Data augmentation is applied on both training and

esting cases, separately. After augmentation, we obtain almost 640

raining and 160 testing cases for each nodule type on LIDC-IDRI

nd achieve 680 testing cases on ELCAP. 

.1. Parameter selection 

The parameter number of views has been discussed in [45] .

eanwhile, we adopt three scales and four views, resulting in

welve 2-D slices for each nodule. Following that, we are using

hree scales which actually represent corresponding multiple of
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Fig. 8. The proposed pipeline for Fisher vector feature extraction. Firstly, image slice patches are built based on estimated nodule radii and sorted views. Then, dense SIFT 

vectors are calculated and stacked, followed by PCA and whitening operations to obtain the final FV encodings. 

Fig. 9. The multiple kernel learning approach for feature fusion. By applying multi- 

ple kernel learning, different weights are calculated to fuse features from different 

spaces into hybrid features in the new feature space. 
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Table 1 

Parameter selection for the proposed method. 

Parameter Value Description 

Scales 2.5, 3.0, 4.0 Sampling scales 

N 168 Number of circular planes 

M 32 Number of concentric circles 

K 128 Number of sampling points 

r max 32 mm Maximum sampling radius 

threshold 0.15 Minimum accepted CT value 
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alculated rest to determine the sampling area, considering follow-

ng circumstances: scale 2.5 is used to make sure more nodule de-

ails are captured; scale 4.0 is used to capture more surrounding

etails around nodules. 

In preprocessing, all images are re-sliced to an inner plane

pace as 1 mm, since the maximum resolution of original CT im-

ges is around 1 mm; CT values within [ −10 0 0,10 0 0] HU are lin-

arly normalized into [0,1]. In sampling stage, we are using a level-

 icosahedron mesh, but only 168 ( N = 168) inner centers are used

ue to symmetry; 32 ( M = 32) concentric circles are built for each

ircular plane since r max is defined as 32 and each circle repre-

ents 1 mm; 128 ( K = 128) sampling points are evenly distributed

n each concentric circle; maximum sampling radius ( r max ) is set

o 32 mm based on the fact that extracted nodules are all 64 × 64

64 mm 

3 volumes. In feature extraction stage, we apply two fully

onnected layers with 4096-D as CNN features. Meanwhile, we ap-

ly the 18 × 18 dense SIFT, followed by a PCA operation to reduce

he feature dimension to 32-D, resulting in 4096-D FV features. All

efault parameters are presented in Table 1 . 

.2. Results 

Classification results on LIDC-IDRI for typical cases of each type

re shown in Figs. 10 and 11 . Both built slices for training the CNN

top row in each case) and 3-D appearances (bottom row in each

ase) of corresponding nodules (pointed by arrows) are shown. The

haracteristics of each nodule type can be easily observed in 3-D

iew. 
.3. Performance 

Totally, we apply the proposed CNN and FV model on LIDC-IDRI

ith almost 3860 training and 10 0 0 testing cases ( 640 and 160

ases for each type, separately). Data augmentation is applied on

oth training and testing data, separately. As described in Table 3 ,

lassification rate for each type is presented in the corresponding

onfusion matrix. Totally, we achieve an overall classification rate

s 93.1% (911 out of 979) through all types of candidates. We can

lso work out that the proposed method recognize almost all W

ype nodules accurately, while hits a lower score for P type nod-

les. We believe this mainly lies in the hardness for P type nodule

adii estimation. 

.4. Comparison 

Although many researches have been done in nodule detection

nd malignancy estimation, there are still few focusing on nod-

le accurate type classification. Patch-based classification by Zhang

t al. [41] which is validated on ELCAP [43] focuses on the same

eld with us. Thus, we applied the proposed method on ELCAP to

chieve more comparable results. The confusion matrices for both

he proposed and patch-based method are presented in Table 2 . 

It should be noted that patch-based method [41] can only han-

le W , P , V and J nodules and acquire an overall classification rate

s 89%. Besides, we validate our proposed method for all nodule

ypes with an overall classification rate as 93.0% (4 types, 384 out

f 413) and 93.9% (all 6 types, 647 out of 689). It can be informed

hat despite extending classification to six classes, the proposed

ethod has also outperformed PB method in both single-class and

verall classification accuracy except J type nodules. From Table 2 ,

e can conclude that classification errors of the proposed method

or J type nodules mainly lie in N type, which PB method cannot

andle. Therefore, if we exclude the N type and G type nodules,
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Fig. 10. Classification results for typical cases of each type. Corresponding nodule 

types are labeled. Arrows are used to point out nodule positions. Nodule type char- 

acteristics can be easily recognized in 3-D views. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Classification results for another set of typical cases. 

Table 2 

Confusion matrix for comparison with PB [41] on ELCAP. 

Type/method G W N P V J 

G PB N/A N/A N/A N/A N/A N/A 

The proposed 0.793 0 0.138 0 0 0.069 

W PB N/A 0.89 N/A 0.06 0.04 0.01 

The proposed 0 0.961 0.039 0 0 0 

N PB N/A N/A N/A N/A N/A N/A 

The proposed 0 0.028 0.972 0 0 0 

P PB N/A 0.03 N/A 0.91 0.03 0.03 

The proposed 0 0 0.063 0.938 0 0 

V PB N/A 0.05 N/A 0.06 0.86 0.03 

The proposed 0 0 0.068 0 0.932 0 

J PB N/A 0.03 N/A 0.06 0.04 0.87 

The proposed 0 0 0.169 0 0 0.831 

Prop = The proposed method. 

PB = Patch-based method [40] . 

G = Ground glass optic. 

N = Non-nodule. 

P = Pleural-tail. 

W = Well-circumscribed. 

V = Vascularized. 

J = Juxta-pleural. 

 

our proposed method has outperformed the PB method in all four

classes ( W , J , P , V ). 

Meanwhile, the most classical comparable scheme is Bag-

of-Visual-Words representation (BOW) [12] towards our proposed

method. Therefore, in our approach, we have compared the pro-

posed method in the following ways, 

• CNN S , the classical pure CNN fashion without max-pooling

layer, using the soft-max layer as the classifier. The network ar-

chitecture is the same as described in Fig. 6 . Multi-view multi-

scale scheme is also applied. 
• CNN S +Pooling, same with CNN S , but with max-pooling layer. 
• CNN F , the classical CNN fashion without max-pooling. Indepen-

dent images are used to train the CNN without any group or

batch information. The descriptors are arranged as 4096-D vec-

tors from fully connected layer responses for each input image.
• CNN F +Pooling, the multi-view multi-scale CNN+Pooling ap-

proach. Images are grouped into batches according to corre-

sponding nodules and processed into unified features via max-

pooling layer. The descriptors are organized as 4096-D vectors

from CNN fully connected layer responses for each correspond-

ing nodule. 
• FV+SIFT. We utilize comparison with FV encodings [47] under

SIFT descriptors. Totally, GMM models are applied to determine
32 cluster centers, while SIFT vectors are reduced to 32-D by

PCA and whitening, leading to 4096-D FV encodings finally. 
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Table 3 

Confusion matrix for comparison. Classical CNN S , CNN S + Pooling, CNN F , CNN F + Pooling, 

FV + SIFT [47] and BOW + SIFT [12] are considered. 

Type/method G W N P V J 

G CNNS 0.809 0.045 0.101 0 0.045 0 

CNNS + Pooling 0.854 0.023 0.079 0.011 0.034 0 

CNNF 0.596 0.067 0.101 0.045 0.124 0.067 

CNNF + Pooling 0.809 0.034 0.112 0 0.045 0 

FV + SIFT 0.615 0.021 0.077 0.070 0.154 0.063 

BOW + SIFT 0.524 0.063 0.063 0.091 0.168 0.091 

The proposed 0.899 0.011 0.079 0 0.011 0 

W CNNS 0.022 0.801 0.018 0.074 0.055 0.030 

CNNS + Pooling 0.011 0.867 0.011 0.066 0.033 0.011 

CNNF 0.052 0.683 0.041 0.074 0.125 0.026 

CNNF + Pooling 0.011 0.963 0.015 0 0.011 0 

FV + SIFT 0.022 0.735 0.040 0.036 0.157 0.009 

BOW + SIFT 0.036 0.664 0.027 0.054 0.206 0.013 

The proposed 0 0.993 0.004 0.004 0 0 

N CNNS 0.015 0.045 0.865 0.020 0.020 0.035 

CNNS + Pooling 0.010 0.040 0.885 0.010 0.020 0.035 

CNNF 0.035 0.070 0.735 0.045 0.030 0.085 

CNNF + Pooling 0.005 0.035 0.885 0.010 0.030 0.035 

FV + SIFT 0.129 0.041 0.676 0.071 0.006 0.076 

BOW + SIFT 0.153 0.029 0.571 0.071 0.018 0.159 

The proposed 0.010 0.035 0.915 0.005 0.025 0.010 

P CNNS 0.027 0.054 0.116 0.705 0.027 0.071 

CNNS + Pooling 0 0.063 0.089 0.786 0 0.063 

CNNF 0.036 0.116 0.107 0.607 0.009 0.125 

CNNF + Pooling 0.018 0.045 0.152 0.759 0.009 0.018 

FV + SIFT 0.067 0.044 0.081 0.659 0.015 0.133 

BOW + SIFT 0.089 0.111 0.126 0.474 0.030 0.170 

The proposed 0 0.018 0.116 0.866 0 0 

V CNNS 0.064 0.113 0.043 0 0.780 0 

CNNS + Pooling 0.028 0.078 0.050 0.028 0.816 0 

CNNF 0.057 0.142 0.064 0.043 0.688 0.007 

CNNF + Pooling 0.007 0.085 0.078 0 0.830 0 

FV + SIFT 0.063 0.162 0.035 0.077 0.606 0.056 

BOW + SIFT 0.063 0.232 0.007 0.092 0.507 0.099 

The proposed 0.014 0.035 0.043 0 0.908 0 

J CNNS 0.012 0.018 0.096 0.036 0.006 0.831 

CNNS + Pooling 0.012 0 0.042 0.042 0 0.904 

CNNF 0.018 0.036 0.102 0.133 0.006 0.705 

CNNF + Pooling 0.012 0.030 0.066 0.054 0.006 0.831 

FV + SIFT 0.048 0.030 0.139 0.157 0.030 0.596 

BOW + SIFT 0.048 0.048 0.181 0.108 0.024 0.590 

The proposed 0.018 0.006 0.048 0 0 0.928 

G = Ground glass optic. 

N = Non-nodule. 

P = Pleural-tail. 

W = Well-circumscribed. 

V = Vascularized. 

J = Juxta-pleural. 
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• BOW+SIFT. We compare the proposed method with the most

classical BOW [12] scheme using SIFT features. We apply the

K-Means method to obtain the vocabulary with size 4096, lead-

ing to 4096-D BOW encodings for each nodule. 

All comparisons except for CNN S and CNN S + Pooling are vali-

ated with a multi-class SVM as a classifier. The confusion matri-

es for all comparisons are presented in Table 3 . 

Totally, for CNN S , CNN S + Pooling, CNN F , CNN F + Pooling, FV + SIFT

nd BOW + SIFT, the overall classification rates are 80.6, 85.9, 68.1,

6.8, 65.5 and 56.6%, separately. We can conclude that although

OW method is efficient for natural image classification and 

etrieval, it cannot compete in medical image fields. FV 

ncoding outperforms the classical BOW method but is either

ot acceptable. The classical CNN fashion (CNN S , CNN S + Pooling,

NN F , CNN F + Pooling) has been proven efficient in classification,

specially when multi-view multi-scale scheme is applied (CNN S ,

NN S + Pooling, CNN F + Pooling). The application of max-pooling

ayer also helps to raise classification accuracy. From Table 3 , we

an conclude that the proposed CNN feature extraction method
utperforms the previous methods and achieve significant im-

rovements. The multi-view multi-scale scheme assures the pro-

osed CNN capture more distinctive features. At last, by fusing FV

ncodings and CNN features, we have improved the accuracy com-

ared with both CNN-only and FV-only. The advantages by fusion

ainly lie in classification for G (9%), V (8%), P (11%) and J (10%)

ypes. This is because FV encodings are based on dense SIFT vec-

ors which are irrelevant with nodule radii. Therefore, FV encod-

ngs improve the final hybrid features by fulfilling CNN missing

eatures caused by radii wrong estimation. 

. Conclusions 

In this paper, we have devised a hybrid-feature-based lung nod-

le type classification method. We utilize the normalized spheri-

al sampling method based on icosahedra. Meanwhile, we apply

hreshold method to estimate nodule radii and high frequency 

ontent analysis to sort views planes. After that, we train the

ulti-view multi-scale CNN and calculate the Fisher vector 

ncodings. Finally, by fusing the CNN features and FV features
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through MKL, we obtain the hybrid features which are most de-

scriptive for nodule characteristics. The experiments on LIDC-IDRI

and ELCAP have shown we achieve an overall classification rate of

93.1% (911 out of 979) and 93.9% (647 out of 689) separately, which

is promising in clinical practice. We hope our method could be of

great assistance for radiologists for diagnosis of lung cancer. Future

work will lie in two aspects. One is a scale invariant and more ro-

bust radius estimation method towards very tiny nodules (radius

≤ 3 mm) and juxta-pleural nodules. The other is automatically la-

beling out types, positions and sizes for nodules not centered in

images with few human interactions. 
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