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Video Saliency Detection via Spatial-Temporal
Fusion and Low-Rank Coherency Diffusion

Chenglizhao Chen, Shuai Li, Yongguang Wang, Hong Qin, and Aimin Hao

Abstract— This paper advocates a novel video saliency detec-
tion method based on the spatial-temporal saliency fusion and
low-rank coherency guided saliency diffusion. In sharp contrast
to the conventional methods, which conduct saliency detection
locally in a frame-by-frame way and could easily give rise to
incorrect low-level saliency map, in order to overcome the existing
difficulties, this paper proposes to fuse the color saliency based on
global motion clues in a batch-wise fashion. And we also propose
low-rank coherency guided spatial-temporal saliency diffusion to
guarantee the temporal smoothness of saliency maps. Meanwhile,
a series of saliency boosting strategies are designed to further
improve the saliency accuracy. First, the original long-term
video sequence is equally segmented into many short-term frame
batches, and the motion clues of the individual video batch are
integrated and diffused temporally to facilitate the computation
of color saliency. Then, based on the obtained saliency clues, inter-
batch saliency priors are modeled to guide the low-level saliency
fusion. After that, both the raw color information and the fused
low-level saliency are regarded as the low-rank coherency clues,
which are employed to guide the spatial-temporal saliency diffu-
sion with the help of an additional permutation matrix serving as
the alternative rank selection strategy. Thus, it could guarantee
the robustness of the saliency map’s temporal consistence, and
further boost the accuracy of the computed saliency map. More-
over, we conduct extensive experiments on five public available
benchmarks, and make comprehensive, quantitative evaluations
between our method and 16 state-of-the-art techniques. All the
results demonstrate the superiority of our method in accuracy,
reliability, robustness, and versatility.

Index Terms— Spatial-temporal saliency fusion, low-rank
coherency guided saliency diffusion, video saliency, visual
saliency.

I. INTRODUCTION AND MOTIVATION
HE detection of video saliency aims to locate the
most eye attractor in a given video sequence, which is
extremely valuable in many downstream applications, such
as video reconstruction [1], video object tracking [2], and
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video expression [3]. Different from image saliency detection,
which has already achieved great success in recent years,
video saliency is a relatively new topic. Compared to image
saliency detection over spatial domain only, the incursion
of video motion information is the critical factor to make
this task challenging. Currently, how to properly exploit and
use the spatial-temporal information has become a recognized
research trend in video saliency field. Here, we will provide
a brief introduction to the state-of-the-art methods related to
video saliency detection.

Given a single static image, its saliency is the most
conspicuous content that tend to draw human attention. After
years of extensive research works, people have reached a
consensus that, the rational core of saliency computation is
the “contrast” [4]. That is, the more an object is different from
its surroundings, the higher saliency degree it should have.
Although various salient object detection methods have been
proposed in recent years, the main differences among these
state-of-the-art methods commonly lie in two aspects: the
definition of the feature space [5], [6] and the formulation of
the contrast computation [4], [7]. In fact, although the reported
detection accuracy has been gradually increased by introducing
more complicated and specific saliency mechanism
(e.g., priors [8], constraints [9], bionics clues [10], etc.),
the severely bad cases (which are completely in contrary to
the ground truth) occur more frequently than ever before (see
details in our experimental section). Therefore, instead of
naively employing the saliency results of the state-of-the-art
methods as low-level saliency clues, a motion clue guided
low-level saliency fusion is much more desirable for robust
video saliency detection.

The purpose of salient motion detection is to locate the
moving object in the given video sequence, which is seemingly
similar to video saliency detection. The key rationality of
salient motion detection is “modeling”, which intends to
extract the background appearance and regards the resid-
uals (between the established background model and the
current video frame) as the salient motion detection results.
In fact, the modeling-driven methods have two-fold effects.
First, it requires a long learning/updating period to estab-
lish a stable background model, which easily gives rise to
poor performance for short-term video sequences. Second,
although various regional modeling solutions [11], [12] can
be integrated to handle camera movements (e.g., camera
jitter), the modeling-based methods seem to be feasible only
for stationary videos. Specifically, several low-rank analysis
based salient motion detection methods have been pro-
posed in recent years, which can achieve state-of-the-art
performance [13]-[15]. However, these methods are mainly
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based on the assumption that the input video sequences
will be relatively stationary after various frame-level
pre-processing (e.g., affine transformation, background track-
ing, etc.), and thus it could easily introduce additional errors.
Therefore, there has been a strong expectation for a newly-
designed low-rank analysis method, so that it can simultane-
ously accommodate both stationary and non-stationary videos
regardless of the video length.

In fact, different from the top-down salient motion detection
methods, the video saliency methods commonly employ the
bottom-up image saliency as the basic saliency clues, which
can well handle the saliency detection in non-stationary videos.
Yet, the detection performances over stationary videos are
inferior to those of low-rank analysis based salient motion
detection methods [14] [12]. Meanwhile, because the motion
information can be regarded as an additional trustful saliency
clue to facilitate the video saliency detection, many of the
state-of-the-art video saliency methods tend to fuse the color
saliency with the motion saliency. However, the fusion proce-
dures adopted by these methods [3], [16]-[18] are temporally
too local (i.e., in a frame-by-frame manner) to obtain robust
low-level saliency, and lack subtle way to solve it when
the motion saliency is in contrary to the color saliency.
Furthermore, almost all existing video saliency methods
neglect the fact that, the obtained saliency map should keep
temporal smoothness, which can be leveraged as an impor-
tant constraint to further boost the detection accuracy. Most
recently, some methods [19], [20] take into account even
global temporal clues to compute robust low-level saliency,
however, the subsequent energy minimization framework,
which is designed to exploit the saliency consistency over
temporal scale, can easily cause the accumulation error of the
incorrect low-level saliency, and thus lead to massive false-
alarm detections. Therefore, it is critical to design a proper
solution to guarantee the temporal saliency consistence while
being robust enough to limit accuracy deterioration.

To tackle the aforementioned limitations, our research
endeavors focus on designing a video saliency detection
method with excellent performance for both stationary
(it should be better than state-of-the-art low-rank analysis
based salient motion detection methods) and non-stationary
videos. In sharp contrast to the traditional video saliency
methods, which employ the state-of-the-art image saliency
detection results as basic saliency clues, we reconsider the
most straightforward local contrast as the low-level saliency
while involving no high-level priors or constraints. And the
spatial-temporal gradient map is integrated into color contrast
computation to avoid the hollow effect. Meanwhile, the
appearance/background modeling, which can be regarded as
the temporal-level global clue, is also considered to guide
the fusion of color saliency and motion saliency. Specifically,
the salient contributions of this paper can be summarized
as follows:

« We propose a novel spatial-temporal gradient definition
to guide contrast computation, which can assign high
saliency value around foreground object but simultane-
ously avoid the obstinate hollow effects.

o« We formulate a series of saliency adjustment strate-
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gies to guide the fusion of color saliency and motion
saliency, which outperforms the traditional fusion solu-
tions adopted by previous works in terms of both accuracy
and robustness.

« We propose to explore the spatial-temporal low-rank
coherency to construct the temporal saliency correspon-
dences among cross-frame super-pixels, which can guar-
antee the temporal smoothness of the resulted video
saliency map.

o We leverage the temporal smoothness to further boost
the saliency accuracy via “one-to-one” spatial-temporal
saliency diffusion based on the constructed temporal
saliency correspondences, which works much better than
the traditional, unconstrained “many-to-many” cases.

II. BACKGROUND AND RELATED WORKS
A. Salient Motion Detection Methods

Since the salient motion detection method is originally
designed for the stationary video surveillance, almost all
salient motion detection methods leverage the modeling based
framework. From the earliest Gaussian model (e.g., single
Gaussian model [21], Gaussian mixture model (GMM) [22],
extended GMM model [23]) based methods to current
structure topology based modeling solution [11], most of
the methods regard the residuals between the established
background model and the current video frame as the
salient motion clues. Although the Gaussian-like modeling
methods can well handle the background variations, their
isolated pixel-level modeling method tends to frequently
encounter massive false-alarm detections due to their slow-
adaptation ability in handling sudden camera movements (e.g.,
camera jitter, fast dynamic backgrounds, etc.). Therefore,
texture-sensitive or structure-sensitive [11], [12], [24] feature
representations are proposed to enlarge the inter-class
feature distance (i.e., the feature distance between the back-
grounds and the foreground moving object) while shortening
the intra-class (either backgrounds or foregrounds) distance.
Meanwhile, the optical flow like temporal motion detector [25]
is also proposed to suppress the ghost effect, which can
be frequently observed in the scenarios with intermittent
object movements. Also, to suppress the false-alarm detections
induced by dynamic backgrounds, [14] proposes a multi-
level low-rank solution for the detection of salient object in
a coarse-to-fine manner. To adapt the modeling based salient
motion detection methods to the non-stationary videos, [15]
resorts to frame-level affine registration, and [13] employs
high-level background tracking as the pre-processing proce-
dure to obtain relatively-stationary short-term video sequences.
However, because these modeling based methods usually
require long-period video frames to gradually learn the back-
ground model, the obstinate challenges still exist when the
input video sequences only have limited frames.

B. Video Saliency Detection Methods

Video saliency detection is to extract the most distinctive
motion-related salient object from videos. The state-of-the-art
video saliency detection methods can be roughly divided into
two categories: fusion based methods and spatial-temporal
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The architectural overview of our video saliency detection method. The yellow number located in the top-left corner of each sub-image indicates the

frame index. “The Current Saliency Prior” (marked with green boundary) is the final saliency detection result (s;, see Eq. 32) of the last frame in the previous
frame batch. And the saliency value of s; will be temporally diffused over the entire frame batch according to the established cross-frame super-pixels’
low-rank coherency correspondences. Similarly, the saliency detection result of the last frame in the current frame batch will also be diffused over the next

frame batch (marked with blue boundary).

contrast based methods. Since the motion clues can be easily
obtained from the optical flow methods, the fusion based
methods mainly focus on the combination of the color saliency
and the motion saliency. Rahtu ef al. [26] propose to use the
conditional random field (CRF) to integrate the motion clues
and the color saliency. Similarly, Fang et al. [17] proposes
to use entropy-based uncertainty weights to merge the spatial
saliency and the temporal saliency. And Liu et al [16]
resort to the mutual consistence between the spatial saliency
and temporal saliency to guide the fusion process. Although
fusion based methods can identify the most trustful saliency
clue alternatively from the spatial or temporal saliency clues,
failure cases still frequently occur when either the spatial
saliency or temporal saliency is incorrect. Different from
fusion based methods, spatial-temporal contrast based methods
usually compute the low-level saliency clues in a spatial-
temporal manner. For example, Seo et al. [27] propose to
compute the contrast based saliency in a pre-defined spatial-
temporal surroundings. Fu et al. [28] propose to estimate
the temporal correspondence to guide the computation of the
spatial saliency clue in a cluster-wise manner. Similarly,
Zhou et al. [3] propose to compute multi-scale saliency in a
region based spatial-temporal manner. Although such methods
can achieve much better saliency detection performance than
most of the image saliency methods, the obtained saliency
maps usually have bad temporal consistence due to the
frame-by-frame saliency computation. Also, Zhong et al. [29]
propose to utilize the spatial-temporal info between consecu-
tive video frames to construct their newly designed attention
model based on optical flow, which fully take the advan-
tages of the motion continuity nature to eliminate false-alarm
detections. Similarly, with the low-level saliency clues based

graph model, Kim et al. [30] propose to restart the random
walk’s stationary status among consecutive video frames to
capture the real video saliency, which can fully respect
the continuity of the spatial-temporal info. Most recently,
Wang et al. [19], [20] propose to use the motion clue based
geodesic distance (or gradient flow) as the low-level saliency,
and they adopt a global saliency energy function to guarantee
the temporal smoothness of final saliency map. However, their
global saliency energy function is too global to accurately
diffuse saliency along the temporal axis, thus, incorrect low-
level saliency can be easily accumulated, which finally gives
rise to false-alarm video saliency detection.

III. SPATIAL-TEMPORAL SALIENCY FUSION
A. Contrast-Based Saliency Clues

Give a long-term video sequence, video saliency detec-
tion is to find the salient object in each frame. Since the
coarse/initial clues of the salient object can be well revealed
by the contrast based saliency computation, in this section
we will conduct detailed discussion on the low-level saliency
clues adopted by this paper. Different from the conventional
video saliency detection methods [17], [19], [20], [28], which
reveal the saliency in a frame-wise or sequence-wise manner,
we equally decompose the original long-term video sequence
into many short-term frame batches B; = {I;, I, ..., L,}.
Here I denotes the k-th video frame. For each video frame I;
in the current frame batch B;, we employ the boundary-
aware smoothing method [31] to eliminate unnecessary details,
and simple linear iterative clustering (SLIC) based super-
pixel decomposition [32] is also adopted to reduce the
computational burden. Meanwhile, according to the rationality
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Fig. 2. Demonstrating the advantage of motion gradient guided contrast
computation. (a) shows the source video frames, (b) shows the optical flow
detection result, (c) and (d) respectively demonstrate the motion gradient
and the color gradient, (e) shows the spatial-temporal gradient map obtained
via Eq. 1, (f) shows the down-sampled ST gradient result to alleviate the
computation burden, (g) and (h) demonstrate the contrast computation region
of the traditional local method with corresponding motion saliency result
demonstrated in (i), (i) and (h) demonstrate the ST gradient map guided
contrast computation with corresponding result demonstrated in (1). The red
dot denotes the position of the given superpixel, the red circle denotes the
valid contrast computation region, and blue circle denotes the excluded region.

mentioned in [20], the motion gradient map is much more
robust and trustful than the motion saliency clues, we combine
the motion gradient with the color gradient to obtain the
spatial-temporal gradient map to guide the low-level contrast
computation, which can be computed by Eq. 1, including the
color contrast and the motion contrast.

ST = [[V(D|2 © llvox, vy|l2, (1)

where © denotes the element-wise Hadamard product, and
V() denotes the color gradient map, vx and vy respectively
denote the horizontal and vertical gradient of the optical flow
results. Then, the motion contrast of the i-th super-pixel can
be computed via Eq. 2.

[IVi, Vjll2
MS; = > ﬁ i = {k < p, pjlla <k +1),
P evi Pi>Pjll2
(2
Here || - || denotes the /r-norm, p; € R2*! denotes the

position center of the i-th super-pixel, V € R?>"*! denotes
the two-direction optical flow gradients, n denotes the super-
pixel number in the current video frame, and w; denotes the
contrast range used in computation, which is determined by
the shortest Euclidean distance between the i-th super-pixel
and the spatial-temporal gradient map ST (Eq. 3).

l
K= > [|ASTW)]lo. 3)
IAGDIlo, &,
Here we empirically set / as the initial local contrast computa-
tion range [ = %min{W, H}, W and H separately denote the

image width and height, and A(-) denotes the down sampling
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function (30%) to alleviate the computation burden. Also,
the pictorial demonstration can be found in Fig. 2.

Although our method also adopts the motion information
to control the contrast computation range as that in [20],
the underlying rationality of our method is totally different
from [20] in two aspects. First, the inner salient object regions
are only compared to the outer non-salient background to
avoid hollow effects (see demonstration in Fig. 2(i)), but
the contrast computation range of [20] heavily depends on
the assumption of the background regions, wherein incorrect
approximation (i.e., error accumulations) of the background
regions may easily make color contrast computation fail.
Second, since the optical flow based motion clue is trust-
ful in most scenarios, our method automatically assigns
larger saliency value to the foreground object by discarding
the distance penalty exp(—||p;,P;ll2/wi) adopted in [20].
Benefitting from this, the performance improvements can be
found in Fig. 9(a). Similarly, the color saliency CS can be
computed by simply replacing the optical flow gradient with
the RGB color value in Eq. 2, and the detailed formulation
can be found in Eq. 4.

CS; =
e 1pi. p; 12

; “)

where the definition of the w; is identical to Eq. 2, and
(R;, G;, B;) denote the corresponding averaged RGB color of
the i-th superpixel.

B. Modeling-Based Saliency Adjustment

When the current motion clue is incorrect, purely consider-
ing the short-term contrast information (intra-batch’s contrasts)
is insufficient to produce robust saliency map, we integrate
the long-term inter batch information into the computation of
color contrast to suppress the saliency degree of non-salient
backgrounds. That is, we keep updating the salient foreground
model and the non-salient background model (see the Appear-
ance/Background Model in Fig. 1) when accomplishing the
saliency detection of each frame batch.

Suppose FM € R3*/" BM € R**"" respectively denote
the foreground appearance model and the background model,
which record the super-pixel’s mean RGB color history of all
the foreground/background regions over the entire frame batch,
we employ both the average and the minimum super-pixel’s
feature distances (i.e., RGB color) as the inter-batch indicators
Cinter to adjust the color saliency value. According to our
experimental observations, the motion saliency MS is much
more meaningful and trustful than the color saliency CS. Thus,
we propose to adopt the relative discrepancy degree Cintra
to refine the color saliency CS (see details in Eq. 5).

CS; < CS; - Cinter; - Cintra;, )
in|lei, BM||> - = 3 ||c;, BM
Cinters = g("imIeBMI - 5 3l BMIly
min||c;, FM||2 - 7 > llei, FM||2
Cintra; = exp(d — |¢(MS;) — ¢(CS))]). (7

Here ¢; = (R;, Gi, B;) € R3*! denotes the average RGB value
of the i-th super-pixel, fn and bn respectively denotes the size
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of the foreground and background model, ¢ (-) is the minmax
normalization function, which strictly normalizes the color
saliency adjustment degree into [0.5, 1]. And ¢ is the upper
bound of the discrepancy degree between CS and MS, which
is empirically set to be 0.5.

Obviously, the underlying rationality of color saliency
adjustment is echoed in two aspects. First, both the salient
object’s appearance and the non-salient backgrounds (i.e.,
its corresponding color distributions) principally tend to stay
unchanged in limited consecutive frames, which facilitates
to adjust the saliency degree according to the previously-
established appearance models (i.e., the foreground model FM
and the background model BM). Second, the color saliency
CS can be regarded as the complementary part of the motion
saliency, whose main effect is to boost or sharpen the tiny
details of the salient object when the motion saliency indicat-
ing high saliency degree.

Following the first rationale, because our video saliency
extraction method is conducted in batch-wise manner,
the previously-obtained saliency detection results (i.e., the last
frame batch), which fully respect the spatial-temporal info via
low-rank coherency saliency diffusion and boosting, already
have both high recall and precision rate. Hence, the appearance
models (i.e., the foreground model FM and the background
model BM) can be gradually perfected via considering the
previous detection results, and it is reasonable to utilize the
corresponding RGB color histories to adjust the color saliency
value via Eq. 6. As shown in Eq. 6, we mainly consider the
minimum (min||c;, FM||2, min||c;, BM||2) and the average
I, RGB color distance (33 [|e;,BM]|2, #zuci, FM||2)
from the i-th superpixel to the entire appearance model as
the main criterion to guide the adjustment of color saliency.
In fact, without considering the minimum model distance,
the value of Cinter is constantly larger than 1 when the
i-th superpixel’s RGB distance is closer to the foreground
model FM than the background model BM. It means that,
the probability of the i-th superpixel belonging to the salient
foreground object is larger than the non-salient backgrounds,
and the saliency degree of the color saliency CS should be
increased accordingly, and vice versa. However, it is appar-
ently not discriminative enough to obtain correct color saliency
adjustment if we only consider the average model distance,
because the existing false-alarm non-salient backgrounds may
have closer I, RGB distance to the appearance model than
the background model. Furthermore, introducing the minimum
model distance into Eq. 6 can definitely alleviate these phe-
nomenon via increasing the discriminative power from the
perspective of [, RGB color distance, which nearly has no side
effects.

Following the second rational, Eq. 7 is a hinge function
constrained by the predefined hard threshold 6, which serves
as inverse penalty to the discrepancy degree between the
motion saliency and the color saliency. In fact, as the com-
plementary part used to sharpen the tiny details of the salient
object, the contribution of the color saliency becomes valueless
when the discrepancy degree is large. According to Eq. 7,
the precondition of the large discrepancy degree obviously
relies on two aspects: either the motion saliency MS is
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extremely larger than the color saliency CS, or the color
saliency CS is extremely larger than the motion saliency MS.
Since it is a common sense that trustful optical flow detection
always results in large absolute motion saliency degree, it is
reasonable to penalize the color saliency degree with respect to
the discrepancy degree between MS and CS when MS > CS.
Meanwhile, the overall motion saliency frequently stays at a
relatively low level when only existing small motions. When
MS « CS, the “multiplicative” based low-level saliency
fusion strategy (Eq. 12) can also guarantee those regions with
large color saliency degree to remain at a relatively high
level after the adjustment toward the flat distributed motion
saliency.

C. Low-Level Saliency Fusion

Since both the spatial (i.e., super-pixel’s topology infor-
mation in color feature space) and temporal information
(i.e., color I, distance based inter-frame saliency smoothing)
can be integrated to further refine the saliency value, we pro-
pose to refine both the low-level saliency CS and the MS (the
smoothing of MS is identical to CS, as shown in Eq. 8) via
spatial-temporal smoothing first as:

41
> 2 exp(=llesi, exjlli/o) - CSy
CS,; « TP 8
ti < P (8)
>, 2 exp(—lleni, ek, jlli/o)
k=1—1Py; €0

Here ¢;; denotes the averaged RGB color value of the i-th
superpixel in the t-th video frame, ¢ denotes the spatially
local neighbor region that satisfies [|p,;, Py ;ll2 < 0, 0 is
dynamically controlled by Eq. 9, and ¢ controls the smoothing
strength, which will be further discussed in Section V-A.

min ZZ ”% ZE(STr,i), EST, DI, )

t=1 i=1 i=1

n
., ST; <e x 13 ST,
BTy = | P ST 28T

0, otherwise

0:

(10)

m and n separately denote the frame number in the current
batch and the super-pixel number in the current frame, E(-) is
an indicator function (see Eq. 10) used to select super-pixels
with large ST values (Eq. 1), € is a parameter to control
the filter strength, which is empirically set to be 10. And
p; denotes the mean center coordinates of the i-th super-pixel.
As shown in Fig. 4, after spatial-temporal smoothing, the qual-
ity of the saliency map heavily depends on the selection of
the smoothing range. That is, a small smooth range is better
than a larger one for a tiny salient object, but in contrast it
has better effects when assigning large smooth range to huge
salient object. And the advantages of introducing 6 can be
obviously found in the last column of Fig. 4. Meanwhile,
to guarantee the saliency consistence at a frame batch level,
we dynamically update the g-th frame batch’s smoothing range
0, via

Oy < aly + (1 —a)fy—1, (11)
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(a)

Fig. 3.
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Illustration of the low-level saliency computation. (a) shows the input source images; (b) demonstrates the optical flow result; (c) demonstrates the

obtained contrast based motion saliency and its corresponding adjusted saliency; (d) and (e) show the spatial-temporal gradient map (ST, see Eq. 1); (f) shows
the raw color saliency map obtained by replacing optical flow gradient with RGB color in Eq. 2; (g) demonstrates the color saliency map adjusted by the
guidance of the foreground/background model (Eq. 5); the fused saliency maps via Eq. 12 are demonstrated in (h).

SRC 30 50 6

Fig. 4. TIllustration of impacts when adopting different spatial-temporal
smoothing ranges. Different smooth ranges are marked at the bottom row of
each column (i.e., 30, 50, and ), which state that assigning 6 as the smooth
range could produce the best saliency results (the last column).

where o is the learning weight, and we empirically set it to

be 0.2. Finally, we combine the color saliency CS with the
motion saliency MS to obtain the fused low-level saliency LS
via

LS =CSOMS. (12)
Here © denotes the element-wise Hadamard product.
As shown in Fig. 3(h), the fused saliency map is
much better than those that solely utilize color saliency
(Fig. 3(g)) or motion saliency (Fig. 3(d)). And the quantita-
tive proofs of the performance improvement are documented
in Fig. 9(a). It should be noted that, the fused saliency
map significantly increases the accuracy, but the recall rate
also decreases much compared to the motion saliency. Now,
in order to alleviate this problem, it sets the stage for us
to introduce our newly-designed low-rank coherency based
spatial-temporal saliency diffusion and boosting in the next
section.

IV. Low-RANK COHERENCY GUIDED
SPATIAL-TEMPORAL VIDEO SALIENCY DETECTION

Although the fused low-level saliency LS (Eq. 12) is much
better than pure color or motion saliency map, there still exist
many false-alarm detections, and the saliency distributions are
not temporally consistent (see the “Fused Result” in Fig. 1).
Thus, in this section, we propose to boost the saliency map
accuracy while keeping its temporal smoothness based on our
proposed low-rank coherency analysis.

A. The Low-Rank Analysis Framework for
Saliency Coherency

From the perspective of single video frame, the motion
clues captured by optical flow usually contain many false-
alarm detections. In contrast, the regions constantly with low
LS throughout the entire frame batch should be excluded
from the scope of our low-rank based saliency boosting.
That is, to eliminate most of the false-alarm detections
induced by incorrect optical flow, we initially locate the
coarse foreground regions that contain all the super-pixels of
the potential salient object. Given the k-th frame batch By
with m video frames, the t-th video frame’s feature subspace
spanned by low-level saliency LS; can be represented by
fI, = {LS:;1,LS;2,...,LS;,}, here n denotes the super-
pixel number. Thus, the saliency feature space of the entire
frame batch fB; can be written as the matrix form fB; =
{tI;, fI,, ..., fI,,}, and the coarse foreground regions F €
R™**! can be determined by Eq. 13.

m n

m
Fi= D LS~ —— >

t=1 t=1 i=

LS il+. (13)
1

Here y is a parameter to control the reliability of the
obtained coarse foreground region, which will be further
discussed in Section V-A. By adopting F to indi-
cate the coarse foreground regions, we get two fea-
ture subspaces separately spanned by the RGB color and
low-level saliency LS, which can be respectively represented
as FC = {C{,Cy,...,C,} € R¥>¥™ Of which, C; =
vec(Ri1,Gin, Bit, Ri2, Giay Bioy ..oy Rin, Gin, Bin)¥ €
R3ux1 and Ri i, Gij, Bij respectively represents the RGB
color channel of the j-th superpixel in i-th video frame,
FS = {vec(LSy), vec(LSy), ...,vec(LS;,)} € R**™. Here u
denotes the total positive elements in F, and vec(-) denotes
the vectorizing function. In fact, since the coarse foreground
region is fixed for the entire frame batch, for the foreground
object, there will exist strong low-rank coherency in the
feature subspaces FC and FS. Therefore, we can leverage low-
rank analysis to construct “one-to-one” correspondence among
cross-frame super-pixels, and then the low-level saliency
can be diffused (i.e., to achieve temporal consistence) and
boosted (i.e., to obtain better accuracy) globally over the entire
frame batch.
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Fig. 5. Ilustration of our low-rank correspondence revealing proce-
dure (Eq. 14). “Mark 1” shows the computation of the cost matrix (Eq. 20 and
Eq. 21); “Mark 2” denotes the weak structure constraints (Eq. 23); “Mark 3”
indicates the global minimum of the cost matrix M (Hungarian algorithm);
“Mark 4” represents the feature space updating (using Eq. 24 to update FC
and FS); “Mark 5” represents the updating of the objective matrix with newly-
updated FC and FS (Eq. 16 and Eq. 22).

However, due to the movements of foreground salient
object and the variations of non-salient surroundings, it is
infeasible to directly apply the traditional low-rank analysis
over the FC of the FS. Inspired by the recently-proposed
inner alignment involved low-rank solutions [15], [33], [34],
we propose an alternative low-rank selecting strategies, which
alternatively re-order the row-wise structures of FC and FS
during RPCA [35] based low-rank revealing. Hence, the low-
rank coherency problem can be formulated as:

min

D D PoOY
Do B0 P [IDells + [IDs|ls + [P © ?]]2

+ LlIEc]1 + A2l Egll1,
st.D, =L, +E., Dy =L; +E;,D. = FC 09,

D; =FS O 9,
7-9 :{Q15Q25"'Qm}5 Qi 6{09 1}n><n, 1TQi =1
(14)
Here || - || denotes the nuclear norm, P € R2™ ™ is the

position matrix, L. and L respectively represent the estimated
low-rank component over the color feature space and the
saliency feature space, E., E; respectively represent the sparse
component over the color feature space and the saliency
feature space, ©® denotes element-wise Hadamard product.
¥ is the selection matrix (i.e., permutation matrix [33], [36]),
which encodes the constructed correspondences among super-
pixels. In Eq. 14, ||D.||« is the primary clue to construct the
correspondence among super-pixels in F (Eq. 13). However,
due to the weak discriminative ability of RGB color infor-
mation (D.), to bridge the gap between salient foreground
object and non-salient surroundings, we define the low-rank
constraint of low-level saliency clue LS (Eq. 12) as a weak
classifier, see ||Dgl||«+ in Eq. 14, and we will give a brief
discussion in the next section to explain the behind rational of
our saliency coherency.

Meanwhile, since the priority of RGB color information
is higher than the saliency clues, we constrain the sparse
parameter to satisfy A; > A, which will be further
discussed in Section V-A. The ||P © 9|2 in Eq. 14 is
a weak structure/location constraint, which could ensure
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ST Smoothing

Low-rank Coh

Fig. 6. Demonstration of the differences between the traditional spatial-
temporal smoothing method (ST Smoothing) and our low-rank coherency
guided method. The yellow region in the bottom row indicates the estimated
foreground motion mask.

the selection/alignment result (i.e., the row-wise elements)
consecutively located in the overlapped neighboring regions.
Here the motivation of adopting a “weak” structure/location
constraint instead of a “strong” one is crucial, because the
variations induced by SLIC super-pixel decomposition, cam-
era/foreground object movements and view angle/appearance
will definitely make the optimal “one-to-one” correspondences
infeasible. In fact, the core rationality of the second part and
the third items of Eq. 14 is to prevent incorrect super-pixel
correspondences, which tend to align salient foreground super-
pixels with non-salient background ones, yet, the structure
sensitive one-to-one corresponding is somewhat unnecessary.

B. Advantage of Our Low-Rank Coherency

From the perspective of video frame batch, although the
appearance of the salient moving object may vary among
consecutive video frames, the global low-rank estimation
of its overall appearance is relatively stable (we call it
“low-rank temporal coherence”), and it heavily relates to
the global consistency of the salient foreground object in
the RGB color spanned feature space. Thus, to improve the
overall performance of video saliency detection, we propose
to use this low-rank coherency to guide the low-level saliency
diffusion and boosting. As shown in Fig. 6, the top row demon-
strates the basic rational of the spatial-temporal smoothing
method (e.g., the graph model used in [20] and [19]), which
attempts to reveal the undetected regions of the current video
frame via spatial-temporal saliency transferring (L, color
distance based majority weighting scheme) among all the
video frames belonging to an identical video frame batch. And
the detailed saliency transferring is also demonstrated in the
“ST Smoothing” in Fig. 6. As for the ST Smoothing scheme,
the final saliency value of each superpixel is determined
by the weighted average of all surrounding superpixels’s
saliency degrees in both the spatial and temporal scales,
as a “many-to-many” scheme, which can easily cause the
accumulation of false-alarm detections. Because the behind
rational of the ST Smoothing scheme is to make average,
it can not suppress those false-alarm detections of non-salient
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Frames

Low-level Sal SRC

ST Smoothing

Low-rank Coh

Fig. 7. Performance comparison between the traditional spatial-temporal
weighting method (ST Smoothing) and our low-rank coherency guided
saliency diffusion and boosting method (Low-rank Coh). The initial inputs are
the low-level saliency fusion results (Low-level Sal) over the kicking sequence,
and all other parameters are identical.

surroundings, especially for those surroundings sharing
similar RGB color distributions (e.g., the green grass
in Fig. 6), and it will finally cause the accumulation of
false-alarm detections, see #8#9#10 frame of ST Smoothing
in Fig. 7. In sharp contrast to the conventional ST Smoothing
method, we propose to utilize the low-rank revealing solu-
tion to estimate the global appearance model (the low-rank
component) while suppressing those false-alarm detections
via our unique “one-to-one” saliency diffusion and boosting
scheme. The detailed saliency diffusion scheme is demon-
strated in the “Low-rank Coh” in Fig. 6. Different from the
“many-to-many” diffusion scheme, our low-rank guided
saliency diffusion is conducted in a “one-to-one” manner,
which means all superpixels belonging to different frames
are lined up, and the saliency degree of superpixels are
assigned to be identical to the other superpixels belonging
to the same temporal coherency “line”. Therefore, benefitting
from this strategy, the advantages of our low-rank coherency
guided saliency diffusion over the traditional ST Smoothing
scheme can be summarized as: 1. The false-alarm detections in
non-salient background regions won’t accumulate. 2. Because
the superpixels belonging to identical temporal “line” share
the same saliency degree, the undetected salient object can be
better revealed by our method than ST Smoothing scheme,
and the saliency degree between consecutive video frames
can keep temporal smoothness. 3. The “one-to-one” strategy
provides the foundation to perform low-rank coherency guided
saliency boosting, which can further enhance the saliency of
foreground salient object while suppressing the saliency degree
of the non-salient backgrounds.

(a)

Fig. 8. Demonstrating the benefits by introducing the saliency coherency.
(a) demonstrates the source video frames, (b) demonstrates the initial cor-
respondences between consecutive video frames, where the yellow ring
denotes the previously determined coarse foreground region, (c) shows the
low-level saliency detection results, (d) demonstrates the coarse foreground
region constrained by the saliency coherency, (e) demonstrates the final video
saliency detection results.

C. Advantage of Our Saliency Coherency

Since the spatial displacement of the moving salient
foreground object may lead to weak superpixel correspon-
dence (see the yellow region in Fig. 8(b)) at the very beginning
of the optimization procedure in Eq. 14, the obtained color
low-rank component is extremely untrustful to be regarded as
the alignment indicator, which may easily make the optimiza-
tion be trapped into the local minimum and produce incorrect
alignment results. However, since the saliency degree is a
single value, the corresponding feature space of the saliency
coherency can be regarded as the constrained version of the
color feature space (see demonstration in Fig. 8(d)), and
the approximated saliency low-rank component is relatively
trustful to guide the alignments at early iterations.

Although those incorrect low-level saliency (e.g., the
incorrectly detected leafs in Fig. 8(c)) can definitely affect
the low-rank accuracy of the Hungarian algorithm based
alignments at early iterations, the color low-rank component
will ultimately dominate the alignment procedure, because we
assign 11 > A, in Eq. 14. That is, those data conflicts related
to the saliency coherency may easily be regarded as the sparse
noises, which guarantees the entire optimization to bias toward
the color info at the later iterations, and the quantitative proofs
can be found in Fig. 9(f). Also, the feasible solver of Eq. 14
will be detailed in next section.

D. Mathematical Solver

Since the low-rank revealing problem of Eq. 14 is non-
convex, we resort to the ADMM [37] framework to convert
it into several convex sub-problems. Of which, the augmented
Lagrangian can be represented as:

L(DC,S9 EC,S7 19’ P @ 79)
= u1lDe|ls 4 p2| Dy«

+ 2Bt + A2l |1 + [P O V|2
+1r(Y] (De — Le — Eo)) + tr (Y3 (Ds — Ly — Ey))

+§(||Dc —Lc—Eellh + Dy — Ly —Eg[l).  (15)



3164

]
A Y -]
3 1.6
.
o 1.8
o
i 20
g,
. 22 I
24 P
3 2 .01 .005 .001 A, 10 15 20 25 30 o 3
(a) (b) (c)

Baty
—— Batch Size 9
Batch Size 11
Batch Size 13

ch Size 15
ch Size 20

Precision
Precision

- without Saliency Coherency
-+ Saliency Coherency biasing
with Saliency Coherency

Recall Recall Recall

(d) (e) ()

Fig. 9. (a) Precision-recall curves of our method combining with different
components over SegTrackvl [39] and SegTrackv2 [40] datasets, wherein
the raw color saliency is computed with the method proposed in [20] based
on the features proposed in [28]; (b) and (c) are the average F-measure
results by adopting different parameter combinations, wherein the color from
blue to yellow indicates the performance from worse to better; (d) is the
quantitative evaluation of our method over SegTrack vl [39], SegTrack
v2 [40], and BMS [41] dataset when adopting different superpixel numbers;
(e) shows the quantitative evaluation of our method under different batch sizes
over SegTrack vl [39], SegTrack v2 [40], BMS [41] dataset; (f) shows the
quantitative proofs (over SegTrack v1 [39], SegTrack v2 [40], and BMS [41]
dataset) of the performance improvement brought by introducing the saliency
coherency, wherein the “Saliency Coherency biasing” means to set 1] < 17,
ie., 41 =0.003 and A = 0.01.

Here D. s (E.s) is the abbreviation to represent D. or Dy
(E; or E,), tr(-) represents the matrix trace, Yio is the
Lagrangian multiplier, and p denotes the iteration step size.
To this end, Eq. 15 can be iteratively solved via the strategy
of solving one by fixing the others. The optimization solution
via partial derivative on L. ; and E. ; can be separately written
as:

1+1 i !
LCTS = argmin g1 2||L sll/pt
Lis

+1/2|[LL, — DL, —EL + Y| ,/p)l5, (16)

1 .
EL! = argmin A1 5|[EL |1/ p:
EL,

+1/2|[EL, — (DL — L. + Y ,/p)ll3. (17)

And Y is the abbreviation to represent Y| or Y, accord-
ingly. In fact, since both Eq. 16 and Eq. 17 are the convex
surrogates, these optimization sub-problems can be separately
solved by RPCA singular value thresholding and soft thresh-
olding. Thus, the low-rank components L, and L can be
iteratively updated via Eq. 18.

LD < U2 — u12/p04 V7,

U, 2,V) « svd(D’c’S — E’c’s + Y’l,z/p,). (18)
Here the superscript ¢ and ¢ + 1 denote the iteration times,
and svd denotes the SVD decomposition. Similarly, the soft
thresholds to iteratively reveal the sparse components E, and
E; are formulated as Eq. 19.

B < sign(IH|/p)[H — A1.2/pi)+

H=D., —L +Y!,/p. (19)
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Since 41 is larger than A;, the outliers induced by movements
and variations in FS are much easier to be identified as the
sparse component, which automatically enables the low-rank
revealing procedure to bias toward the color clues (FC).

Then, the low-rank assumption (see the objective matrix in
Fig. 5), which determines the selection result Q, is adopted to
compute the l>-norm cost matrix M € R"*" (see “Mark 1” in
Fig. 5).

di; = 110,i = G(Uy, j)lIl2, U1 = G(FC,1) ©Q,,
ri; =110 = G(Us, j)ll2, U2 = G(FS,1) © Q,,

(20)
21

where O is the column-wise low-rank objective function
(i.e., low-rank residual/margin, see Eq. 22), G(F s, t), which
returns the t-th column of the F, ; matrix as:

Ot,i = Lc,s(t, i) + EC,S(ta i) - Y1,2(ta i)/pt~

Specifically, since the item min||P © ¥||> is NP-hard,
and it is also very hard to approximate, we relax it by
converting the consecutive cost matrices My = {di‘,l +
ripdiy iy nd k) e R ket — 1,0+ 1]
to the current cost matrix M;. That is, the j-th column
of the t-th cost matrix G(My, j), which represents the I
distance between the j-th super-pixel’s feature distance to the
t-th column of the objective function G (O, t) (totally inverse
to the computation of the cost element d, and see Eq. 20), can
be jointly determined by Eq. 23.

(22)

t+1
G(M, j) < 2 2 GM,u)-exp(—llciu, ¢ jlli/o),
k=t—1py , €

(23)

where 6 is identical to Eq. 9, ¢ is identical to Eq. 8,
and ¢ controls the neighborhood distance, which satisfies
lIPt,us Py, jll2 < /5. By incorporating Eq. 23 as the weak
structure-aware constraint, the super-pixels belonging to the
identical spatial-temporal neighborhood will be highly likely
selected in the same row of selection matrix 9. Then,
the global low-rank selection optimization problem can be
separately regarded as several independent binary assignment
problems as ming,, ||[M;[|2, which can be solved by Hungar-
ian algorithm [38] in polynomial time (see “Mark 3” in Fig. 5).
After obtaining the optimal selection matrices ¥/, the feature
sub-matrix FC and FS can be updated accordingly via

FC'H!' <« FC' 0 9, FS'T! < FS' 9.

(24)

Finally, the Lagrangian multipliers Y;> (Y and Y>) can be
updated by Eq. 25, and p can be updated by Eq. 25, wherein
no upper bound is needed because of the low discriminative
ability of FC and FS.

Yi5 < Y0, +p (DL, —LL —EL)), (25)

pr+1 < pr X 1.05. (26)

E. Low-Rank Saliency Diffusion and Boosting

Now the super-pixel’s alignment results can be obtained
from the selection matrices ¢}, and the i-th video frame’s
saliency map with temporal smoothness (the final saliency
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value of the i-th video frame fS; in Eq. 27) can be
easily revealed by uniformly assigning the averaged low-level
saliency value over the temporal scale using Eq. 27.
1 m
fS;=—— > GFESOU.k),
T k=1,itk

27)

where G is a column-wise function being identical to Eq. 20,
FS = {vec(LSy), vec(LSy), ...,vec(LS,,)}, and vec denotes
the vectorizing function. Although Eq. 27 can guarantee
the temporal smoothness of the obtained saliency maps, the
incorrect alignments induced by both SLIC super-pixel
decomposition and the foreground/background variations, may
still easily lead to false-alarm detections. In fact, the sparse
component E; is a good indicator to distinguish the correct
super-pixel’s alignments from the incorrect ones. Thus, the
non-zero elements in E. can be used as the true indicator for
the potential incorrect correspondence assignments. Therefore,
we can adjust the fused low-level saliency feature matrix FS
via

FS < FSO 9 (28)
FS < FS- (1" — N(E.)) + #-FS- N(E.), (29)
— 1 m __
0.5, FS;; > — D FS;;
o= Tom o (30)

2, otherwise.

_ mo__
Here FS = % Zl FS; ;, N(-) is a normalization function, and
]:

S € R ig a balance-factor matrix, which can be formulated
as Eq. 30. In fact, the underlying rationality of this saliency
boosting strategy is that, the low-level saliency LS should be
compensated (if smaller than the average saliency) or penal-
ized (if larger than the average saliency) according to the
average saliency degree (i.e., the average saliency value of
the aligned super-pixels), if its corresponding color clue is
regarded as the sparse part during our low-rank revealing.
Then, the final saliency value of the i-th video frame convert
into the Eq. 31, where # = G(B, i), and E. = G(E,, i).
w5, F= (-1 NE
p(m —1)

Meanwhile, the inter-batch temporal prior s; € R"* ! which
can be obtained by setting the last video frame of the previous
frame batch as the first frame of the current frame batch, is also
valuable to ensure the temporal consistence of the saliency
over different frame batches. Therefore, we diffuse the batch-
level temporal prior s; to all the frames of the current frame
batch according to the color similarity degree, and the final
saliency value of the j-th super-pixel in i-th video frame fS; ;
can be obtained via

o) > GEFES©U.k, @3l
k=1,i#k

m
Sz-wz+zwi-fs,-,j
i=1

fS;; = (32)

m
w+ D w;
i=1

Here both w; and w; are the I, color distance based weights,
w; = exp(—|lcy,j, cijll2/0). Benefitting from our low-rank
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coherency saliency boosting and diffusion, the performance
improvements are demonstrated in Fig. 8, and the quantitative
proofs can be found in Fig. 9(a). To sharpen the salient object’s
boundary and slightly suppress the false-alarm detections,
we also conduct pixel-level spatial-temporal smoothing, which
is identical to Eq. 8.

V. EXPERIMENTS AND EVALUATIONS
A. Implementation Details and Parameter Selection

In principle, there are two sets of parameters influencing
the performance of our method: the filter strength of the
coarse salient object region y (Eq. 13) and the spatial-temporal
diffusion strength ¢ (Eq. 8), the strength parameters of the
sparse component A1, A2 (Eq. 14). As the first parameter set
(y and o) can directly affect the quality of the subsequent low-
rank coherency revealing procedure’s inputs, in order to obtain
the optimal solution at the beginning, we comprehensively test
their whole effects on the overall performance, and then deal
with the optimal selection of the strength parameters of the
sparse component A1, 4.

Parameter y. In fact, y in Eq. 13 is an important
hard threshold to determine the potential foreground regions.
A large y tends to obtain high-accuracy saliency maps at the
expense of recall rate, which can easily filter out some parts
around the salient object’s boundary. However, a small y will
easily result in the instant frame-level false-alert detections,
which would definitely affect the performance of the subse-
quent spatial-temporal saliency revealing, not to mention the
newly-introduced additional computations. Meanwhile, since
the movement of the foreground salient object commonly has
regular trajectory, it is desirable to select a mild y, as shown
in Fig. 9(c), we set y = 2.2 as the optimal choice.

Parameter ¢: Actually, both the spatial-temporal diffusion
strength o and its range ¢ complementarily control the saliency
consistence. Since the selection of § is determined by Eq. 9,
the value of ¢ has direct influence on the consistency of the
spatial-temporal saliency. Obviously, a large o can sharpen the
boundary of the foreground object (high precision rate), but
it can also easily make the saliency detection performances
sensitive to the texture information (poor recall rate), and vice
versa. Therefore, as shown in Fig. 9(c), we select 25 as the
optimal choice of o.

Parameters L1, 22: As shown in Eq. 15, the alternative low-
rank revealing process is complementarily determined by both
the strength parameter of the low-rank component (u1, (2)
and the strength parameter of the sparse component (41, 12).
Since the color low-rank constraint (L.) has much higher
priority than the low-level saliency information (L),
we empirically set 41 = 0.1 and uo = 0.05, so that it can
lead the low-rank revealing procedure to bias toward the color
component via adopting an aggressive singular value thresh-
olding step size (see details in Eq. 18). Therefore, considering
the selection of A1, Ay is done, the optimal choice of A1, 4>
can be obtained based on extensive quantitative experiments,
see details in Fig. 9(b). Besides, according to our observations,
the parameters of the SLIC super-pixel decomposition can also
affect the performance of our method, thus, we empirically
set the super-pixel number to be around 300 (set 15 as the



3166

minimum pixel number of each super-pixel) with a mild super-
pixel regularity (0.01).

Also, both the choices of superpixel number and the frame
batch size are slight effecting the overall performance of our
method, we separately test the performance of our method
over different choices toward these two parameters, and the
detailed quantitative results can be found in Fig. 9(d) and (e).
Obviously from Fig. 9(d), it gives rise to remarkable perfor-
mance improvement via increasing the superpixel number at
the expense of the computation cost. However, the quantitative
evaluation results indicate that the optimal superpixel number
is 300. Here it should be noted that, the performance with
300 superpixels slightly outperforming 350 superpixels is
mainly caused by other parameters (e.g., A1, 42, y, etc.), which
are optimally selected based on the assumption that the total
superpixel number is 300. As for the frame batch size, since
the benchmarks adopted in our paper have several short video
sequences with total frame number around 20 (e.g., girl, carsl,
etc.), we empirically select a mild batch size (i.e., we set the
minimum batch size to 9) in our implementation.

Here, we quantitatively evaluate the performance of our
method when adopting different batch size ranging from
4 to 20, and the results can be found in Fig. 9(e). Obviously,
the overall performance of our method is insensitive to the
minimum batch size, because the batch size ranging from
7 to 15 has few influence on the overall performance. Thus,
these tiny differences are mainly caused by other parame-
ters (e.g., the hard threshold y of the coarse foreground
mask F, the sparse parameters A; and A, in our low-rank
revealing procedure, etc.), which have been optimally selected
based on our initial assignment of batch size 9. Specially,
we notice that there will be a performance degradation
when the minimum batch size is too small (i.e., 4) or too
large (i.e., 20). For a small minimum batch size, the low-rank
temporal coherency in each batch will become too local to
suppress those false-alarm detections. As for a large batch size,
since both the salient foreground object and the non-salient
backgrounds may vary too much, it will definitely affect the
convergency of our low-rank estimation, and thus results in
poor video saliency detections.

After determining the aforementioned parameters, we quan-
titatively evaluate the overall performance of our method by
testing different combinations of the components involved
in our method, and the results can be found in Fig. 9(a).
Obviously, Raw Color Saliency exhibits the worst precision-
recall (PR) curve, but the performance can be remarkably
improved as it could benefit from our Adjusted Color
Saliency (Section III-B). Meanwhile, Fused Saliency is
much better than pure Adjusted Color Saliency or pure
Motion Saliency. Actually, due to the stubborn deficiency
of the spatial-temporal consistence constraint, naive low-rank
coherency based video saliency (Low-rank without Saliency
Diffusion) is just a little better than Fused Saliency. However,
after introducing our low-rank saliency diffusion (Low-rank
with Saliency Diffusion, see details in Section IV) and
boosting (Low-rank with Saliency Boosting), the overall
performance (especially the accuracy rate) is greatly improved
without any recall rate degradation.
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B. Quantitative Evaluations

In this paper, we evaluate the performance of our method
over 5 public benchmarks, including SegTrack v1 [39],
SegTrack v2 [40], BMS [41], DS [42] and UCF [43] dataset.
The SegTrackv1 dataset contains 6 short video sequences with
fast object movements compounded by complex surroundings.
The SegTrackv2 dataset contains 10 video sequences with
mild-level object movements in either stationary or non-
stationary scene. The DS dataset contains 10 video sequences
with slow object movements and dynamic backgrounds. The
BMS dataset contains 26 diverse-length video sequences with
various movements. The UCF dataset [43], which is guided
by the human eye fixations containing almost 150 sport
related video sequences. It should be noted that, we exclude
the penguin sequence from the SegTrackvl dataset and the
marple sequence from the BMS dataset, because both of these
sequences are designed to evaluate video segmentation.

We compare our method with 16 state-of-the-art meth-
ods, including SA15 [19], GF15 [20], BT16 [13], ST14 [3],
BL14 [14], MCI15 [30], SU14 [17], CS13 [28], HS13 [44],
MF13 [5], SB14 [12], MO13 [15], EC10 [26], RCI11 [4],
HC11 [4], and FT09 [45]. To better verify and validate the
performance of our method, we leverage the well-recognized
precision-recall (PR) as evaluation indicator. To this end,
we alternatively segment the video saliency detection results
of different methods with the same threshold (T € [0, 255])),
and the regions whose saliency values are larger than T
are labeled as foreground. If the obtained foreground is
consistent with the ground truth mask, it is deemed as suc-
cessful detection, and the final precision-recall curves are
obtained by varying T from 0 to 255. As the recall rate
is inversely proportional to the precision, the tendency of
the trade-off between precision and recall can truly indicate
the overall video saliency detection performance. As we can
see from the PR curves over SegTrackvl, SegTrackvl, and
BMS dataset in Fig. 10, our method outperforms all other
methods by a large margin. Specifically, the temporal mini-
mization framework of SA15 and GF15, which were originally
designed to maintain the saliency consistence, can easily cause
error accumulation of false-alarm detections (see Fig. 11).
This is why even the sole Fused Saliency of our method
(Fig. 9(a)) still outperforms the SA15 method (Fig. 10).
As for ST14 method, because it focuses on contrast based
saliency in spatial-temporal scope, it achieves good detection
performance over birdfall sequence (Fig. 11). However, it also
leads to massive false-alarm detections mainly caused by
the neglect of the saliency coherency (saliency consistency).
Similarly for SU14 and CS13 methods, which only consider
the isolated temporal information between two consecutive
video frames, both of them perform much worse over the
monkeydog, birdfall, and parachute sequences. Meanwhile,
since the SB14 and BL14 belong to the modeling based
methods, which require a sequence of long period to con-
struct the robust background model, these methods exhibit
good performance over stationary video but poor perfor-
mance over non-stationary videos (e.g., the birdfall sequence).
Although both MO13 and BT16 adopted the alignment steps to
handle the salient motion detections in non-stationary videos,
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Fig. 10. Quantitative comparisons between our methods and 16 state-of-the-art methods over SegTrack v1 [39], SegTrack v2 [40], BMS [41], DS [42] and
UCEF [43] dataset (almost 200 video sequences). Those state-of-the-art methods include: SA15 [19], GF15 [20], BT16 [13], ST14 [3], BL14 [14], MC15 [30],
SU14 [17], CS13 [28], HS13 [44], MF13 [5], SB14 [12], MO13 [15], EC10 [26], RC11 [4], HC11 [4], and FT09 [45]. The left parts show the Precision-Recall
curves, and the right parts show the averaged Precision, Recall and F-measure with fixed thresholds according to the largest F-measure.

the alignment steps adopted by these methods are either too
local or too global to obtain robust detections. Furthermore,
because of the motion clue deficiency, the performance of
the image saliency detection methods (HS13, MF13, RCI11,
HC11, FT09) are even worse. However, there exists a turning
point over the DS (Fig. 10) dateset, wherein these image
saliency detection methods achieve better saliency detection
performance than SA15 and ST14. This is mainly caused
by the improper color saliency and motion saliency fusion.
As for the comparison results over the UCF dataset [43], all
these compared methods exhibit low recall rate because the
human eye fixation guided ground truths are marked by a

rectangle box. However, because our method utilize both the
color coherency and the saliency coherency to represent the
most eye attractor, which is determined by the Optokinetic
Reflex system in human brain [46], our method outperforms
the other methods by a large margin.

Moreover, we leverage the average precision, recall,
and F-measure indicators to demonstrate the superiority
of our method. And the F-measure can be computed
via

(8% + 1)  Precision * Recall
B2 * Precision + Recall

F-measure = R (33)
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Qualitative comparisons over SegTrack v1 [39], SegTrack v2 [40], BMS [41] and DS [42] datasets, where (a) denotes the source input video frame,

(b) is the ground truth (GT), (c) demonstrates the results obtained by our method (highlighted with red rectangle), and some state-of-the-art methods, including
GF15 [20],MC15 [30], SA15 [19], ST14 [3],SU14 [17], CS13 [28], BT16 [13], BL14 [14].

TABLE I
AVERAGE TIME COST (IN second) for a Single Video Frame

Method Ours | SA15 | GF15 | MC15 | ST14 | BL14 | SU14

BT16 | MO13 | HS13 | MF13 | CS13 | RC11 | HCI1 | ECI10

Time Cost | 3.61 2.43 12.1 50.3 22.1 48.5 82.4

3.16 291 432 213 291 213 5.36

where Precision denotes the average precision rate, Recall
denotes the average recall rate, and the 2 = 0.3. It can be
easily found in Fig. 10 that our method apparently outperforms
other state-of-the-art methods.

C. Limitation and Discussion

Because our method incorporates motion clues into color
saliency computation, incorrect low-level saliency clues (the
fused saliency) would cause hollow effect when the intermit-
tent foreground object remains static for a longer period of
time (i.e., more than 30 frames). As shown in the last row
of Fig. 12, the main body of the horse is undetected by our
method. In fact, although our method already incorporates pre-
vious saliency prior into the current saliency boosting (Eq. 32),

it can only alleviate this situation to certain extent, because the
current foreground mask will finally filter out those “standstill”
regions. Meanwhile, integrating previous foreground motion
mask region into the current computation may easily affect
the convergency speed of the low-rank revealing procedure
and cause false-alarm detections. Also, similar situation can
be found for SA15 method, in contrast, both HS13 and
MF13 methods can well handle such case, because these image
saliency detection methods never consider the motion clues
at all.

Another limitation of our method is that, our method tends
to be time-consuming in some sense. Table I documents the
average time expense of each method (note that, the run-
time of the optical flow computation is excluded). All the
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Fig. 12. [Illustration of the limitation of our method. The hollow effect easily
occurs when the foreground object remains static for a longer period of time,
see the bottom row.

methods are run on a computer with Quad Core i7-4790k
4.0 GHz, 16GB RAM and NVIDIA GeForce GTX 970.
For a single 300*%300 video frame, the low-level saliency
computation costs about 0.12s, the low-rank revealing costs
about 2.49s (the major bottle neck), the saliency diffusion
costs about 0.54s (CUDA accelerated), and the pixel-wise
refinement costs about 0.45s (CUDA accelerated). For some
cases, high accuracy is actually somehow less desirable in
the interest of efficiency, so we suggest reducing the SLIC
super-pixel number (e.g., reducing from 300 in the original
setting to 200), so that the total time costs can be decreased
to about 1.6s.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have advocated a novel video saliency
detection method, which could produce high-accuracy saliency
maps while retaining the temporal saliency consistent. Our
method involves several novel technical elements, including:
(1) The motion clue guided color contrast computation, which
can automatically assign high saliency value to the foreground
salient object; (2) The modeling based low-level saliency
fusion and diffusion, which guarantees to complementar-
ily leverage both color and motion saliency clues towards
producing high-accuracy low-level saliency; and (3) the low-
rank coherency based spatial-temporal saliency diffusion and
boosting, which gives rise to intrinsic video saliency explo-
ration from the perspective of temporal scope. Moreover,
comprehensive experiments and extensive comparisons with
the state-of-the-art methods have demonstrated our method’s
distinct advantages in terms of accuracy and reliability.

As for our near future works, we are particularly interested
in reconsidering the low-rank coherency guided motion clue
to improve the background extraction techniques, which is
expected to conquer several obstinate difficulties in the video
surveillance applications (either in the stationary videos or the
non-stationary Pan-Tilt-Zoom cameras), including long-period
intermittent motions, slow movements in surroundings with
dramatic variations, the salient motion detection in low frame
rate videos, etc. At the same time, generalizing our key ideas
to facilitate the modeling-based change detection in non-
stationary scenarios with complex surroundings also deserves
our immediate research endeavor.
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