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a b s t r a c t 

Massive routinely-acquired raw volumetric datasets are hard to be deeply exploited by downstream ap- 

plications due to the challenges in accurate and efficient shape modeling. This paper systematically ad- 

vocates an interactive 3D shape modeling framework for raw volumetric datasets by iteratively optimiz- 

ing Hessian-constrained local implicit surfaces. The key idea is to incorporate contour based interactive 

segmentation into the generalized local implicit surface reconstruction. Our framework allows a user to 

flexibly define derivative constraints up to the second order via intuitively placing contours on the cross 

sections of volumetric images and fine-tuning the eigenvector frame of Hessian matrix. It enables detail- 

preserving local implicit representation while combating certain difficulties due to ambiguous image re- 

gions, low-quality irregular data, close sheets, and massive coefficients involved extra computing burden. 

To this end, we propose several novel technical elements, including data-specific importance sampling 

for adaptive spherical-cover generation, close sheet determination based on distinguishable local sam- 

ples, and parallel acceleration for local least squares fitting. Moreover, we conduct extensive experiments 

on some volumetric images with blurry object boundaries, and make comprehensive, quantitative perfor- 

mance evaluation between our method and the state-of-the-art radial basis function based techniques. 

And we also apply our method to two practical applications. All the results demonstrate our method’s 

advantages in the accuracy, detail-preserving, efficiency, and versatility of shape modeling. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction and motivation 

A great number of volumetric datasets have been routinely

cquired every day and their qualities are varying tremen-

ously, without proper processing they could not be directly

tilized, which could prevent rich and numerous volumetric

atasets from being deeply exploited by users without special-

zed domain/geometry/graphics knowledge. Specifically, 3D shape

odeling from raw volumetric datasets plays a vital role in many

ownstream applications, including shape understanding, physical

imulation, interactive design and editing, geometric analysis,

nd visualization. However, there are still tremendous difficulties

panning from efficient and accurate volume segmentation to

etail-preserving 3D shape reconstruction. 

For 3D shape modeling from raw volumetric dataset, volume

egmentation is inevitable. So far, the related approaches can be

lassified into clustering based methods and interaction based
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ethods. Although clustering based methods have advantages in

fficiency and user input, which usually require a few input param-

ters, it is well-known that they are hard to achieve accurate seg-

entation results due to lacking fine-grained priors. Meanwhile,

he involved parameters’ selection commonly requires domain-

pecific expertise to distinguish the foreground region. Specifically,

wada et al. [1] pointed out that segmentation heavily depends on

he user’s subjective interpretation, which indicates that effective

ser interpretation indeed facilitates accurate segmentation. 

Benefiting from user-specified contours, the interactive volu-

etric shape modeling methods usually involve a reconstruction

rocedure, typically based on certain implicit functions that are

ommonly considered to be robust to noise, topologically flexible

o be interpolated and extrapolated, and easily to be converted to

ther geometry representations. In the past two decades, a num-

er of implicit reconstruction methods have been proposed, mainly

ncluding local implicit methods and global implicit methods. Lo-

al implicit methods, such as moving least squares [2] and multi-

evel partition of unity implicits [3] , have well-known advantages

n high accurate representation and low computation cost. How-

ver, they tend to produce deformed messy shapes when handling
erving 3D implicit reconstruction from raw volumetric dataset, 
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Fig. 1. Flow chart of our method. (A): Original CT slices; (B): The segmentation mask generated by TurtleSeg [24] ; (C): The extracted surface points; (D): The Hessian frames; 

(E): Gaussian curvature; (F,G): Spherical cover generation for local least-squares implicit surface reconstruction; (H): The reconstructed mesh surface, the red box shows the 

iterative segmentation refinement via user-controllable Hessian-constrained implicits optimization; (I) The finally-segmented mesh surface, which is visualized via hybrid 

rendering over original volume data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

The structure of global data. 

Identifie Meaning 

Point The array of surface points 

Normal The array of normals 

Hessian The array of Hessian matrixs 

ps _ tree The kd-tree of the point set 

sc _ tree The kd-tree of the spherical cover center 

Sphere The array of spherical covers 

editP The index of the edited points 

editS The index of the edited spheres 

Table 2 

The structure of a local sphere. 

Identifie Meaning 

c The center of the sphere 

r The radius of the sphere 

Samples The index of the samples 

Parameters The approximate parameters 

w The approximate error 
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low-quality data with noise, outliers, and uneven sampling density.

Global implicit methods, including RBF based approaches [4] , vari-

ational approach [5] , graph-cut approach [6] , Hermite RBF Implicits

(HRBF) [7] , etc, are less sensitive to data quality because of their

global nature, and thus can effectively alleviate the problems en-

countered by the local implicit methods. However, they inevitably

suffer from low-accuracy reconstruction and computational burden

involved in large system solving. 

This paper systematically advocates a detail-preserving 3D

shape modeling method from raw volumetric dataset by general-

izing local HRBF based on Hessian constraints and incorporating

them into iterative optimization of local implicit surface. In partic-

ular, the salient contributions of this paper can be summarized as

follows: 

• We propose an interactive 3D shape modeling framework based

on iterative optimization of local implicit functions, which af-

fords users an intuitive interface to edit the sample points and

their accompanying curvature-related constraints over volumet-

ric dataset, and thus gives rise to more accurate results. 
• We formulate a new local least squares based RBF implicit by

incorporating the second-derivative Hessian constraints, which

facilitates detail-preserving implicit surface reconstruction over

the jagged boundary voxels of the segmented volumes. 
• We design an adaptive spherical cover generation scheme to

adaptively determine the supporting domain of local implicits,

which guarantees to effectively distinguish the local supporting

domain of close sheets and respects the sharp features during

interactive 3D shape modeling. 

This paper is an extended version of the full paper [8] in 2016

International Conference on CYBERWORLDS. Compared to the con-

ference paper, several detailed contexts and some new experi-

ments are added. For example, we add Fig. 3 to illustrate itera-

tive local Hessian constraint editing, and give further discussions

about the method and experiment results analysis in Section 6 .

And Fig. 5 is given to intuitionally illustrate the global blending
Please cite this article as: S. Li et al., Hessian-constrained detail-pres
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rocess. Meanwhile, following the pipeline in Fig. 1 , we detail the

ain data structures in Tables 1 and 2 and the overall numer-

cal implementation of our prototype system in Algorithm 1 , of

hich, the algorithms are explained in detail step by step. More-

ver, we design several intermediate and integrated experiments to

ully verify method’s effectiveness. At last, more details about our

aper’s practical applications in medicine and industry are intro-

uced, which prove our paper’s high practical utility. 

. Related work 

Relevant to the central theme of this paper, we now briefly re-

iew previous works in two aspects: interactive contour assisted

egmentation and implicit reconstruction. 
erving 3D implicit reconstruction from raw volumetric dataset, 
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Algorithm 1: Numerical Implementation of Interactive 3D 

Shape Modeling. 

input : The segmentation mask volume. 

output : The 3D shape modeling result. 

1. Preprocess point set. 

2. Generate adaptive spherical cover. 

Invoke Algorithm 2 with T err . 

3. Solve local least squares systems in parallel. 

Determine local samples. 

Invoke Algorithm 3 for all spherical covers. 

4. Refine surface interactively and iteratively. 

Extract global iso-surface. 

while(not be satisfied with the result) 

{ 

(1) Set controlling region. 

(2) Extract local iso-surface. 

(3) Interactively edit Hessian matrix according to 

Eq. (11) . 

(4) Update the spheres that cover the controlling region 

by Algorithm 3 . 

(5) Update global iso-surface. 

} 
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Interactive contour assisted segmentation. Considering 

hat fully-manual segmentation process is laborious and time-

onsuming, while fully-automatic algorithms (include threshold-

ng [9] , k-means clustering [10] , mean-shift [11] ) are still open

or accurate segmentation, it is imperative to further seek a bal-

nce between segmentation accuracy and the complexity of user

nput. The contour-based method is designed to directly specify

ontours in ambiguous regions of images with expert knowledge.

or example, De Bruin et al. [12] proposed a method to generate

oundary surfaces by directly connecting well-organized contour

ertices. Aliroteh et al. [13] proposed a SketchSurface system,

hich allows users to draw closed contours on the parallel cross-

ectional planes of volumetric images, and subsequently employed

uick-hull algorithm and active contour iterations for segmenta-

ion. Liu et al. [14] initialized boundary surfaces using a Voronoi

iagram based algorithm and then smoothed them. Motivated by

hysics-based deformable models, Kass et al. [15] proposed the

ctive contour method, and its many extensions have also been

eveloped [16] . Such methods can delineate object boundaries

y making the boundary deform, driven by the internal energy

ensitive to the boundary shape and the external energy sensitive

o local image features. However, since these methods commonly

epend on direct meshing and require well-organized contours,

t is difficult to manage open or non-planar contours. Instead,

urtleSeg [17] is an interactive segmentation tool designed for 3D

edical images, by interactively contouring on some sparse slices,

nd the rough segmentation result will be generated automati-

ally. To respect more features, it needs to carefully place dense

ontours on the cross planes, even so, the segmented object may

till appear jagged. 

Implicit 3D reconstruction. The central idea of implicit re-

onstruction is to generate certain signed scalar field from the

ontour-constrained point set [18] , and then extract the zero iso-

urface. Due to its potentials to satisfactorily handle sparse sample

oints, great attention has been paid to RBF [4] . However, early

calar field generating methods generally require two sophisticated

ffset points to ensure the existence of a non-null interpolation

mplicit function. By incorporating normals into the problem for-

ulation, Pan et al. [5] proposed Hermite variational implicit sur-

ace, and Macedo et al. [7] proposed Hermite Radial Basis Function

HRBF), which is a particular case of Hermite–Birkhoff interpola-
Please cite this article as: S. Li et al., Hessian-constrained detail-pres
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ion with RBF. Wu and Wendland [19,20] introduced compactly

upported RBF to arrive at a sparse linear system, but they are

ensitive to the quality of input data and lack extrapolation abil-

ty across large holes. Although such global-support RBFs [4,21] are

ess sensitive to the quality of input data, they require to solve

arge and dense matrix system. Besides, Ijiri et al. [22] proposed

 system to refine volumetric shape surface by piecewise fine-

uning curved contours, and they also introduced a new implicit

ethod [23] to evaluate the scalar field in spatial-range domain.

owever, these methods heavily depend on the quality of user-

ontrollable contours, which is difficult for novice users with little

xpert knowledge. 

In summary, the existing implicit reconstruction based 3D mod-

ling methods still lack comprehensive abilities to simultaneously

andle smoothness control, sharp-detail preservation, and efficient

omputation. In principle, it requires a globally flexible and locally

ccurate way to respect sharp features by taking high-order direc-

ional derivatives, gradients, and scalar value interpolation into ac-

ount simultaneously. 

. Method overview 

Our 3D shape modeling framework aims to provide a way for

sers to edit the intermediately-segmented surface via adjusting

he eigen-system of Hessian matrix. Fig. 1 shows the pipeline of

ur method. Given original volumetric slices ( Fig. 1 (A)), we use

he TurtleSeg method [24] to generate a rough segmentation mask

 Fig. 1 (B)), which can help users focus on the definition of second-

erivative constraints around sharp-feature areas. 

Since the mask is just a rough segmentation result, as indicated

y the red box in Fig. 2 (A), it inevitably contains errors ( Fig. 2 (B)).

o edit the point set via intuitive interaction, we resort to placing

ontours on the cross-sections ( Figs. 2 (C)–(F)). As shown in Fig. 2 ,

his process is intuitive and does not require much expert knowl-

dge. 

Fig. 1 (D) demonstrates the frames of Hessian matrix at some

oints, and we conduct local quadric least squares fitting to ap-

roximate the Hessian matrix (see Section 4.2 for details). We first

pproximate the implicit reconstruction locally, and then blend

uch local implicits together. We propose an adaptive spherical

over generation method to divide the original volume domain into

verlapping spherical regions based on the importance sampling of

auss curvature ( Fig. 1 (F) and (G)). 

As the spherical covers are independent of each other, we de-

ign a parallel algorithm to solve the Hessian-constrained least

quares RBF systems in a spherical-cover-wise way. Figs. 1 (H)

nd 3 illustrate our interactive and iterative manipulation proce-

ures, wherein we can locally edit the Hessian constraints and

pdate the scalar field until we are satisfied with the results

 Fig. 1 (I)). 

. Volumetric data preprocessing 

Given a roughly-segmented result, we conduct a series of pre-

rocessing to convert the volume mask into local supporting do-

ains, including potential surface point set extraction, initializa-

ion of Hessian constraints, adaptive spherical cover generation,

nd determination of local supporting point samples, which are

etailed as follows. 

.1. Extraction of potential surface point set 

To improve shape modeling accuracy and simplify the complex-

ty of user input, we use a binary volumetric mask as input and

onvert it into a potential surface point set. As the object region is

abeled with 1 and others with 0 in the binary mask, we extract

he voxel, which is labeled with 1 and has at least one of its 26
erving 3D implicit reconstruction from raw volumetric dataset, 
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Fig. 2. Illustration of the interactive constraint manipulation. (A): The rough segmentation mask with obvious errors; (B): The potential surface points extracted from the 

segmentation mask; (C,D,E,F): Interactively placing contours on cross sections; (G,H): The final shape modeling results. 

Fig. 3. Illustration of influences caused by iterative local Hessian constraint editing. 
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neighbors labeled with 0, as potential surface point location. How-

ever, the obtained surface points, which depend on the volume res-

olution, may be redundant for surface reconstruction, so we adopt

Poisson disk sampling to perform down-sampling. Considering the

boundaries may be jagged, we further adopt the Weighted Locally

Optimal Projection operator (WLOP) method [25] to reduce noise

and outliers of the potential surface point set. At last, we employ

the method proposed by Liu et al. [26] to calculate the normals of

the point set. Finally, we can convert the input mask into a point

set with normals, which will serve as the input of our subsequent

processing. 

4.2. Initialization of Hessian constraints 

As we wish to incorporate the Hessian information into our

segmentation, we need to approximate the Hessian matrix from

the point set. To facilitate the subsequent interactive manipulation

over the scattered surface points, we initialize the Hessian con-

straints by locally fitting a quadric surface G i ( x ) at each sample

point x i . 

G i (x ) = 

10 ∑ 

j=1 

γ j ∗ p j , p j ∈ { 1 , x, y, z, . . . , x 2 , y 2 , z 2 } , (1)

arg min q 

∑ 

x k ∈ nei (x i ) 

(G i (x k ) 
2 + ‖ ∇G i (x k ) − n k ‖ 

2 ) . (2)

Here q = (γ1 , . . . , γ10 ) is the coefficient to be determined, p j is

the quadric polynomial basis, nei ( x ) represents the neighbor of x 
i i 

Please cite this article as: S. Li et al., Hessian-constrained detail-pres
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nd n i is the normal associated with point x i . In general, the num-

er of neighbors is set to be around 20. Therefore, we can get the

essian matrix of point x i as follows: 

 i = 

( 

2 γ8 γ5 γ6 

γ5 2 γ9 γ7 

γ6 γ7 2 γ10 

) 

, (3)

here 2 γ8 = 

∂ 2 G i 
∂x 2 

, 2 γ9 = 

∂ 2 G i 
∂y 2 

, 2 γ10 = 

∂ 2 G i 
∂z 2 

, γ5 = 

∂ 2 G i 
∂ x∂ y 

, γ6 = 

∂ 2 G i 
∂ x∂ z 

,

7 = 

∂ 2 G i 
∂ y∂ z 

. 

.3. Adaptive spherical cover generation 

Since the global RBF methods commonly suffer from compu-

ation overhead and tiny details missing, we propose a generalized

ocal least squares RBF by integrating Hessian constraints. The local

upporting domains are represented as overlapping spherical cov-

rs and each spherical cover has five components: the center and

adius are defined adaptively, the supporting samples are deter-

ined upon the normal direction of the center (see Section 4.4 for

etails), the parameters and weights are determined by Hessian-

onstrained local least squares RBF implicits (see Section 5.1 for

etails). 

In order to respect local sharp features, we design an adaptive

pherical cover generation method by making points with high-

urvature stand out to serve as the spherical cover centers. For

ach spherical cover with center c , we determine its radius r as

ollows. 

(c , r, x ) = 

∑ 

j 

w (‖ p j − c ‖ /r)(n j · (x − p j )) 
2 . (4)

Here it computes a sum of the squared distances from point

 to the tangent planes at the sample point p j within the spher-

cal region ‖ p j − c ‖≤ r. w (x ) is a weight function defined as

 (x ) = (1 − x ) 4 + (4 x + 1) . If r in Eq. (4) is fixed, the minimum

f Q ( c , r , x ) can be easily found by solving a linear system,

ith x min = x min (r) . And the error function is defined as E(r) =
1 
L 

√ 

Q(c , r, x min ) , which measures how curved the reconstructed

urface is inside the sphere ‖ x − c ‖≤ r. And L is the main diag-

nal length of the bounding box of point set P . Since we expect to

ake r as large as possible while maintaining certain accuracy, we

etermine r by solving the equation with a specified accuracy T err 

s 

(r) = T err . (5)
erving 3D implicit reconstruction from raw volumetric dataset, 
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Here the only thing we need to pay attention to is the param-

ter T err , which influences the number of spherical covers and the

umber of samples within each sphere. Algorithm 2 documents

he details of our adaptive spherical cover generation procedure.

Algorithm 2: Adaptive spherical cover generation. 

input : Original point set P . 

output : Spherical covers with center and radius. 

1. Set all points in P as uncovered ones and initialize T err . 

2. Select the point c i with maximal Gaussian curvature from 

uncovered point set. 

3. For selected point c i , determine the radius r i of sphere s i 
centered at c i according to Eq. 5 . 

4. Determine the sample points S i that belong to the sphere 

s i (see Section 4.4 for details). 

5. Label the points of S i as covered ones. 

6. Terminate the process until there are no more uncovered 

points, otherwise go back to 2 . 

Algorithm 3: Parallel Solver of the Local Implicits. 

input : The spherical covers. 

output : The spherical covers with corresponding parameters. 

OpenMP parallel for spherical covers 

{ 

1. Initialize the parameters in Eq. 8 as λ1 = 0 . 9 , λ2 = 0 . 09 , 

λ3 = 0 . 01 . 

2. Calculate matrix A and vector y according to Eq. 13 . 

3. Use the Eigen library˜[28] to solve the least squares 

system Ax = y . 

} 

.4. Determination of local supporting point samples 

Due to the possible existence of close sheets, the accurate local

ample determination is important to avoid self-intersecting arti-

acts. As shown in Fig. 4 (A), the two curves represent the cross

ection of an object, wherein the red sphere s i means the local fit-

ing region with center O and radius r . In order to correctly se-

ect the samples belonging to s i , we first assign the points within

he sphere into small cells, wherein each cell only contains a few

oints with similar normal directions (the cell containing one sam-

le at most). And then we convert these cells into an adjacency

raph. Here the adjacency is defined as the one-ring neighbor with

imilar normal orientation. Taking Fig. 4 (A) as an example, the

ne-ring neighbors of C 1 are C 2, C 3, C 5, C 6, C 7, but only C 2 and

 3 have the similar normal orientations with C 1, so we consider

 C 1, C 2) and ( C 1, C 3) are adjacent. After that, we can get a geodesic-

ike distance of ( Ci , Cj ). Next, we consider sphere s i , denoting its

ample point set as S i , we first add its center into S i , and then
Fig. 4. Illustration of separable close sheets in a toy example. 

w  

i  

b  

r  

w  

m  

w  

s  

λ  

d  
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dd the point within the cell C 1 into S i , of which, such point is

overed by s i and has the similar orientation with the point in S i .
onsider its adjacency cells C 2, C 3 in the same way, and repeat

his step until no more points covered by sphere s i can be added.

inally, we can obtain the points from S i to approximate region s i .

nd Fig. 4 (B) illustrates this process in a toy example. 

. Interactive and iterative implicit reconstruction 

The construction of an implicit surface is equivalent to seg-

enting the domain into two regions, an interior region and an

xterior region with the boundary approximating the surface point

et. By incorporating Hessian matrix into the generated local least

quares RBF implicits, our method provides users with an intuitive

nterface to refine the reconstruction result via editing the Hessian

onstraints interactively and updating the scalar field iteratively. 

.1. Hessian-constrained local least squares RBF implicits 

Within each spherical cover s , we want to locally construct a

igned-distance function f ( x ) by approximating the samples of s .

hanks to the superiority of RBF in handling sparse point clouds,

e employ it as our basis function to fit the implicit surface. In

eneral, a RBF method has the following form: 

f (x ) = P (x ) + 

N ∑ 

i =1 

λi φ(‖ x − x i ‖ ) , (6)

here P ( x ) is a low-order polynomial and the basic function φ is

 real-valued function on [0 , + ∞ ) , which is usually unbounded

nd has non-compact support. The common choice of the basic

unction φ includes the thin-plate spline φ(r) = r 2 log(r) (usually

sed for fitting smooth functions of two variables), the Gaussian

(r) = exp(−cr 2 ) (mainly for neural network), and the multi-

uadric φ(r) = 

√ 

r 2 + c 2 (particular suitable for topographical

ata). In this paper, we choose φ(r) = r 3 as a basic function, be-

ause it can better deal with three variables, with P ( x ) as a linear

olynomial. 

Hessian matrix is a square matrix comprising the second-order

artial derivatives of a scalar-valued function or a scalar field. It

ssentially depicts the local curvatures of a multi-variate function.

e expect to preserve more sharp features and obtain smoother

urface by incorporating Hessian constraints into RBF implicit re-

onstruction. Therefore, in contrast to solely normal information

nvolved implicit reconstruction, within each sphere s l , our recon-

truction problem is converted into an optimization problem as

ollows, 

f l (x ) = 

m ∑ 

i =1 

αi φ(‖ x − x i ‖ ) + 

4 ∑ 

j=1 

β j p j (x ) , (7)

rg min q 

n ∑ 

k =1 

λ1 f l (x k ) 
2 +λ2 ‖∇ f l (x k ) − n k ‖ 

2 
2 +λ3 ‖H f l (x k ) − H k ‖ 

2 
F ,

(8) 

here p j ( x ) is the linear polynomials, q = (α1 , . . . , αm 

, β1 , . . . , β4 )

s the parameter to be determined, variable m represents the num-

er of local RBF centers, n is the number of samples, n k and H k ,

espectively, represent the normal and Hessian matrix associated

ith the sample x k . And Hf l ( x k ) is Hessian matrix of f l , a 3 × 3

atrix of the second-order partial derivatives of f l ( x ) at point x k ,

hose norm is defined as the Frobenius norm (i.e., the sum of the

quares of nine entries of the matrix). The weighting parameters

1 , λ2 , λ3 (satisfying λ1 + λ2 + λ3 = 1 ) control the importance of

ifferent items. The system can be solved by a least squares solver.
erving 3D implicit reconstruction from raw volumetric dataset, 
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Fig. 5. The illustration of global blending process. 

Fig. 6. The comparison of implicit shape modeling results between our method and 

RBF-N method over Max-Planck model. (A) shows the original model, (B) shows 

the RBF-N result, (C) shows the intermediate result of our method before global 

blending, and (D) shows our final result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The comparison of implicit shape modeling results between our method and 

RBF-N method over a Lion model. The first, third columns show the results of RBF- 

N method, and the second, fourth columns show our results. 

Fig. 8. The shape modeling results under different Hessian constraints and the light 

green color indicates the controlling sphere. 

Fig. 9. Demonstration of using OpenMP to compute local implicits in parallel. 
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5.2. Global blending of local implicits 

Since the Partition of Unity (POU) approach is typically used to

integrate locally defined approximations into a global one, wherein

important properties, such as the maximum error and convergence

order, can be inherited from the local approximations. Therefore,

for each sphere s l , we define a parameter to evaluate the approxi-

mation accuracy of f l within s l : 

err l = 

∑ 

x i ∈ S l abs ( f l (x i )) 

N(S l ) 
, (9)

where N(S l ) is the number of samples in S l . The weight w l of s l 
is defined as err max 

err l 
, err max is the maximum of err l . Similar to the

POU method, we define our global fitting function F ( x ) as follows,

F (x ) = 

∑ 

i ∈ cov er(x ) w i ∗ f i (x ) ∑ 

i ∈ cov er(x ) w i 

. (10)

Here cov er(x ) represents the index of spheres s i , satisfying ‖
x − c i ‖≤ r i . 

As shown in Fig. 5 , the black points represent the data of point

set, O 1 and O 2 represent two local spherical covers, the red curve

fits the points in O 1 , and the blue curve fits the points in O 2 , while

the purple curve blends the two regions together. In the non-

overlapping region, the blending result is almost the same with

single fitting result. In the overlapping region, the blending result

is in between the two single fitting results. 

We verify the accuracy of our Hessian constraints involved local

least squares RBF by comparing our method with only normal con-

straint involved least squares RBF method (RBF-N for short), which

is similar to ours without Hessian constraints in Eq. (8 ), over some

standard 3D models with ground truth. Fig. 6 shows the implicit

reconstruction results of a Max-Planck model, our method pro-

duces better results than RBF-N around sharp feature areas, such as

the corners of eyes and mouth. The comparison of Fig. 6 (C) and (D)
Please cite this article as: S. Li et al., Hessian-constrained detail-pres

Computers & Graphics (2017), http://dx.doi.org/10.1016/j.cag.2017.01.001
roves the effectiveness of our global blending procedure. Fig. 7

hows the implicit reconstruction result of a lion model, according

o the enlarged figures, we can see that our method can produce

mooth surface while keeping sharp features. 

.3. Interactive and iterative refinement 

When getting an initial surface of the segmented object, we

onduct refinement locally by interactively fine-tuning the frame

f Hessian matrix, which corresponds to the eigenvectors of

essian matrix. For Hessian matrix H i of point x i , we conduct

igenvalue decomposition as H i = P�P 

−1 , where P = (e 1 , e 2 , e 3 ) ,

= diag(v 1 , v 2 , v 3 ) and e j is the eigenvector corresponding to

igenvalue v j . After some necessary manual tuning, we get the

ew frame { e ′ 
1 
, e 

′ 
2 
, e 

′ 
3 
} , and then update Hessian matrix as 

 i = P 

′ 
�P 

′ −1 , (11)

here P 

′ = (e 
′ 
1 
, e 

′ 
2 
, e 

′ 
3 
) . After that, we update the local domains,

e-calculate the scalar field and the iso-surface. We can itera-

ively repeat the refinement process until we are satisfied with

he results. In fact, different manually-tuned Hessian constraints

ill lead to different reconstructed surface results. Of which, some

ay be rough, and some may be smooth. Fig. 8 shows the recon-

truction results under different Hessian-constraints obtained from
erving 3D implicit reconstruction from raw volumetric dataset, 
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nteractive manipulation. We can see that, the fourth result is

moother than the first three ones. However, its hard to compute

he quantitative relationship between the Hessian constraints and

he reconstructed surfaces. Thus, we design the interactive method

or the user to finely tune the frame of Hessian matrix to get satis-

ying result. Actually, its a process that, the users iteratively specify

he constraint according to their individual understanding on the

nput volumetric dataset. 

.4. Numerical implementation 

Following the pipeline in Fig. 1 , we detail the main data struc-

ures in Tables 1 and 2 . And the overall numerical implementation

f our prototype system is documented in Algorithm 1 . 

Point set preprocessing. The preprocessing involves some al-

orithms, including Poisson Disk Sampling, WLOP and normal es-

imation. The Poisson Disk Sampling is a simple down-sampling

ethod. We implement the WLOP method based on the Compu-

ational Geometry Algorithms Library, and directly use the normal

stimation source code proposed by Liu et al. [26] . Besides, we also

rovide an intuitive user interface to edit the point set, as shown

n Fig. 2 . 

Fig. 2 (A) shows the input, comparing with the volume data, we

an see the significant difference within the red box. First, we set

he control region by placing the center and sizing the radius of

he control sphere properly. Then, we place 3D cross-sections by

rawing a cut stroke on the screen and contouring on it, as shown

n the Fig. 2 (C–F). The red color means the editing process, and the

etermined curves are in green. Finally, we use the points sampled

rom the contours instead of the original points within the control

phere. 

Adaptive cover generation. The pipeline of the adaptive spher-

cal cover generation has been detailed in Algorithm 2 . Here the

nly thing we need to pay attention to is the parameter T err ,

hich can influence the number of spherical covers and the num-

er of samples within each sphere. We implement the method

ased on the source code provided by Ohtake et al. [27] , and set

 err = 0 . 0 0 01 . 

Local sampling. As the cover generation can not be imple-

ented in parallel, we do local sampling right after a cover is gen-

rated. In order to achieve parallel acceleration, we store the index

f each sample instead of the sample itself. Based on ps _ tree, we

an efficiently find the points within the sphere s i with center c i 
nd take these points as candidates. 

Local least-square implicits solving. To handle the time-

onsuming computation of Hessian constraints involved local least

quares RBF implicits, we implement our method in a parallel way.

o achieve this goal, we carefully design the structure of the spher-

cal cover by storing the samples of each sphere individually. Ac-

ording to Eqs. (7) and (8) , the optimization problem can be con-

erted into the following form: 

x = y . (12) 

For a specific sample x i of sphere s l , A and y are defined as 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

. . . √ 

λ1 f l (x i ) √ 

λ2 ∇ f l (x i ) √ 

λ3 H f l (x i ) 

. . . 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, y = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

. . . 

0 √ 

λ2 n i √ 

λ3 H i 

. . . 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (13)

As the spherical covers are independent of each other, we adopt

 parallel strategy to solve the Hessian constrained least square

BF system corresponding to each sphere. We respectively set the
Please cite this article as: S. Li et al., Hessian-constrained detail-pres

Computers & Graphics (2017), http://dx.doi.org/10.1016/j.cag.2017.01.001
arameters in Eq. (8) as λ1 = 0 . 9 , λ2 = 0 . 09 , λ3 = 0 . 01 , use the

igen library [28] to solve the local systems, and employ Open MP

o conduct parallelizing among spheres. 

Iso-surface extracting. In order to extract zero iso-surface, we

eed to calculate a scalar filed of a specific region with a given

esolution. When extracting the global mesh, we set the region to

e the bounding box of the point set, and the resolution is set to

e 6 4 ∗6 4 ∗6 4. For a local mesh, the region is set to be the bound-

ng box of the controlling sphere and the resolution is set to be

6 ∗16 ∗16. With the region and resolution, we use Algorithm 4 to

alculate the scalar field, from which we can extract the zero iso-

urface using CMS method [29] . 

Algorithm 4: Scalar Value Calculation. 

input : A point p . 

output : The scalar value of p . 

1. Find sphere index array list . ‖ c i − p ‖≤ r i , i ∈ list ; 

If not found, set list = { ind} with min ind (‖ c ind − p ‖ ) . 
2. Set temporary variables tot v ← 0 , tot w 

← 0 . 

3. For index k in array list do 

tot v += w k ∗ f k (p ) . 

tot w 

+ = w k . 

end. 

4. Return the value tot v 
tot w 

. 

Interactive editing. First, we set the controlling sphere. Then,

e pick the point within the controlling sphere and tune its frame.

inally, we update the Hessian matrix of points, re-calculate the

arameters of corresponding spherical covers, and update the zero

so-surface. Though we only rotate the frame of the picked point

s shown in Fig. 3 , all the points within the control sphere are in-

uenced in the same way and stored in the variable editP . These

oints, covered by controlling sphere and considered as edited

oints, can be found efficiently via ps _ tree and the indexes of

pheres. And editS can be found via sc _ tree . As these spheres are

lso independent of each other, we update their parameters in a

arallel way as that described in local least-square implicits solv-

ng. 

. Experimental results and evaluation 

We have implemented a prototype system using C++, and all

he experiments are run on a desktop with Intel Core(TM) i7-3770

PU (3.4GHz) and 16G RAM. Table 3 lists the experimental data

tatistics in details. The resolution of the volumetric data deter-

ines the number of boundary voxels, i.e., original surface points,

hus, our sequent processing of point set is essential. The time

osts of Hessian constraints calculation, adaptive spherical cover

eneration and the solving of local least squares systems show

he efficiency of our framework. Specifically, our adaptive spheri-

al cover generation procedure requires to specify a local approx-

mation tolerance T err , which controls the sphere radius. Generally

peaking, the larger T err is, the more samples we could expect to

ssign to the sphere. Since we need to solve a least squares sys-

em for each sphere, the number of samples dictates the time per-

ormance of our method. However, benefitting from our OpenMP

ased parallel-computing strategy, it only needs to spend a few

econds to solve such local least squares RBF systems. 

We demonstrate the operation and show the intermediate re-

ult of each step in the video. Please refer to the supplementary

ideo. 

Our system involves two interactive processing phases. The first

hase aims to edit the extracted potential surface point set, and

he second one aims to refine the surface mesh after the initial
erving 3D implicit reconstruction from raw volumetric dataset, 
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Table 3 

The experimental data statistics, including volume resolution, the number of boundary voxels, the number of surface point samples, the time cost to calculate Hessian 

constraints (in seconds), the time cost to generate spherical cover (in seconds), the number of the total covers of tibia, kidney, and stone models with T err = 0 . 0 0 01 

and femur model with T err = 0 . 0 0 0 07 , the average samples of each spherical cover, and the respective time cost to solve the Hessian-constrained least squares (LS) 

systems in parallel and serial ways (in seconds). 

Model Volume resolution Boundary voxels Samples Hessian calculation Cover generation Total covers Average samples LS solver 

Parallel Serial 

Tibia 512 ∗512 ∗349 30753 11507 0.613 0.121 271 85.7 4.87 15 .1 

Femur 512 ∗512 ∗220 31098 14118 0.841 0.14 708 38.7 0.45 1 .49 

Kidney 512 ∗512 ∗323 24452 11315 0.661 0.139 295 76.8 3.54 12 .2 

Stone 1024 ∗1024 ∗332 142675 14639 0.868 0.179 486 61.7 2.86 10 .2 

Fig. 10. The comparisons between the input masks and our final reconstruction 

results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The reconstructed surface comparison among RBF-N based method, HRBF 

based method, and our method over the tibia volume. 

Fig. 12. The reconstructed surface comparison among RBF-N based method, HRBF 

based method, and our method over the kidney volume. 
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scalar field is obtained. Fig. 2 demonstrates an example of the first

phase. Fig. 3 illustrates the second phase, of which, the red and

green lines represent the eigenvectors of Hessian matrix of the se-

lected point. Since the third eigenvalue is so small compared to the

other two, the corresponding blue line is almost invisible. Fig. 3 (A)

shows the intermediate segmentation result, and Fig. 3 (B) is the

segmentation result after simply editing the constraints, wherein

the local regions marked with red box are obviously smoother than

Fig. 3 (A). Fig. 8 compares the input segmentation mask with the

final implicit reconstruction result, wherein more features are pre-

served benefiting from our simple but effective constraints con-

trolling. Both Figs. 3 and 8 notably illustrate the desired surface

change via specific Hessian constraints, which verifies the effec-

tiveness of our local surface reconstruction based interactive 3D

shape modeling framework. 

Fig. 10 shows the comparisons between the input masks and

our final reconstruction results over a bone volume and a kidney

volume. Both the results indicate that our system can effectively

deal with the jagged boundary and produce smooth surface with

detail features. 
Please cite this article as: S. Li et al., Hessian-constrained detail-pres

Computers & Graphics (2017), http://dx.doi.org/10.1016/j.cag.2017.01.001
Figs. 11 and 12 compare the shape modeling results among RBF-

 based method, HRBF based method, and our method. In na-

ure, the HRBF based method is an interpolating method, which is

ensitive to noise when handling samples with outliers ( Fig. 13 ).

rom Figs. 11 (B) and 12 (B), we can see the reconstructed sur-

aces from the HRBF based method exhibit many obvious arti-

acts. Meanwhile, Figs. 11 (A) and 12 (A) show that the reconstructed

urfaces from the RBF-N based method also contain some arti-

acts caused by the inaccurate scalar field. In sharp contrast, our

ethod can produce a more smooth shape surface. Meanwhile,

able 4 documents the statistics of error approximation on dif-

erent models. Those from the RBF-N method are produced with
erving 3D implicit reconstruction from raw volumetric dataset, 
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Fig. 13. The artifacts of Fig. 11 (B) are shown from another view point, and the point 

set visualization of the corresponding regions. 

Table 4 

The statistics of error approximation(mm) on sample points. 

Model Method Max Min Average 

Kidney HRBF 4.1e −6 −1.8e −5 1.4e −7 

RBF-N 3.8e −3 −3.6e −3 2.8e −4 

Ours 2.9e −3 −3.8e −3 4.1e −4 

Tibia HRBF 1.2e −4 −8.5e −5 5.2e −7 

RBF-N 7.8e −3 −5.8e −3 3.4e −4 

Ours 6.2e −3 −3.9e −3 5.8e −4 

Max-Planck RBF-N 3.9e −3 −5.4e −3 4.3e −4 

Ours 3.2e −3 −2.4e −3 4.2e −4 

Lion RBF-N 7.8e −3 −6.2e −3 2.2e −4 

Ours 2.8e −3 −1.3e −3 1.1e −4 
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Fig. 14. Comparison among the B-HRBF method, TurtleSeg method, and ours over 

the kidney volume. (A) shows the input CT slice data; (B) shows the result of B- 

HRBF method; (C) shows the result of TurtleSeg; (D) shows our result. The second 

row shows the details on the cross-section slices. 
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1 = 0 . 9 , λ2 = 0 . 1 . Though our method and RBF-N method can ob-

ain similar maximal, minimal, and average values, our method can

enerate better scalar field than the RBF-N method and guaran-

ee to generate detail-preserving shape surfaces. When comparing

ith the HRBF method, our method can better deal with unex-

ected outliers. 

Figs. 14 and 15 compare the shape modeling results among the

-HRBF based method, TurtleSeg method and our method, wherein

he compared two methods are both based on interactive contours.

s the B-HRBF based method allows placing contours on arbitrary

ross sections and evaluates the scalar field in spatial-range do-

ain, it is more efficient than TrutleSeg, which only involves a few

ontours, and whose results heavily rely on the number and qual-

ty of the input contours. In contrast, our method uses a rough

egmentation result as input, which alleviates the heavy depen-

ence on contours, thus we can focus on the interactive editing of

essian constraints and the iterative refinement of the segmented

esults. According to the results shown in the cross-section slices,

lthough such three methods can produce similar results, benefit-

ing from integration of the second-order derivative, our method

chieves more accurate shape modeling results, which preserves

ore details. Therefore, all the aforementioned experiments have
ig. 15. Comparison among the ground truth, the B-HRBF method, TurtleSeg method an

round truth, which is manually modeled by an expert; (C) shows the result of B-HRBF

hows the details on the cross-section slices. 

Please cite this article as: S. Li et al., Hessian-constrained detail-pres

Computers & Graphics (2017), http://dx.doi.org/10.1016/j.cag.2017.01.001
emonstrated our method’s advantages in accuracy, detail preser-

ation, and high-order smoothness in a visually convincing way. 

Besides, Fig. 16 and Fig. 17 , respectively, show the multi-target

hape modeling results of our method over a roadbed volume

nd a digital human volume, wherein the colored objects in the

ub-figures (C) represent the surface meshes of the reconstructed

bjects while other objects are visualized directly using the ray-

asting based volume rendering method. We use Dual marching

ube method to extract the iso-surface of the colored objects. It

learly shows our method’s versatility in practical applications. 

Now we are cooperating with the Peking Union Medical Col-

ege Hospital and the Ministry of Communications Highway Re-

earch Institute. Both of them have applied our method over their

eld-specific raw volumetric datasets for practical applications. As

hown in Fig. 17 (A), computed tomography (CT) has been being

idely used in medicine to help doctors diagnose. Though visual-

zed CT volume can help doctors a lot, it is still limited in geo-

etric detail observing, which more or less wastes such rich data

o some extent. Our method facilitates to sufficiently use these

ich data for the research on individualized operation, which can

ell satisfy the requirements of practical medical use both in ac-

uracy and subsequent ROI (region of interest) detailed application.

s shown in Fig. 15 , our method almost produces the same result

ith the ground truth produced by an expert doctor. Compared

ith the other methods, our method obviously performs the best
d ours over the femur volume. (A) shows the input CT slice data; (B) shows the 

 method; (D) shows the result of TurtleSeg; (E) shows our result. The second row 

erving 3D implicit reconstruction from raw volumetric dataset, 
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Fig. 16. The multi-target shape modeling results of our method over a roadbed volume. (A) Original CT slices; (B) Direct volume rendering; (C) The multi-target shape 

modeling results. 

Fig. 17. The multi-target shape modeling results of our method over a digital human volume. (A) Original CT slices; (B) Direct volume rendering; (C) The multi-target shape 

modeling results. 

Fig. 18. The multi-target shape modeling results of our method over a more com- 

plex roadbed volume. (A) Original CT slices; (B) Direct volume rendering; (C) The 

multi-target shape modeling results. 
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in smoothness and tiny detail preserving, see Fig. 17 (C). Besides, CT

is also widely used in industry. Fig. 18 (A) is a roadbed CT dataset.

As we all know, roadbed is consisted of gravel and pitch. The dis-

tribution of gravel in the roadbed and the force analysis of the

hole roadbed are important for road quality assessment. The cur-

rent commercial industry CT machines commonly have the func-

tion to visualize 3D volumetric data, just like Fig. 18 (B). However, it

doesn’t support data statistics or force analysis. Specially, the quan-

tity of roadbed data is huge to deal with, intuitive interactivity and

efficient computation are expected. According to the real demands

of road CT dataset analysis, we roughly remove the pitch region

by tuning the transfer function in volume rendering to obtain the

multi-target segmentation masks, instead of using TurtleSeg. And
Please cite this article as: S. Li et al., Hessian-constrained detail-pres

Computers & Graphics (2017), http://dx.doi.org/10.1016/j.cag.2017.01.001
he rest gravel shape modeling steps keep the same with this pa-

er’s steps. Thus, based on the 3D model produced by our method,

e can easily accomplish such tasks. 

. Conclusions 

In this paper, we have presented an interactive framework

or the detail-preserving 3D shape implicit reconstruction from

aw volumetric dataset. The newly-introduced Hessian constraints

eneralize the least squares RBF implicits, which can guarantee

he reconstructed object to well respect high-order requirements.

eanwhile, many of the involved technical elements, including

ata specific importance sampling for adaptive spherical cover

eneration, determination of local samples for close sheets dis-

inguishing, and the parallel solvers of local least squares sys-

ems, also contribute to many shape modeling related applica-

ions. Moreover, different types of carefully-designed experiments

nd practical applications have demonstrated our method’s ap-

arent advantages in terms of accuracy, efficiency, flexibility, and

ersatility. 

However, at present our method still has some limitations. First,

t is still a little complex for novice users to quickly place well-

istributed cross-sectional constraints, because poorly-distributed

onstraints tend to cause unnecessary manipulation. Yet, the user

ould do it well after a brief training. In the future, we will fur-

her improve the convenience of our method by automatically pro-

iding some cues during user interaction. Besides, although solv-

ng local least squares systems in parallel could reduce temporal
erving 3D implicit reconstruction from raw volumetric dataset, 

 

http://dx.doi.org/10.1016/j.cag.2017.01.001


S. Li et al. / Computers & Graphics 0 0 0 (2017) 1–11 11 

ARTICLE IN PRESS 

JID: CAG [m5G; February 17, 2017;4:41 ] 

e  

p  

s  

h  

fi  

a

A

 

F  

6  

a

S

 

f

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

[  

[  

 

[

[  

[  

 

 

[  

[  

 

xpenses to certain extent, to further enhance our method’s time

erformance, we should design a CUDA-based parallel algorithm to

imultaneously solve all the local least squares systems on graphics

ardware. What’s more, we will also verify our method over more

eld-specific volumetric datasets to further extend our method’s

pplication scope. 
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