
Computers & Graphics 70 (2018) 118–127 

Contents lists available at ScienceDirect 

Computers & Graphics 

journal homepage: www.elsevier.com/locate/cag 

Special Issue on CAD/Graphics 2017 

Multi-scale geometry detail recovery on surfaces via Empirical Mode 

Decomposition 

Xiaochao Wang 

a , c , Jianping Hu 

b , c , ∗, Dongbo Zhang 

c , Lixin Guo 

c , Hong Qin 

d , Aimin Hao 

c 

a School of Science, Tianjin Polytechnic University, Tianjin 300387, China 
b College of Sciences, Northeast Electric Power University, Jilin 132012, China 
c State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China 
d Department of Computer Science, Stony Brook University, Stony Brook, NY 11794-4400, USA 

a r t i c l e i n f o 

Article history: 

Received 14 June 2017 

Revised 15 July 2017 

Accepted 15 July 2017 

Available online 27 July 2017 

Keywords: 

Geometry detail recovery 

Triangular meshes 

Empirical Mode Decomposition 

Similarity descriptor 

Multi-scale representation 

a b s t r a c t 

In this paper, to recover the missing geometry details on 3D surfaces, we develop a novel geometry detail 

recovery algorithm for 3D surfaces based on Empirical Mode Decomposition (EMD). EMD is a powerful 

tool for processing non-linear and non-stationary signals and has been successfully used in 3D surface 

analysis and processing. Given a signal defined on 3D surface, EMD could represent the signal in a multi- 

scale fashion and decompose the signal into a number of Intrinsic Mode Functions (IMFs) and a residue, 

which usually encode the multi-level finer-scale details and the overall shape of the signal, respectively. 

Benefiting from the multi-scale representation of geometry details, the EMD-based multi-scale geometry 

detail recovery algorithm is developed. Our strategy starts from an initial smooth filling of a hole and 

then transfers the desirable details from the most similar region to the smoothly-filled surface within the 

framework of EMD. Taking the advantages of EMD, we first apply EMD on the whole completed surface 

to obtain the multi-scale representation of geometry details. Then, the most similar region corresponding 

to the hole region is located by the patch descriptor constructed from Heat Kernel Signature (HKS). Fi- 

nally, the missing geometry details can be effectively recovered by transferring the geometry details from 

the found similar region to the smoothly-filled surface. Traditional methods, such as context-based meth- 

ods or example-based methods, usually cut the similar patch and paste them onto the hole region, and 

they require to match with the hole boundary, are complex in general. In contrast, our method is simple 

and can transfer different scale details individually or in a concerted way, which makes our algorithm 

more flexible and can achieve versatile detail recovery results. Comprehensive experiments and quantita- 

tive comparisons on popular models have been used to demonstrate the effectiveness of our EMD-based 

multi-scale geometry detail recovery algorithm. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction and motivation 

With the rapid development of 3D digitization technologies, 3D

shapes can be easily acquired and applied in many applications,

such as biomedicine, cultural heritage, 3D printing, architecture

and construction, entertainment, etc. Due to complexity of shapes,

and lack of scan views, the acquired point clouds usually contain

missing regions, which result in many holes after reconstruction.

Incomplete shapes limit the capabilities of downstream geometry

algorithms and may influence the analysis and processing results.
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dditionally, surface editing operations can also lead to holes on

urfaces, where some parts of surface are removed. Therefore, it is

ighly desirable to fill the holes in a manner that produces com-

lete geometry shapes. 

For recovering the missing shape of 3D surfaces, there are

 large number of hole-filling algorithms having been proposed,

hich can be generally classified into two categories: volume-

ased methods and mesh-based methods. Volume-based methods

1–7] have to resort to an intermediate volumetric grid, which

an deal with complex holes, but it cannot preserve the sharp

eature and geometric details well. Comparing with volume-based

ethods, mesh-based methods complete the hole directly on local

esh, and have been paid more attentions [8–25] . Most of these

ethods can successfully repair smooth surfaces, however, in real

orld there are plenty of models that are highly-detailed with rich

eatures. Therefore, it is strongly desirable to recover the geome-
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Fig. 1. The pipeline of EMD-based multi-scale detail recovery algorithm. (a) An original incomplete model. (b) An initial completed model with hole’s boundary marked in 

red color. (c) The input signal defined by a measure of mean curvature. (d) EMD with the obtained IMFs and the residue. (e) Similar patch searching using patch descriptor 

constructed from HKS. (e.1) is the patch region and (e.2) is the HKS-based patch descriptor. (e.3) is the found similar region shown in blue color corresponding to the hole 

region in red. (f) Our multi-scale detail recovery results with different parameter settings. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article). 
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ry details, beyond the simple task of hole completion. In the liter-

ture, some texture synthesis-based methods [11,26,27] , example-

ased [28] or template-based methods [29–33] or context-based

ethods [34–36] attempt to recover the missing shape and appear-

nce of 3D surfaces. These methods usually cut the similar patch

nd paste them onto the hole region, and need to align, orient

he patch with the hole boundary, which are complex in general.

oreover, in many cases, it is hard to accurately estimate the miss-

ng shapes in the hole region, the cut-and-paste operation merely

roduces a single and simple result, which limits the flexility of

ole-filling algorithms. 

Focusing on geometry detail recovery with a goal of overcoming

he above-mentioned limitations in mind, we devise a novel multi-

cale geometry detail recovery algorithm for 3D surfaces based on

mpirical Mode Decomposition (EMD). Different to the multi-scale

epresentation algorithm in [37,38] , EMD is a fully adaptive, data-

riven algorithm, and works well for non-linear and non-stationary

ignal analysis and processing [39] . It decomposes the signal into

 number of intrinsic mode functions (IMFs) and a residue, which

ncode the multi-level finer-scale details and the overall shape of

he signal, respectively. In recent years, EMD has been successfully

xtended to 3D surface analysis and processing [40–45] . The ele-

ant mathematical properties and the powerful multi-scale geom-

try detail representation of EMD strongly motivate us to expand

MD horizon in order to tackle new challenges in novel applica-

ions such as geometry detail recovery. 

To fully recover the missing geometry details, we initially fill

he hole region with a smooth completion serving as our baseline,

nd then search the most similar region corresponding to a larger

egion containing the initially-completed hole region. The search-

ng process is based on patch descriptor constructed by Heat Ker-

el Signature(HKS) [46] , which has a powerful geometric interpre-

ation ability and captures much of the structure of the surface.

inally, benefiting from the multi-scale representation scheme, the

esirable geometry details are transferred from the most similar

egion to the initially-completed region individually or in a com-

ined manner. In contrast to the traditional hole-filling algorithms,

ur method is more flexible and can achieve versatile detail recov-

ry results by selectively transferring geometry details at will. The

ipeline of our multi-scale hole-filling algorithm is shown in Fig. 1

nd the main contributions can be summarized as follows: 
• Automatic: We propose an automatic multi-scale geometry de-

tail recovery algorithm on 3D surfaces based on EMD. Our

method does not rely on user interactions to specify the sim-

ilar region or manually adding extra constraints for recovering

the missing shapes, which enables our method to be effective

and robust. 
• Flexible: Unlike context-based or example-based methods, 

where the cut-and-paste operation is frequently employed, and

complex cutting, stitching, gluing with surrounding surface are

involved. Our method directly recovers the missing shapes via

geometry detail transferring within the framework of EMD,

which is much simpler and more flexible. 
• Versatile: Different from traditional hole-filling algorithms, with

which the holes are filled by smooth patches or less meaning-

ful geometry shapes are obtained. Our method not only can ef-

fectively restore missing geometry details, but also can gener-

ate various meaningful filling results only made possible by the

multi-level finer-detail representation of EMD, which enables

our algorithm to be more versatile. 

. Related work 

Considering that this paper focuses on geometry detail recovery

n 3D surfaces, the most related works are briefly reviewed in this

ection, and for more works readers could refer to the survey of

his subject [47,48] . 

Texture synthesis-based methods: To recover the missing ge-

metry details, inspired by image completion algorithms, some

exture synthesis-based methods have been proposed. Nguyen

t al. [11] proposed a geometry completion and detail generation

ethod by texture synthesis, which transforms the 3D geometry

ynthesis problem into 2D case by parameterizing surfaces and

olves this problem in a 2D domain based on geometry gradi-

nt image. The final completed model can be reconstructed from

ynthesized local gradient image. Using gradient image to repre-

ent geometry details in a parameterization domain, the similar

ramework is also adopted in [27] by combining interactive user

ketches to recover the structures and geometry details on 3D sur-

aces. In this process, parameterization is an important step. Even

hough the distortion in parameterizations during texture synthe-

is has been considered, the filling result could still be negatively
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affected by severe distortion when dealing with shapes with high

curvature. Breckon and Fisher [26] proposed a surface completion

method by combining global surface fitting to derive an initial

underlying geometric surface completion, with a 3D extension of

nonparametric texture synthesis to provide the propagation of lo-

calized structural 3D surface details. 

Example-based methods: Apart from texture synthesis based

methods, another category of geometry recovery methods is

example-based [28] or template-based [30] . These methods usu-

ally iteratively fill a hole by copying similar matching patches from

other regions, or computing a mapping between the incomplete

mesh with the template, then completing holes by cut-and-paste

operation. 

Using 3D shapes of database to provide geometric priors for re-

gions of missing surface, Pauly et al. [28] proposed an example-

based 3D scan completion algorithm. The method first retrieves

suitable context models from the database, warps the retrieved

models to conform with the incomplete data, and then consistently

blends the warped models to obtain the final filled 3D shapes.

Kraevoy and Sheffer [30] introduced a template-based mesh com-

pletion method by mapping the incomplete mesh with a template

model. The template-based mesh completion can be viewed as

mesh merging, which needs to merge the incomplete mesh with

completing parts from the template. The main difficulty of merg-

ing operator in template-based completion is to accurate align the

boundaries of holes with the template. 

Integrating symmetry detection and surface matching, Li et al.

[31] developed an iterative completion algorithm for completion of

damaged skulls, which is further improved in [32] by employing

a scale-space representation of shape based on heat kernel. En-

larging the database of template, Sung et al. [33] proposed a data-

driven structural priors for shape completion, in which a collection

of 3D shape examples are used to build structural part-based pri-

ors to complete holes. 

Context-based methods: By analyzing the context of the given

surface, Sharf et al. [34] introduced a context-based method, in

which the characteristics of the given surface are first analyzed,

then the hole is iteratively filled by copying patches from valid re-

gions of the given surface. During this process, an initial octree

is constructed, for each invalid surface cell, import and paste the

content of valid surface cell from the well-aligned best matching

patches with the surrounding surface by applying a rigid transfor-

mation. The method is limited by the relation between the sam-

pling density and the detail frequency. To capture fine structural

details, the cell must be small enough with respect to the detail

size, which is very time-consuming. 

Park et al. [35] developed a surface content completion method

for repairing both shape and appearance of incomplete point

clouds, which involves patch comparison based on local parame-

terization, computation of digital signature for patches, identifica-

tion of the most resembling patch and final hole-filling via the cut-

and-paste operation. Similar to most previous work, Harary et al.

[36] proposed a context-based coherent surface completion algo-

rithm, which filled the hole by synthesizing geometry shape from

the found similar patches of the input mesh. 

3. New algorithm 

In this section, we first give an overview of our algorithm, and

then introduce the algorithm in details, including EMD on 3D sur-

faces, similar patch identification, and geometry detail reconstruc-

tion. 
.1. Algorithmic overview 

Given an incomplete surface S = ( V , F ) , where V represents a

et of vertices v i = (x i , y i , z i ) ∈ R 3 , i = 1 , . . . , n, and F contains con-

ectivity information of the mesh including edges and faces. Our

oal is to repair holes to obtain a complete model and recover ge-

metry details. Fig. 1 shows the pipeline of our algorithm in the

ase of Igea model. For an incomplete model ( Fig. 1 (a)), we first

ll the hole with an initial smooth surface to obtain an overall

hape completion ( Fig. 1 (b)), which will serve as the base surface

n the following steps. Then, we encode the geometry details by

 measure of mean curvature ( Fig. 1 (c)) and use it as the input

ignal of EMD. The signal can be decomposed into a number of

MFs together with a residue, and represented in the multi-scale

anner ( Fig. 1 (d)). After that, the most similar patch correspond-

ng to each patch in the initially-filled region is searched based on

he heat kernel signature (HKS) ( Fig. 1 (e)). To this point, the ge-

metry details in the form of IMFs can be transferred from the

ost similar region to the initially-filled base surface. Finally, we

an effectively reconstruct the missing geometry details from the

ew transferred signal ( Fig. 1 (f)). The algorithmic overview is doc-

mented in Algorithm 1 . 

lgorithm 1 Multi-scale geometry detail recovery. 

nput: Incomplete surface S 

utput: Completed surface S with detail recovery 

1: Initial smooth completion of S to obtain S 
′ 

(Section 3.2) 

2: Encode geometry details of the initially-completed surface S 
′ 

by a measure of mean curvature and decompose the signal of

surface S 
′ 

into IMFs and a residue based on EMD (Section 3.3) 

3: Search for the most similar patch from S for each target patch

in the initially-filled region of S 
′ 

(Section 3.4) 

4: Transform the corresponding most similar patch’s multi-scale

geometrical details in the form of IMFs to the target patch to

obtain the new signal (Section 3.5) 

5: Reconstruct final geometry details from the new signal (Section

3.5.2) 

.2. Initial smooth surface completion 

Before geometry detail recovery, the incomplete surface should

e filled to obtain an initial smooth completion, which serves as

 base surface for geometry detail recovery and provides a general

ppearance of geometry shape. In this work, we adopt the advanc-

ng front method used in [15,22] to obtain the initial filling result.

f there are degenerated triangles or badly oriented triangles along

he hole boundary, the method used in [14] will be adopted to re-

ursively deleted them to prevent some undesired undulations or

elf-intersection in hole-filling. Fig. 1 (b) shows the initial comple-

ion result of Fig. 1 (a). For a given incomplete surface and an initial

moothly-filled surface, we shall endeavor our best effort s to re-

over geometry details as natural as possible in the following sec-

ions. 

.3. EMD on 3D surfaces 

After obtaining the initial completion of surface, we represent

he geometry details of the surface by using EMD, which is a pow-

rful tool for processing non-linear and non-stationary signal and

as been successfully extended to 3D surface analysis and process-

ng [40–45] . For a given signal defined on 3D surface, EMD can

epresent the signal in a multi-scale manner and decompose the

ignal into a number of IMFs and a residue, which usually repre-
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Algorithm 2 3D EMD algorithm on surfaces. 

Input: A signal f computed from the surface S 

Initialization: Set the initial residue as r 0 = f and j = 1 for the ini- 

tial index of IMFs; 

repeat 

2: t 0 = r j−1 , k = 1 ; 

for each k do 

4: Detect all local minima and local maxima of the signal 

t k −1 ; 

According to biharmonic interpolation, the lower envelope 

Lt k −1 (upper envelope Ut k −1 ) can be obtained by interpo- 

lating all local minimal (local maximum); 

6: Compute the mean envelope Mt k −1 of t k −1 by Mt k −1 = 

( Lt k −1 + Ut k −1 ) / 2 ; 

Update t k = t k −1 − Mt k −1 ; 

8: if t k satisfiesthe stopping criterion then 

Obtain the j − th IMF I j = t j and the j − th residue r j = 

r j−1 − I j ; 

10: j = j + 1 ; 

break; 

12: else 

k = k + 1 ; 

14: end if 

end for 

16: until The residue is a constant or monotonic function 

Output: IMFs I j , j = 1 , . . . , J and a residue r J 
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ent the multi-level finer-scale details and the overall shape of the

ignal. 

For signal definition, the geometry coordinate components are

sed in [41] . However, the surface with different poses will result

n different extrema of coordinate functions and further lead to dif-

erent decomposition results, thus the signal of geometry coordi-

ate is pose-dependent for EMD. To overcome this limitation, Hu

t al. [42] used a measure of mean curvature as the input signal

f EMD, which is both rotation-invariant and translation-invariant.

his signal f can be computed by the inner product of Laplacian

ector and the vertex’s normal 

 ( v i ) = n ( v i ) · δ( v i ) , (1)

here n ( v i ) is the normal of vertex v i and δ is the Laplacian oper-

tor on 3D surface 

( v i ) = 

∑ 

j∈ N(i ) 

w i j ( v j − v i ) , (2)

ith the cotangent weights 

 i j = cotαi j + cotβi j , (3) 

here N ( i ) is the vertex set of the 1-ring neighbors for vertex v i ,

nd αij , β ij are the angles opposite to the mesh edge ( i , j ). 

The signal can be regarded as a measure of mean curvature, and

t is both rotation and translation invariant. Therefore, we adopt

his measure as the input signal of EMD, and then decompose it

nto a finite number of IMFs, which should satisfy the following

onditions [39] 

• In the whole data set, the number of extrema and the number

of zero crossings must either equal or differ at most by one. 
• At any point, the mean value of the envelope defined by the

local maxima and the envelope defined by the local minima is

zero. 

IMFs are extracted from the input signal by the sifting pro-

ess and leaving the final residue as constant or monotone trend.

pecifically, the signal f about the measure of mean curvature can

e decomposed and represented in a multi-scale manner 

 = 

J ∑ 

j=1 

I j + r J , (4) 

here I j , j = 1 , . . . , J, r J are IMFs and the residue ( J is the num-

er of IMFs), which represent the fine-scale details and a trend of

ignal. For the mean curvature signal used in the algorithm, the

xtracted IMFs are called MC-IMFs (mean curvature IMFs) in this

aper. 

The entire process of EMD is summarized in Algorithm 2 and

ore details of the EMD algorithm can refer to [41,42] . Fig. 2 shows

he decomposition results of a signal defined on a bunny model.

o visualize MC-IMFs and the residue, the models corresponding

o MC-IMFs and the residue are reconstructed using its MC-IMFs

ogether with the residue. From the reconstruction results, we can

ee that geometry details are encoded in the leading MC-IMFs, and

he smoother shape is contained in the residue. 

.4. Searching for similar patches 

To this point, we have obtained the multi-scale geometry de-

ail representation. For geometry detail recovery we need to de-

ide which region of geometry details will be transferred to the

mooth filled region. In this paper, the Heat Kernel Signature (HKS)

46] based algorithm is adopted to search for the most similar re-

ion in the initially-filled surface. 
.4.1. Descriptor definition 

HKS is a powerful descriptor for characterizing local and global

eometry of the surface patch centered at each vertex [32,46] 

 t (x ) = 

∞ ∑ 

i =0 

e −λi t �i (x ) 2 , (5)

here λi is the eigenvalue and �i is the corresponding eigenfunc-

ion of the Laplace–Beltrami operator. Fig. 3 shows the HKS curves

or three different types of vertices, in which they are well dis-

inguished from each other. Fig. 4 shows HKS curves of the same

ertex on three different cases. The first case is the original model

ith the target vertex marked in blue color. The second case is the

odel with the target vertex locating on the hole boundary and

arked in red color. The third case is the initial filled model with

he target vertex marked in green color. The HKS curves of them

re shown in the middle. From the curves, we can see that blue

urve almost coincides with the green curve, while both of them

eviate from the red curve. Two conclusions can be obtained, the

rst one is that computing the HKS on the initial filled model is

uch better than directly computing the HKS on the incomplete

odel. The second one is that it is reasonable to compute the HKS

in part) over the smooth filling, which does not bias the descriptor

n a negative way though there is an initial filled smooth part. 

The value of HKS over different times can be regarded as the

ignature of vertex and provide an effective multi-scale signature

or shape matching. However, HKS on one vertex is not enough to

haracter the similarity of patches, which can be defined as the

onnected neighborhood that is falling within a ball of radius r 1 
entered at v i . Therefore, we adopt the statistical information of

he HKS to define patch descriptor [36] 

KS(p i ) = { HK S μ(p i ) [0 , 1] , HK S σ 2 (p i ) [0 , 1] } , (6)

here the symbol [0,1] means normalizing the value of HKS to

0,1]. 

The above descriptor contains two components. The first one

s the average of the HKS values of the patch’s vertices, which is

erformed at each time t of the HKS and denoted as HKS μ. An-
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Fig. 2. The EMD decomposition results of Bunny model. (a) Original model with the input signal. (b–d) The first three MC-IMFs and the corresponding reconstruction results 

from MC-IMFs together with the residue. (e) The reconstruction result from the residue. 

Fig. 3. Discriminative power of HKS . Left: Three vertices of Igea mode are marked 

in blue, red, and green, respectively. Right: The HKS values of three vertices are 

marked in corresponding colors. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Robustness of the HKS. Left: The original model with target vertex marked 

in blue. Right: The model with hole locating on the hair region, and the target ver- 

tex is marked in red. Below: The initial completed model and the target vertex is 

marked in green. Middle: The HKS curves are marked in blue, red and green corre- 

sponding to the vertices marked in left, right and below model. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article). 
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other one is the variance of these values and denoted as a vector

of variances HKS σ 2 . In this work, three time domains are used: the

entire time domain, the lower 3/4 and the lower half of the entire

time domain. That is to say, there exists three descriptors for each

patch. Following the suggestion of [46] , the smaller 300 eigenval-

ues and corresponding eigenvectors are computed for each model,

and we uniformly sample 100 vertices in the logarithmically scale

over time interval [4 ln (10)/ λ300 , 4 ln (10)/ λ2 ]. 

3.4.2. Similar patch identification 

For each target patch T i in the initially-filled region of S 
′ 
, we

search for k similar patches S j from the original surface S as can-

didate patches. The patch can be defined as the connected neigh-

borhood that is falling within a ball of radius r 1 around the cur-

rent vertex v i . The default value of k is set to 0.1% of the whole

number of vertices. In this paper, we adopt Euclidean distance to

measure the similarity between two patches based on the well-

defined patch descriptor. It should be pointed out that, the candi-

date’s patches may be included in the initially-filled region, which

should be removed to avoid extra calculations and misleading re-

sults. To achieve this, we restrict the candidate patches far from

the current vertex with the radius r 2 . 

After finding all candidate patches for T i , S(T i ) ⊂ S , the most

similar patch will be finally selected from them through a rigid

alignment. The alignment is performed by finding matching points

between source patch and target patch using HKS . Based on the
atching pairs, the rigid transformation R between T i and S j ⊂ S ( T i )

s calculated by solving a least-squares minimization 

 (S j , T i ) = 

#(T i ) ∑ 

l=1 

|| v S j 
l 

− ( R · v T i 
l 

+ t ) || 2 , (7)

here v 
T i 
l 

is a vertex of T i , and v 
S j 
l 

is the matching vertex in S j ,

(T i ) is the number of vertex in patch T i , R is a rotation matrix

nd t is a translation vector. Eq. (7) can be solved by using the

hape matching method proposed in [49] . Finally, for each target

atch, the source patch with the smallest error will be selected

s the most similar patch. Figs. 1 (c) and 6 (c) show the most sim-

lar region of the hole in hair of Igea model, respectively. As can

e seen from these figures, the patch descriptor well describes the

imilarity between patches and leads to satisfactory results. 
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Fig. 5. Weight values ηj for multi-scale representation and editing. (a) Low- 

pass filtering. (b) High-enhancement filtering. (c) Band-stop filtering. (d) Band- 

enhancement filtering. 

Fig. 6. Multi-scale detail recovery results on Igea model. (a) The incomplete model. 

(b) The initial completed result. (c) The most similar region is selected by HKS and 

the blue region is the most similar region of the red region, which is composed of 

the center vertices of all the most similar patches. (d–f) The multi-scale hole-filling 

results with details using our method. The ηj of the MC-IMFs are (1,0,1), (2,1,0), 

(3,2,1), respectively. (For interpretation of the references to color in this figure leg- 

end, the reader is referred to the web version of this article). 
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.5. Multi-scale geometry detail recovery 

In the literature, most previous work [11,26–36] adopt the copy-

nd-paste operation to recover the missing geometry details. How-

ver, these methods can only produce single filling result, and limit

he flexibility of the algorithm to a large extent. In contrast, we

evelop a novel multi-scale geometry detail recovery algorithm

ithin the framework of EMD, which is more flexible and powerful

han previous work. 

.5.1. Detail transfer 

According to Eq. (4) , the signal f defined on initially-filled sur-

ace S 
′ 

can be expressed in multi-scale representation and for each

ertex v i , we have 

 ( v i ) = 

J ∑ 

j=1 

I j ( v i ) + r J ( v i ) , (8)

here I j ( j = 1 , . . . , J) and r J are the corresponding MC-IMFs and

he residue. 

For each vertex v i in the initially-filled region, there are several

atches containing vertex v i . Each patch containing v i will find a

ost similar patch. Then, the center of the most similar patch for

ach vertex v i is used to represent the similar region correspond-

ng to the initially-filled region. Therefore, there are a set of most

imilar patches corresponding to the patches containing vertex v i .

or each of them, we can find the closest vertex on the aligned

ource patch using rigid alignment. Denote all closest vertices in

ll most similar patches as C( v i ) , the geometry details encoded in

C-IMFs of C( v i ) can be collected to compute the new signal value

f vertex v i 

 

′ 
j ( v i ) = 

1 

n c 

∑ 

v l ∈ C( v i ) 

I S j ( v l ) , (9)

here n c is the number of corresponding points set C( v i ) , and I S j 
s the j-th MC-IMF of the source patch. 

To this point, we have established the correspondence between

he source patch and the initially-filled region, therefore, replacing

art of signal in the initially-filled region by the newly-assigned

alues computed in Eq. (9) , we obtain the new signal ˜ f 

 

 ( v i ) = 

J ∑ 

j=1 

1 

n c 

∑ 

v l ∈ C( v i ) 

I S j ( v l ) + r J ( v i ) , (10)

n which the residue of signal defined on the initially-filled region

s retained to preserve the overall shape of the initially-filled sur-

ace. 

.5.2. Surface reconstruction 

Our geometry detail recovery is only achieved within the

ramework of signal processing based on EMD, therefore, the fi-

al shape of filled region can be reconstructed from the modified

ignals after geometry detail transfer. With the new signal ˜ f , the

ecovery geometry shapes with vertices ˜ V can be reconstructed by

inimizing the following energy formulation 

 L ̃  V − diag( ̃ f ) N ‖ 

2 + λ2 
˜ n ∑ 

i =1 

‖ ̃ v i − v i ‖ 

2 , (11)

ith the weighting factor λ for the positions of initially-filled sur-

ace serving as constraints, and the default value is set to be 0.1

n our experiments. ˜ n is the number of vertices in initially-filled

urface. N is the normal matrix of vertices and L is the Laplacian

atrix with elements of 



124 X. Wang et al. / Computers & Graphics 70 (2018) 118–127 

 

 

 

 

 

 

 

 

 

˜
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Run times (in seconds). #(V): number of vertices. #(FV): number of filled ver- 

tices. r 1 : radius of patch. r 2 : radius of hole to prevent the influence of hole. 

They are all set as several times of the average length of mesh edges. EMD: 

time of EMD applied on the signal of 3D surface. FSP: time of most similar 

patch searching. Total: total time of our method. 

Figs #(V) #(FV) r 1 r 2 EMD FSP Total 

Fig. 6 26,635 295 4 8 10.550 51.906 99.969 

Fig. 7 48,961 445 5.5 11 26.222 214.804 24 8.34 8 

Fig. 8 25,220 101 4 8 11.453 26.043 41.665 

Fig. 9 34,142 153 4 8 15.229 42.721 63.501 

Fig. 10 34,539 581 5.5 11 43.549 155.138 203.924 

Fig. 11 96,431 42 2.5 5 41.826 54.959 109.70 

Fig. 7. Hole-filling result on Maxplank model. (a) Incomplete model. (b) Initial com- 

pleted result. (c) Most similar region of the red region is shown in blue, which is 

composed of the center vertices of all the most similar patches. (d) Hole-filling re- 

sult of our method. The ηj of the MC-IMFs is (1,1,1). (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article). 
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L i j = 

{ 

∑ 

j∈ N(i ) w i j , i f i = j 

−w i j , i f j ∈ N(i ) 
0 , otherwise 

, (12)

where N ( i ) is the vertex set of 1-ring neighbors of v i and w i j is the

weight defined by w i j = cot αi j + cot βi j , cot αi j and cot βi j are the

angles opposite to edge ( i , j ). 

3.5.3. Versatile geometry detail recovery 

As mentioned in the above sections, EMD can decompose a sig-

nal into a number of MC-IMFs and a residue, where the leading

MC-IMFs encode the fine-scale details and the residue represents

the overall shape of signal. Therefore, it is natural to achieve multi-

scale geometry detail recovery by scaling corresponding MC-IMFs

with residue unchanged. Specifically, adjustable weights ηj can be

integrated into Eq. (10) to produce multi-scale recovery results 

 f ( v i ) = 

J ∑ 

j=1 

η j 

1 

n c 

∑ 

v l ∈ C( v i ) 

I S j ( v l ) + r J ( v i ) . (13)

Therefore, we can recover the geometrical details while edit-

ing them according to specific requirements simultaneously by ad-

justing the weight ηj . The transferred details corresponding to j -

th MC-IMF will be enhanced if ηj > 1, and will be smoothed if

ηj < 1. Fig. 5 shows the different setting of ηj , including low-pass

filtering, high-enhancement filtering, band-stop filtering, and band-

enhancement filtering, respectively. Through setting the different

values of ηj we can achieve multi-scale geometry detail recovery

results (see Fig. 1 (f)). 

Fig. 6 shows the procedure of geometry detail recovery based on

multi-scale representation of EMD. Fig. 6 (a) is the Igea model with

the missing shape on the region of hair. The shape and appearance

of the missing part of the hair will be completed with details tak-

ing from the similar region. Fig. 6 (b) shows the initial smoothly-

filled result, which serves as the base surface in following steps.

Benefiting from the HKS-based patch descriptor, the most similar

region with the hole can be easily identified. Fig. 6 (c) shows the

most similar region located in the region of right head marked

in red color. Under the signal processing framework of EMD, the

geometry details of the most similar region are transferred to the

smooth base surface, and we can obtain our final geometry detail

recovery results. From Fig. 6 (d)–(f), we can see that the details of

hair are gradually appearing and becoming much clearer with the

increasing weights of MC-IMFs. 

4. Experimental results and discussions 

To illustrate the effectiveness of our algorithm towards recov-

ering complex geometry details, a large number of experimental

results are shown in this section. We also compare our algorithm

with previous algorithms to show the advantages of our method.

Before demonstrating the results, we first discuss the parameters

used in the algorithm, and then show the experimental results. 

4.1. Parameters and performance 

We have implemented the proposed geometry detail recovery

algorithm in Matlab2013a on a Laptop with the Intel Core i7-4790

CPU @ 3.60 GHz with 16.0 GB memory. The parameters r 1 and r 2 
are both the radii of patches, in which r 1 is used in patch descrip-

tor and r 2 is used in similar patch identification. The parameter

r 1 is chosen differently for different models, which determines the

size of target patches in the initially-filled region and the simi-

lar patches S j from the original surface. The size of the patches

should not be too large or too small. Larger patches will increase

the amount of computation, while smaller patches cannot charac-

terize the similarity of different patches. In our experiment, this
arameter is chosen empirically and is usually set by several times

f the average length of mesh edges. The main factor affecting this

arameter is the sparsity of the mesh. For a density mesh, the

ength of mesh edge will be small, to obtain a proper size of patch,

 larger r 1 will be set. In contrast, for a sparse mesh, a smaller

alue will be used. Usually, radius r 2 should be larger than r 1 , and

 2 = 2 ∗ r 1 will be used in all of our experiments. In signal decom-

osition, more MC-IMFs could provide more flexibility for the al-

orithm, however, it also takes more time. To seek a trade-off be-

ween the flexibility and the efficiency of the algorithm, the num-

er of MC-IMFs is set to three as a default value. The running time

ainly depends on the size of the model, the size of the patch,

nd the size of the hole. The most time-consuming part is the sim-

lar patch identification with the global searching strategy. Table 1

hows the parameters and the running time of the models used in

ur experiments. 

.2. Application examples and comparisons 

Fig. 7 shows the detail recovery results on a Maxplank model.

or the model with a hole on left eye (see Fig. 7 (a)), we first get an

nitial smooth completion as the base surface (see Fig. 7 (b)). Based

n the initial completion, we apply EMD on the similar region

 Fig. 7 (c)) found by the HKS-based patch descriptor to obtain the

ulti-scale detail representation. For the intrinsic symmetry struc-

ure of Manxplank model, our similar patch searching strategy can

ccurately find the most similar region on the right eye. Then, we

an easily achieve the detail recovery by transferring and adjusting

he weights of corresponding MC-IMFs. From Fig. 7 (d), we can see

hat the missing shape in the region of eye is effectively recovered

s well as the textures of eyebrow. 
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Fig. 8. Hole-filling result on Dog model. (a) The incomplete model. (b) The initial 

completed result. (c) The hole-filling result of our method. The ηj of the MC-IMFs 

is (5,4,4). 

Fig. 9. Hole-filling result on noisy Balljoint model. (a) The incomplete model. (b) 

The initial completed result. (c) The hole-filling results of our method. The ηj of the 

MC-IMFs is (3,3,3). 
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Fig. 8 shows the result of our method on a detail-rich dog

odel. Fig. 8 (b) is the smoothly-filled result, and the final filled re-

ult shown in Fig. 8 (c). From the result we can see that the hole

s well filled with detail recovery. Furthermore, our algorithm can

lso obtain satisfactory filling result for incomplete model with

oise. Fig. 9 shows the hole-filling result on the noisy balljoint

odel. Fig. 9 (a) is the incomplete mode contaminated with heavy

oises. Fig. 9 (b) is the initial filling result and Fig. 9 (c) is the result

btained by our method, in which the geometry details are well

ecovered. 

Benefiting from the multi-scale decomposition of signal, our

ole-filling algorithm can be executed in a multi-scale manner and

roduce versatile filling results. Apart from the multi-scale recov-

ry results shown in Fig. 6 , a shape completion on the left leg of

unny model with multi-scale context control is further illustrated

n Fig. 10 . Fig. 10 (b) is the initial smooth completion and Fig. 10 (c)

s the most similar patch found from another region of leg and

s shown in blue color. The geometry details of the most similar

atch are transferred to smoothly-filled region within the frame-

ork of EMD. With the increasing weights of leading MC-IMFs, the

eometry details are gradually presented, and multi-scale geome-

ry detail recovery results are obtained (see Fig. 10 (d–f)). 

In Figs. 11 and 12 , to illustrate the efficiency of our hole-

lling algorithm, we compare our algorithm with previous algo-

ithms and softwares, including MeshFix algorithm [20] , the soft-

are of MeshLab [9] , radial basis function (RBF) algorithm [50] ,

olymender algorithm [51] and RameshCleaner algorithm [52] .
ig. 11 shows the comparison results with these methods on the

rmadillo model with a hole on the waist region in Fig. 11 (a).

ig. 11 (b) is the result of MeshFix algorithm, which fills the hole by

he patching procedure and fails to recover the geometry details of

he missing region. The result of Fig. 11 (c) is obtained by the soft-

are of MeshLab, which also does not produce satisfactory filling

esults. Fig. 11 (d) demonstrates the result of the RBF method, which

tilizes the RBF algorithm to interpolate vertices around missing

egions. Fig. 11 (e) illustrates the result of Polymender software and

ig. 11 (f) is the result of RameshCleaner algorithm. From these re-

ults, we can see that Fig. 11 (b) and (d) results are better than oth-

rs and achieve smooth transition between the original model with

he filled patch. Although all of the above algorithms could ob-

ain the completed results, the geometry details on the waist are

till not well recovered. Comparing with these results, Fig. 11 (g)

hows our filling result, which not only can obtain smooth tran-

ition across the surrounding boundary between the filling patch

nd adjacent region, but also produce the satisfactory result with

he proper recovery of missing geometry details. 

Fig. 12 shows the hole-filling results of bunny model with the

issing shape in the leg region. The results shown in Fig. 12 (b–f)

re obtained by the algorithms of MeshFix [20] , MeshLab [9] , RBF

50] , Polymender [51] , and RameshCleaner [52] , respectively. From

he results, we can observe that the methods of MeshFix and RBF

roduce more smooth results than other methods. On the other

and, the results obtained by MeshLab, Ploymender, and Ramesh-

leaner have some artifacts in the transition regions connecting

he filled patch and the existing geometry outside the hole region.

ore importantly, the missing geometry details are not well re-

tored in other methods. In contrast, with the most similar region

eing properly identified (aided by our shape descriptor) and the

ulti-scale representation enabled by the EMD of shape geometry,

ur algorithm produces more pleasing result than that from other

lgorithms and could effectively recover the missing geometry de-

ails (see Fig. 12 (g)). 

.3. Limitation and future work 

As discussed above in this section, there are many types of

issing data, we are only focusing on geometry detail recovery on

D surfaces in this paper. Therefore, our method might not work

ell for the model with missing sharp features. Another limitation

s that, our algorithm is based on similar patch search and identifi-

ation, which could be time-consuming for large-sized models due

o the global searching strategy being adopted. To overcome these

imitations, we would like to integrate the functionality of sharp

eature recovery into our current data completion framework in

he near future. And the parallel computation, kd-based searching

lgorithm may be adopted to accelerate the similar patch search-

ng. 

Furthermore, for large holes, due to the behaviors of HKS would

e very different on meshes, the most similar region could not be

earched in an accurate way, which will lead to unsatisfactory fill-

ng results. In this situation, just searching the similar patch from

tself is inadequate. Searching in a large collection of 3D models

nd resorting to some powerful techniques, such as deep learn-

ng, may provide good solutions for the hole-filling of meshes with

arge holes. 

. Conclusion 

In this paper, we have developed a multi-scale EMD-based

eometry detail recovery algorithm for incomplete surfaces. Our

ethod first fills the missing region with a smooth patch to es-

ablish a base surface, and the most similar region is elaborately

earched based on shape descriptor constructed from heat kernel
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Fig. 10. Multi-scale detail recovery results on Bunny model. (a) The incomplete model. (b) The initial completed result. (c) The most similar region is marked in blue, which 

is composed of the center vertices of all the most similar patches. (d–f) The multi-scale hole-filling results of our method. The ηj of the MC-IMFs are (1,0,1), (2,1,0), and 

(3,2,1), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Fig. 11. Comparisons between our method and the previous hole-filling algorithms on Armadillo model. (a) The incomplete model. (b) The result of MeshFix method [20] . 

(c) The result of Meshlab software filling method [9] . (d) The result of RBF [50] . (e) The result of Polymender [51] . (f) The result of RameshCleaner [52] . (g) The result of our 

method. 

Fig. 12. Comparisons between our method and the previous hole-filling algorithms on Bunny model. (a) The incomplete model. (b) The result of MeshFix method [20] . (c) 

The result of Meshlab software filling method [9] . (d) The result of RBF [50] . (e) The result of Polymender [51] . (f) The result of RameshCleaner [52] . (g) The result of our 

method. 
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signature. Then, the geometry detail signals from the most sim-

ilar region are transferred to the smoothly-filled patch based on

the multi-scale representation of EMD. Finally, we can effectively

reconstruct the missing geometry details from the transferred sig-

nal. Comparing with traditional methods (i.e., example-based or

context-based methods), which usually resort to complex, and/or

cut-and-copy operators, we develop a multi-scale geometry detail

recovery algorithm based on EMD, which is effective and flexible,

and can produce versatile detail recovery results. A large number

of experiments and comparisons have been performed to demon-

strate the effectiveness of our EMD-based multi-scale geometry de-

tail recovery algorithm. 
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