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Abstract—Informative and discriminative feature descriptors are vital in qualitative and quantitative shape analysis for a large variety of

graphics applications. Conventional feature descriptors primarily concentrate on discontinuity of certain differential attributes at

different orders that naturally give rise to their discriminative power in depicting point, line, small patch features, etc. This paper seeks

novel strategies to define generalized, user-specified features anywhere on shapes. Our new region-based feature descriptors are

constructed primarily with the powerful spectral graph wavelets (SGWs) that are both multi-scale and multi-level in nature, incorporating

both local (differential) and global (integral) information. To our best knowledge, this is the first attempt to organize SGWs in a

hierarchical way and unite them with the bi-harmonic diffusion field towards quantitative region-based shape analysis. Furthermore, we

develop a local-to-global shape feature detection framework to facilitate a host of graphics applications, including partial matching

without point-wise correspondence, coarse-to-fine recognition, model recognition, etc. Through the extensive experiments and

comprehensive comparisons with the state-of-the-art, our framework has exhibited many attractive advantages such as being

geometry-aware, robust, discriminative, isometry-invariant, etc.

Index Terms—Shape feature detection, spectral graph wavelets, bi-harmonic field, region descriptor, partial matching

Ç

1 INTRODUCTION

STUDIES in feature abstraction and analysis have been
gaining momentum because they can assist numerous

downstream graphics tasks and applications such as shape
recognition, segmentation, analysis, understanding, etc. [1],
[2], [3]. Influenced by the newly-arisen concept of high-level
representations in computer vision, which are based on
object-wise components, now much more attention has
been directed towards region-wise feature analysis in com-
puter graphics. In this paper, we advocate a new region-
based and user-specified type of feature as well as a novel
graph-wavelet-inspired multi-scale and multi-level descrip-
tor, and they jointly enable our feature detection framework
that can further facilitate various practical applications.

Conventional feature descriptors are usually con-
structed by considering the discontinuities of certain differ-
ential attributes at different orders (e.g., the second-order
attribute like surface curvature) that naturally afford their
discriminative power in characterizing point features,
line/curve features, small patch-based features with regu-
lar boundaries, etc. Such descriptions have facilitated

point/patch-based recognition, point-wise correspon-
dence, and curvature-based saliency detection with great
success. However, for more complex applications such as
modeling by example [4], model composition [5], and key
component analysis [6], the aforementioned conventional
features are usually too localized to capture the multi-scale
neighboring information, and it is desirable to have a flexi-
ble, region-wise feature description. Furthermore, in many
real-world settings, shape data may be degraded due to
acquisition imperfections and noises, necessitating the use
of region descriptors which tend to be muchmore robust.

Existing works related to region-wise analysis include
partial matching, shape correspondence, saliency extrac-
tion, etc. Boundaries of the regions in question are usually
confined to regular but non-adaptive shapes [7], [8], [9],
[10], thus neighboring and in-between geometry informa-
tion may not be fully captured. As for region description,
trending measures include the distributions of various
types of point descriptors [11], [12], [13] and the global anal-
ysis of the regions based on spectral decomposition [14],
[15]. Some regional measures are not discriminative enough
to solely characterize the regions in question, for which
post-processing like geometric hashing [16] or random sam-
ple consensus [17] is required. Nevertheless, these settings
are not hierarchical enough to characterize the focal regions.
On the other hand, multi-scale shape analysis methods [18],
[19], in spite of their great descriptive power, have not yet
been employed to construct regional descriptions. These
insights inspire us to propose a more comprehensive and
stable type of shape description that can encode the region
of interest with high discriminative power and efficiency.

In this paper, we propose a local-to-global shape feature
via user specification, introduce an informative region
descriptor, and then present a shape feature detection
framework to facilitate a host of graphics applications. The
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proposed shape feature extends the definition of conven-
tional features to a region-wise manner in a user-specified
way (as highlighted in Fig. 1). To encode user-specified fea-
tures, we proactively seek an informative regional descrip-
tor constructed in a multi-scale and multi-level way. Our
descriptor takes advantage of the bi-harmonic distance
field and the SGWs. The stability and robustness of bi-
harmonic distance field guarantee the technically-sound
foundation for the whole descriptor. SGWs naturally
accommodate local and global geometry with a multi-scale
solution, and such solution is consistent across multiple
levels. We devise a new statistical method based on the
decomposition coefficients of the shape signal, enabling
the joint analysis of the underlying geometry together with
different shape signals. In order to comprehensively char-
acterize the shape features, we also incorporate the con-
tour-centered geometric statistics into our descriptor. All of
these enable our feature detection framework as shown in
Fig. 1. We quantify each model’s regions of interest around
central points (or point samples) according to the user-
specified feature scope on the query model. Then descrip-
tors are constructed on candidate regions across different
models, which is equivalent to transform each region into
the high-dimensional feature space. After the region-wise
feature space is constructed, various analytical tasks can be
performed. The primary contributions of this paper can be
summarized as follows:

� We propose to define a generalized shape feature
type via user specification, which is geometry-aware
and is the organic coupling of local and global
description. Also, it is a fundamental tool that can
help unite different types of graphics applications.

� Our region-based descriptor is primarily built upon
the SGWs that are both multi-scale and multi-level
in nature, elegantly integrating both local (differen-
tial) and global (integral) information. We also intro-
duce the contour-centered geometric statistics to
enhance the descriptor’s discriminative power.

� We develop a feature detection framework, which
can integrate different types of state-of-the-art
region descriptors and further facilitate widespread
graphics applications including partial matching,
coarse-to-fine recognition, model recognition, etc.

2 RELATED WORK AND BACKGROUND REVIEW

This section will briefly review prior research related to
region analysis and the latest progresses on SGWs.

Region-wise description and detection. We first review how
current methods define boundaries for given regions.
Broadly speaking, they characterize a local neighborhood
around a central point in two ways. The first is based on
Euclidean distance, such as spheres [7], blowing bubbles [8],
rings [9], shape context [10] or priori decompositions [20],
[21]. The second is to use geodesic distance like geodesic
fans [22] and spiral pathway [23]. The shapes of region
boundaries defined by the above methods are mostly
restricted to regular formats, and such nonadaptive neigh-
borhoods cannot precisely reflect the local geometrical or
topological distortions. Region-wise descriptors can be
roughly divided into two categories: point-based and
region-based methods. Point-based methods provide the
quantitative measure by organizing single-valued point sig-
natures into certain kinds of distributions. Various kinds of
point descriptors have been incorporated in this manner,
e.g., the shape index (SI) [24], shape diameter function
(SDF) [25], heat kernel signature (HKS) [26], Zernike
moments [27], etc. Region-based methods analyze the entire
focal region through spectral decomposition [14], [28], which
can robustly depict the intrinsic geometry. However, due to
the instability of local Laplacian decomposition, these meth-
ods usually cannot well handle small and complex regions.

Region-based partial matching and correspondence. In litera-
ture, region analysis has been discussed mainly in the
research of partial matching problems, and several catego-
ries of techniques have been employed. Skeletal-graph-
based approaches such as [29] couple geometry and struc-
ture in a single skeletal descriptor based on the theory of
Reeb graph. The main drawback is that sub-parts cannot
be recognized automatically. Multi-criterion optimization
approaches [23], [30], [31] try to match subparts by striking
balance between significance and similarity criteria. This
type of methods require the knowledge of correspondence
between shapes, otherwise, it can only be solved by alternat-
ing between correspondence and part area, which is time-
consuming. Bag-of-words (BoWs) technique has been
adopted [32], [33] to represent a shape or a subpart as a col-
lection of local feature signatures quantized in some vocab-
ularies of “geometric words”. If the geometric vocabulary is
sufficient and the shapes have significant common parts, it
is possible to compare partially-similar shapes, otherwise,
these methods oftentimes fail to function properly. Further-
more, improper additions of the spatial information and
imprecise binning process may lead to the averaging-off
effects of geometric information. The concept of non-point-
wise correspondence was first proposed in [26] by using
region-wise local descriptors and optimizing over the inte-
gration domain upon which the integral descriptors of the
two parts match. This method can exactly match fragments
to entire shapes, however, since it utilizes the absolute
values in calculation like integration, it cannot deal with
the partially similar correspondence. Besides, many of
the above approaches rely heavily on exact or meaningful
shape decomposition process as in [15], [21], which is com-
putationally expensive and significantly influences the final

Fig. 1. The pipeline of our approach.
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correspondence results. Also, in order to achieve meaning-
ful results, many approaches utilize time-consuming post-
processing like in [20] and [21]. So it requires more effective
and generalized region detection techniques to help speed
up and improve the precision of the partial matching and
correspondence processes.

Spectral graph wavelets. Wavelet, which can localize a
given function both in space and in scale, is a powerful ana-
lytical tool in signal processing [34]. Unlike Fourier trans-
form which are globally defined, wavelet analysis is able to
perform localized multi-resolution analysis. Classical wave-
lets are constructed by translating and scaling a mother
wavelet in Euclidean space. However, transplanting wave-
lets to graphs (specifically, triangular meshes) is not
straightforward due in part to the fact that it is unclear how
to apply the scaling operation on a signal that is defined on
the mesh vertices, so early studies using wavelet mostly
relied on the parameterization [35], [36]. One way to con-
struct wavelets on graph structures is using a diffusion
operator and its dyadic powers to obtain multi-scale wave-
let and scaling functions [37], [38]. Another approach to
define graph wavelets is by expanding graph functions
with the eigen-system of the graph Laplacian matrix and
performing scaling in the frequency domain [39], [40], giv-
ing rise to the spectral graph wavelet transform (SGWT).
More recently, Kim et al. [41], [42] introduced a wavelet-
based multi-scale descriptor for the analysis of cortical sur-
face signals using the SGWT and Li et al. [43] proposed a
SGWT-based descriptor and utilized the intrinsic spatial
pyramid matching (ISPM) for global shape retrieval.
Though these researches discover the potentials of SGWs,
they all concentrate on global shape analysis based on point
signatures, ignoring the SGWs’ power in integrating the
local-to-global/in-between geometrical and topological
information. These inspire us to combine SGWs and bi-
harmonic distance field to enable the multi-scale and multi-
level description of the region of interests.

3 LOCAL-TO-GLOBAL SHAPE FEATURE
DEFINITION

In this section, we introduce the definition process of the
proposed novel shape feature, which generalizes conven-
tional features (e.g., point, line, or patch features) to a local-
to-global level via user specification. Our shape feature is
extracted via the bi-harmonic distance field [44], which is
robust, globally “shape-aware”, parameter-free, and widely
used in geometry processing. Among these attractive prop-
erties, the consecutive depicting power inspires us to incor-
porate it for integrating multi-scale regional information
that is required for subsequent analysis. In addition, the
cross-sections of contours in the bi-harmonic distance field
naturally form boundaries for user-specified features, thus
avoiding the shape decomposition process.

Our shape feature is a user-specified partial region with
two parameters: the point of interest and the contour
scope, both of which can be determined using a simple
user-interactive process. The point of interest is the relative
center of the feature, it can either be picked directly on the
mesh, as shown in Fig. 2a, or be automatically initialized
as the extreme point of a function defined on the surface.
In order to specify the contour scope of the point of inter-
est, we should first introduce the metric with which we set
the scope, namely, the bi-harmonic distance field.

Let us consider a 3D mesh represented as a graph
M ¼ ðV ;EÞ with vertices V and edges E, where V ¼ fv1;
v2; . . . ; vng and n is the number of the vertices. A vector-
valued function f : V ! Rq defined on V can be repre-
sented as an n� q matrix, where the ith row represents the
function value at vi, we denote it as fðiÞ. According to [44],
the bi-harmonic distance between vertex vi and vj can be
expressed as

Dbhði; jÞ2 ¼
Xm
k¼1

ðxkðiÞ � xkðjÞÞ2
�2
k

; (1)

Fig. 2. The functional pipeline of our feature detection framework. (a)-(c) show the user’s inputs in the specification process, red arrows in (a) and (b)
denote the specified point of interest and contour scope, respectively. The bottom row shows the specified shape feature (e) and analogous feature
regions (d) (we only display three cases here).
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where f�kg and fxkð�Þg are, respectively, the first m non-
zero eigenvalues and the corresponding eigenfunctions of
the Laplacian-Beltrami operator with “cotangent formula”
discretization [45].

For each vertex, Eq. (1) defines a diffusion field around it.
We compute the diffusion field of the specified interest
point (denoted as vs) and then construct a set of contours
(Fig. 2b) across the entire model with contour points located
on the edges of the mesh model. These contours can very
well reflect the changes locally around the central point and
characterize the corresponding global structures, and these
will be discussed later. In order to make the setting of
parameters more stable, we normalize the original models
using a unit box. Then the total number of the contours dis-
tributed in the diffusion field can be set empirically to the
integer nearest to maxðDbhðs; �ÞÞ=0:05, which is dense
enough to depict the diffusion field. Then the user can
choose one of the contours to set the scope of the feature (as
shown in Fig. 2b) and denote it as Ss. Fig. 2c illustrates the
feature defined with the red boundary.

Our shape features can be located anywhere and vary
spatially in scale depending on specific applications. They
integrate the local and global geometry, which affords their
great potential in bridging differential and integral geome-
try information.

4 MULTI-LEVEL AND MULTI-SCALE SHAPE

DESCRIPTION

Our novel descriptor primarily exploits the SGWs and the
metric statistics. This section introduces the SGWs-related
description and the contour-based statistics before the com-
plete descriptor can be constructed.

4.1 SGW-Based Description

SGWT is introduced in [39] to conduct wavelet analysis on
graphs. The core idea is to define the required scaling in the
Fourier domain instead of the spatial domain. SGWT is
determined by the generating kernel g : R ! R. To act as a
band-pass filter, the kernel g should satisfy gð0Þ ¼ 0 and
limx!1 gðxÞ ¼ 0. SGWs, as described in [39], are expressed
as bivariate kernel functions expanded on the manifold
harmonic basis, which are formed by the aforementioned
Laplacian-Beltrami eigenfunctions on mesh models

Ctði; jÞ ¼
Xn�1

k¼0

gðt�kÞxkðiÞxkðjÞ; (2)

where g is the real-valued SGWs generating kernel and t is
the scale parameter. The i-th row ofCtð�; �Þ

ct;ið�Þ ¼ Ctði; �Þ ¼
Xn�1

k¼0

gðt�kÞxkðiÞxkð�Þ; (3)

is the spectral wavelet spatially-localized at vi, and in the
frequency domain, localized at scale t. Fig. 3 shows the
SGWs of different scales located on one index point on
the wolf model. It may be noted that, the values of wavelets
are attenuated and oscillating on the mesh, and wavelets
with a larger scale have a wider oscillating window. Here it
should emphasized that we choose to utilize the geometric

mesh Laplacian instead of the combinatorial Laplacian as
originally applied in [39] to afford much more precise
description of the mesh geometry.

It has been proved that SGWs can well represent the high
frequency and low frequency geometric information around
the index point [39]. Suppose we compute the spectral
wavelets at J different scales ft1; t2; . . . ; tJg, and adopt the
same formulation of generating kernel functions used
in [39], given by

gðxÞ ¼
x2 if x < 1
�5þ 11x� 6x2 þ x3 if 1 � x � 2
4x�2 if x > 2

8<
: ; (4)

and the J scales are selected to be logarithmically equally
spaced between the minimum scale tJ ¼ 2=�max and the
maximum scale t1 ¼ 40=�max, where �max is the upper
bound of the Laplacian eigenvalues. The settings of t1 and
tJ guarantee that gðt1xÞ has power-law decay for x > �min

and gðtJxÞ has monotonic polynomial behavior for
x < �max.

Using the above formulations, we can easily get the
wavelet coefficients of a given function on a specific vertex
vi as

Wfðt; iÞ ¼ hct;i; fi ¼
Xn�1

l¼0

gðt�lÞf̂ðlÞxlðiÞ; (5)

where

f̂ðlÞ ¼ hxl; fi ¼
Xn�1

i¼0

xlðiÞfðiÞ; (6)

and

fðiÞ ¼
Xn�1

l¼0

f̂ðlÞxlðiÞ: (7)

Here, the signal function f can be any kind of surface sig-
nal depending on applications. For example, mean curva-
ture, characterizing detailed distortions, is a good choice for
the recognition of repetitive features within certain models,
the detection of similar features among models with differ-
ent poses, etc. For coarse-to-fine recognition, the HKS is
more favorable thanks to its robustness to noise. Different
settings of f will be shown throughout our paper in various
applications. The coefficientsWf obtained from the transfor-
mation is the inner product of the signal function and the
corresponding wavelet at scale t and location i. It is a repre-
sentation of the signal for that scale, that is to say, it
describes the original signal in certain frequency with
respect to the local geometry and topology. Repeating this
process for J scales (as shown in Figs. 4a, 4b, 4c, and 4d
with four scales), the set of coefficients obtained comprises
our multi-level descriptor.

Fig. 3. Spectral Graph Wavelets centered at one vertex on the wolf
model. From left to right are wavelets from high frequency to low
frequency with scale 1, 3 and 5.
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Instead of using Wf directly as the descriptor like in [43]
and other harmonic analysis researches, we incorporate it
into our descriptor by taking advantage of the consecutive
depicting power of the bi-harmonic distance field. In order
to comprehensively describe the geometric information con-
tained within the feature, we subdivide the feature region
into thinner bands with more contours as implemented in
Section 3, just as shown in Figs. 2c, 2d, and 2e. The number
of dense contours may be set automatically as the integer
nearest to Ss=0:025, and such dense contours have been ver-
ified to be able to elaborately depict and organize the inner
geometrical information of the feature. Fig. 4e illustrates the
setup of our SGW-based statistical bands based on Wf ,
where different layers convey multi-level (from high to low
frequency) information and different bands (denoted in yel-
low and green) in-between contours encode multi-scale
information. By stretching the “matrix-like” statistic (as in
Fig. 4e) into a high dimensional vector, we obtain the
descriptor of vs, denoted asDs, given by

Ds ¼ ½Wb1
t1
; . . . ;W

bL
t1
;W

b1
t2
; . . . ;W

bL
t2
; . . .;W

b1
tJ
; . . . ;W

bL
tJ
�; (8)

where W
bj
ti

denotes the statistic ofWf with scale ti on the jth

band, and L is the number of contours. Here W
bj
ti

can be

expressed as the 1-norm ofWfðti; �Þ over the jth band

W
bj
ti

¼
X
p2bj

jWfðti; pÞj; (9)

where p is the vertex index, p 2 bj denotes p is a vertex
located on the jth band.

In Fig. 4, we observe that information contained in Wf of
different time scales corresponds to the fine-to-coarse multi-
level information, and the statistics on the bands convey the

near-to-far multi-scale knowledge. These collectively make
use of SGWs’ power in integrating geometric information.
In addition, we notice that descriptors based on Wf are
scale-invariant as long as SGWs are normalized.

4.2 Contour-Based Multi-Scale Statistics

The contours of bi-harmonic distance field encode rich
information of local-to-global geometric variation. So we
further introduce the perimeters of contours and the dis-
tance distribution of contour points to help characterize the
focal region’s shape in an orderly and quantitative manner.

For a specified feature and its corresponding contours,
we first calculate contours’ perimeters and concatenate
them as fpc1 ; pc2 ; . . . ; pcLg, where ci denotes the index of the
i-th contour. Then, for each contour, we compute the Euclid-
ean distances between the contour points and their barycen-
ter (as shown in Fig. 5), and further evaluate the probability
distribution of the distances. We denote the distance-related
statistics as fdsc1 ; dsc2 ; . . . ; dscLg. Here, dsci is a vector stack-
ing up the probability distribution of the distances concern-
ing the ith contour. We uniformly separate the distance
values into M bins, ranging from zero to the maximum
value after removing the top and bottom 5 percent to rule
out possible outliers. Then its stack pattern is

dsci ¼ numðb1Þ
numðciÞ ;

numðb2Þ
numðciÞ ; . . . ;

numðbMÞ
numðciÞ

� �
; (10)

where numðbjÞ is the number of points with distance values
falling in the jth bin and numðciÞ is the number of points on
the ith contour. For multiple contours with the same value,
they should be considered as a whole when performing sta-
tistical calculation.

These two measurements help describe the shape of the
bi-harmonic distance field completely and identify the
details of shape’s distortion. The purpose of introducing
the distance distribution is to distinguish between different
contours with the same perimeters.

4.3 Informative Region-Based Descriptor

So far, the separate parts of our descriptor have all been
introduced. Now, it sets the stage for us to integrate them
together to form our final informative hi-dimensional
descriptor as

Ds ¼ ½vs � ðWb1
t1
; . . . ;W

bL
tJ
Þ;vp

� ðpc1 ; . . . ; pcLÞ; ðdsc1 ; . . . ; dscLÞ�; (11)

Fig. 4. Statistics on signal’s wavelet decomposition coefficients
(Wf ð�; tÞ). (a)-(d) list t from small (t1) to large (t4) value, corresponding to
the decomposed signals varying from high to low frequencies. (e) illus-
trates the composition of statistics based on Wf within one feature
region.

Fig. 5. Contour-based distance distribution. The zoomed-in part shows
the distances under current consideration when performing statistical
calculation.
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where vs and vp are weights to adjust the contributions of
the three parts in the descriptor. The settings of these
weights will be detailed in Section 6.

Our descriptor integrates the attractive properties of both
SGWs and contour-based measurements. From the view-
point of feature mapping, SGWs establish a powerful foun-
dation for hierarchical representation of the geometrical
and topological details. Our design of the regional descrip-
tion encodes the shape feature in the aspects of both
“breadth” and “depth”, paving the way for our feature
detection framework.

5 FEATURE DETECTION FRAMEWORK

Using the same way to define feature regions around candi-
date points and formulate the corresponding descriptions,
descriptors concerning candidate regions on the same
model or different models in the database can be easily
computed for analytical purposes.

5.1 Constructing Descriptors over Shapes

To construct descriptors on candidate regions on one or
more models, the central points and contour scopes should
also be determined first. As for the central points, we imple-
ment the farthest-point-sampling strategy [46] to uniformly
extract points on the mesh model (as shown in Fig. 6). This
strategy ensures not only the uniform distribution of the
candidate points, but also the inclusion of the end points,
which are interesting alternatives for user’s selection. How-
ever, we want to mention that the sampling process is
optional, and users could either pick the desired sampling
methods or simply use all the vertices as candidates accord-
ing to specific applications.

Then the construction of descriptors across versatile
shapes is based on the knowledge of the shape feature
defined. That is, candidate regions are determined automati-
cally according to the contour scope of the shape feature speci-
fied. Suppose that vs and vi are respectively the interest point
and one of the candidate points. Then the scope of vi is set as
Ss �maxðDbhði; �ÞÞ=maxðDbhðs; �ÞÞ and this can help ensure
the robustness of our method for deformable models. With
the region scope determined, the construction of the corre-
spondingdescriptor is conducted in the sameway as the spec-
ified feature (in Section 4), which is detailed inAlgorithm 1.

With each candidate region equipped with a high-
dimensional descriptor, our key task is to analyze the simi-
larity in the descriptor space. We shall first introduce the
proper measurements for this new space. It has been found

that both L1 and L2 norms are discriminative enough to
measure the distance between any two descriptors, repre-
senting the corresponding regions. As alternatives, the
covariance distance and x2 distance are also tested to be
good choices for comparing the distributions’ similarities.

Algorithm 1. Construction of Descriptors over Shapes

Input: User-specified interest point vs and contour index ns;
Output: Descriptors of the specified feature (Ds) and all the

other candidate regions (fDig);
1: Conduct the eigen-decomposition on all models;
2: Compute theWf of each point using Eq. (5);
3: Compute the bi-harmonic distance of vs, denoted asDbhfs; �g;
4: Uniformly construct maxðDbhðs; �ÞÞ=0:05 contours across the

entire model;
5: With user’s specification of the contour number (ns), com-

pute the corresponding value as Ss;
6: For any candidate point vi, compute its bi-harmonic distance

Dbhfs; �g, and set its region scope as Ss �maxðDbhfi; �gÞ=
maxðDbhfs; �gÞ;

7: Reconstruct Ss=0:025 contours on the specified feature and
all the candidate feature regions;

8: Compute the SGWs-based and contour-relatedmeasurements
using Eq. (11);

9: ReturnDs and fDig.

5.2 Feature Detection and Framework Properties

Here, we detail the effectiveness of our feature detection
framework together with several of its attractive properties
and more results will be shown in Section 6. It shall first be
emphasized that high sampling rates always lead to dense
distribution of the candidate points, thus several neighbor-
ing points may have similar diffusion regions, and this will
lead to multiple detected results that are in the vicinity of
each other. Therefore we empirically reject candidate
regions that have more than 50 percent overlaying with the
afore-ranked regions. This strategy can ensure the unique-
ness of the detected features as well as the broader coverage
of all relevant feature regions, and also make our approach
robust to different sampling processes.

We first show a simple feature detection result within the
bear model as displayed in Fig. 7 (here, mean curvature is
chosen as the signal function). The top row shows the

Fig. 6. Sampling results on horse and santa model using the farthest-
point-sampling strategy. Only part of the sampling points are shown for
visual clarity.

Fig. 7. Detection of repetitive features with different scales. The first row
shows the specified features and the second row shows the detected
results within the bear model. Yellow points on query models denote the
specified points of interest.
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features specified with different scales and the second row
shows the detected results. It can be observed that the
detected similar feature regions are affected by the specifi-
cation of the feature scope (the selected contour indices here
are 2, 3, and 6, respectively). Though small-scale query leads
to rather trivial outcomes, the most similar parts are still
among the top-ranked results. Furthermore, it is obvious
that larger scales can lead to more accurate results thanks to
added information. The analogous feature regions defined
(proportional to the specified feature) and the correspond-
ing descriptors jointly ensure the accuracy of the detection
of the repetitive feature regions.

Our shape feature and its description possess many
attractive properties like being concise to store, fast to com-
pute, and efficient to match, etc. Here, we demonstrate two
more desirable properties that can facilitate various practi-
cal tasks.

Isometry-invariance. We verify the property of isometry-
invariance through tests carried on three categories of mod-
els in different poses. These models are chosen from the
SCAPE and TOSCA databases. As visualized in Fig. 8, we
deliberately specify features on the human arm containing
the elbow, dog leg with elbow and finger with knuckle to
validate the property. The models in Fig. 8b are the
deformed ones showing the top-2 most similar feature
regions detected on each of them (red and orange highlight
the first and second one, respectively). The top-2 detected
results are shown here since our approach is capable of
identifying similar regions, but distinguishing between
symmetric parts is beyond the technical scope of this paper.
The retrieved results empirically prove that our region-
based descriptor is isometry-invariant, which is inherited
from the properties of graph wavelets and bi-harmonic dis-
tance field.

Robustness to noise. We add 0.5 (of the mesh’s mean edge
length) noise to the query models as shown in Fig. 9a and
set the signal as HKS. We selectively enlarge the SGWs-
related part of our descriptor to combat noise. The features
are specified on these noisy models as shown in Fig. 9b.
From the detection results displayed in Fig. 9c, it can be
observed that even with large noise, our approach can still

recognize the intrinsic geometric characteristics of the fea-
tures and identify the corresponding similar features,
including the ball shape on the elk model and the bended
handle of the kettle model from the shape database, thanks
to the robustness and stability of bi-harmonic distance field
and HKS. The robustness of our approach is of great signifi-
cance in practical applications as will be demonstrated in
Section 6.

6 EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we demonstrate the performance of our
approach via experiments in various aspects. All the experi-
ments were conducted on a 3.5 GHz Intel(R) Core(TM) i7
computer with 16 GB memory. We used the cusparse and
cublas libraries in CUDA to help reduce the computational
time for wavelet transform significantly. For instance, for
the SHREC 2007 partial retrieval dataset, in which the aver-
age model size is 18 K vertices, the whole process of
constructing descriptors on one model takes an average of
0.38 minutes, and the whole database costs 114 minutes
with 20 percent sampling rate for each model. More timing
details concerning versatile models are shown in Table 1.

6.1 Parameter Evaluation

There are several parameters in our approach, most of them
can be set automatically or empirically set as constants. Two
parameters, the sampling rate and the signal function, could
be tuned according to specific applications’ requirements
for better results.

Parameters in the construction of descriptors. For the SGWs-
related part of the descriptor, we calculate bi-harmonic dis-
tances and graph wavelets using the first 300 eigenvalues of
each model, and they only need to be computed once. The

Fig. 8. Illustration of isometry-invariance. (a) Query. (b) Detected results
on deformed models with red and orange denoting the top-2 similar
regions.

Fig. 9. Coarse-to-fine recognition on elk and kettle model with 0.5 (mean
edge length) noise. (a) Noisy model. (b) Specified features. (c) Recog-
nized regions.

TABLE 1
Run Time for Constructing Descriptors

Model ] vertices
Timing (min)

Eigen Wf Total

Dinosaur 14K 0.17 0.14 0.33
Dog 26K 0.30 0.35 0.69
Armadillo 34K 0.38 0.48 0.97
Santa 75K 0.93 1.23 2.32
Dragon 430K 5.51 8.16 14.15

2100 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 9, SEPTEMBER 2016



number of graph wavelets’ time scales is set to be 5, which
can well represent the frequency information. We empiri-
cally set the number of the bins in distance distribution to be
10, and it has been tested to be sufficient to characterize the
structure features. The weights vs and vp are automatically
set (based on themean scale of each part) to balance the three
parts that comprise the descriptor. Fig. 10 demonstrates the
function of graphwavelets by comparing the retrieval results
with ws ¼ 0 and ws 6¼ 0 on SHREC database and the corre-
sponding constructed database (note that each model is
added with 0.5 mean-edge-length noise as shown in
Fig. 10a). The relevant number is the number of retrieved
models that contain partial regions that match the query
region (here, ant head and plane tail). It clearly shows that
graph wavelets holds the power to characterize the focus
regions discriminatively and robustly. Therefore, we selec-
tively enlarge theweight of SGWs-related part (ws) to combat
the disadvantages of the other parts in specific applications.

Sampling rate. The setting of sampling rate depends on
specific applications. Even when the sampling rate is
decreased to 5 percent, our sampling strategy still ensure
the inclusion of endpoints. It should be noted that if the
application requires high-precision detection, all the verti-
ces of the model could be taken into consideration. For the
feature detection framework, the sampling rate of 20 per-
cent can meet almost all the needs in our experiments.

Signal selection. The signal function influences SGW-
related statistics directly. Therefore, signal selection is
among the key problems that should be considered. In prin-
ciple, the selection depends on specific applications as ana-
lyzed in Section 4. Furthermore, some applications require
the signal to be intrinsic, for which signals like Gaussian
curvature, thickness, etc. are expected to perform better.

6.2 Repetitive Feature Detection within Certain
Model

Repetitive feature detection is of great importance to appli-
cations, such as self-symmetry detection [20] and non-local
processing propagation [27]. We randomly select some
regions of interest to be the shape features as illustrated in
Fig. 11 (in red). The specified features show that our diffu-
sion-manner demarcation can well cover the interest
regions of any kind of shapes if only the interest points and

scopes are chosen properly. The detection results show that
our descriptor can reliably locate the repetitive feature
regions within the dragon model even with large deforma-
tions, and it can effectively distinguish between the lumpy
local shape of dinosaur’s tail from its cylinder-like legs, etc.
It very well demonstrates that our SGW-centered descriptor
can depict the local details and reflect multi-scale geometric
distortions thanks to its gradational construction.

6.3 Feature Detection in Database

The performance of our feature detection framework is
evaluated on the SHREC 2007 watertight retrieval bench-
mark, which contains 20 categories and each consists of 20
meshes. In order to demonstrate that our framework is not
restricted to the segmentation-based regions like four-legs,
we test three kinds of artificial models and each of the query
model is unique without any transformed equivalent in the
dataset.

We deliberately specify features on kettle, glasses, and
chair as shown in Fig. 12a. The slab of the chair is a vivid
example, and the existing methods based on segmentation
cannot achieve such trans-boundary shapes. It’s obvious
that the top-4 similar parts in Fig. 12b resemble the query

Fig. 10. Retrieval results (on SHREC database) with ws ¼ 0 (red line)
and ws 6¼ 0 (blue line), and dash lines show the results on noisy models.

Fig. 11. Repetitive feature detection within certain model. Red denotes
query feature and blue denotes some detected results.

Fig. 12. Feature detection on the SHREC 2007 watertight retrieval
database.
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region very well, which validates that our descriptor based
on the continuously distributed contours could characterize
the focal region thoroughly. The feature detection process
has the ability to correctly identify the most similar parts
with equal-proportional scales thanks to the stable charac-
teristic of bi-harmonic distance. By examing which models
in the database contain the similar shapes such as kettle
base, eyeglasses or slab of chair, our framework can facili-
tate co-analysis across models and enable search-based
shape modeling.

6.4 Comparisons and Discussion

Due to the unique technical strategy of our feature descrip-
tion and detection, there is no existing work that is directly
comparable with ours. From the perspective of applications,
partial matching appears to be the most relevant one. There-
fore, we first compare our approach with five popular exist-
ing methods in partial matching or shape retrieval based on
region description. These methods can all properly fit into
our framework and make effective comparisons. They are

� D2 Shape Distribution (D2): statistics of distances
between any random pair of points on the
region [11].

� Conformal Factors (CF): statistics of conformal geo-
metric factors of points on the region [12].

� Zernike Moments based signature (ZM): local shape
signature based on transformation of Zernike
Moments [27].

� Local SDF Signature (SDF): statistics of points’ Shape
Diameter Function [25].

� Patch Spectral Geometric Features (PS): normalized
spectra of patch spectrum decomposition [14].

The above methods induce the direct geometric measure-
ment (D2), intrinsic curvature-related measurement (CF),
heightmap-based measurement (ZM), volume-based mea-
surement (SDF), and spectral-analysis measurement (PS),
respectively.

We conduct comparison tests on SHREC 2007 watertight
database as well as the McGill database that contains 255

objects divided into ten classes and the intra-class variations
consist of non-rigid transforms applied to models. By set-
ting proper parameters in the above methods, effective
results are achieved. Fig. 13 shows the detection results of
all methods concerned. (a)-(c) are the detection results with
the queries of ant head, plane tail, and human leg. In the
SHREC database, every category contains 20 different mod-
els, so we retrieve the top 20 results of ant head and 40 for
human leg, since left and right legs of human are docu-
mented separately (we call it the multiple-region case). (d)
shows the average PR graph based on all queries without
multiple regions.

Table 2 details the precisions of different detection meth-
ods. The precision is computed as the ratio of relevant num-
ber to the retrieved number (the second line shows the
retrieved number for each query). Table 2 and Fig. 14 collec-
tively show that each method has its own strength in
describing some specific kind of shape. D2 is excellent in
describing regular shapes, such as spheres, because the his-
togram statistics sometimes have the averaging effect on the
spatial information, and the ant head with two tentacles
makes it difficult for D2 to depict. CF, which integrates the
gaussian-curvature knowledge, performs well in character-
izing highly-curved region such as the plane tails. ZM is
suitable for depicting small patches, as for large feature
regions it works better in detecting highly curved ones. SDF
takes into account the volume-based information and
the region’s area ratio knowledge, so it performs well for
cylinder-like shape, but not for local complex shapes. PS
performs very well in most cases except for the relatively
small and complex structure like plane tails due to the insta-
bility of regional Laplacian decomposition. In contrast, our
method performs stably with high precision in detecting
various types of feature regions across different models.

Moreover, we conduct the comparison with two most
related works that cannot fit into our feature detection
framework, namely, Gal’s [20] and Itskovich’s works [21].
Since these two works obtain the feature regions by decom-
position process and clustering of the pre-divided patches,
there inevitably exist over-segmentation phenomenon as
shown in the zoomed-in part of Fig. 15. In comparison, our
method can flexibly specify the interesting feature region
and exactly detect the similar regions with the proper scales.

6.5 Applications

Our feature detection framework enjoys plenty of desirable
properties as demonstrated in Section 5. They can further

Fig. 13. Precision plots of different detection methods. (a)-(c) show
results of different queries. (d) shows the average P-R graph on SHREC
watertight database.

TABLE 2
Precision of Different Detection Methods

Method
Ant Head Plane Tail Human Leg

15 30 15 30 30 60

Ideal 100% 66.7% 100% 66.7% 100% 66.7%
D2 26.7% 30.0% 26.7% 23.3% 40.0% 41.7%
CF 33.3% 30.0% 53.3% 56.7% 46.7% 48.3%
ZM 53.3% 43.3% 53.3% 53.3% 46.7% 50.0%
SDF 46.7% 56.7% 46.7% 50.0% 50.0% 58.3%
PS 80.0% 60.0% 46.7% 43.3% 73.3% 60.0%
Ours 93.3% 63.3% 80.0% 60.0% 86.7% 63.3%
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facilitate a host of applications as will be shown and
analyzed.

Partial matching and restoration. We analyze the combined
models from SHREC 2007’s partial retrieval dataset, which
comprises the SHREC 2007’s watertight dataset and a query
set of 30 models. Each combined model is obtained by
merging or removing several subparts of models belonging
to the watertight dataset. Existing algorithms concerning
partial matching consider the retrieval of the query set

models as a big challenge. We demonstrate that our frame-
work provides a powerful tool to restore the combined
models, thus can effectively aid the matching and recogni-
tion. As the three cases shown in Fig. 16, choosing proper
interest points (yellow points in (a)) and contour scopes
could give rise to diffusion regions that cover large scale of
the searched models. After completing the detecting process
in the watertight database, the original model can be

Fig. 14. Comparison of different detection methods for partial matching. The queries are ant head, human leg, and plane tail.

Fig. 15. Comparison on detection of complex feature regions. Figure ðaÞ
and ðbÞ are cited from the corresponding works. On each model, the
flower inside the yellow circle is the query region.

Fig. 16. Partial matching and restoration on the SHREC’s partial query
dataset. (a) Combined models with query regions in red. (b) Restored
models. (c) Another two models containing the top-ranked similar fea-
ture regions.
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recognized as shown in (b), and (c) shows another two
detected models containing the top-ranked similar feature
regions. Moreover, if conventional point-wise correspon-
dence is required for downstream tasks, we can further
achieve this goal easily. Since our feature is defined in a dif-
fusion manner, after the similar region is matched, the exact
point matching can be obtained by shrinking the diffusion
region back to its source point, thus helping the conven-
tional point-based correspondence and other complex par-
tial matching tasks.

Model recognition. Another immediate application is
model recognition based on key components as suggested
in [6]. The feature detection framework is much more pow-
erful and does not need the complex process of finding key
components as in [6]. Fig. 17a shows the query models, on
which we selectively specify three or four features that are
considered to be essential for characterizing the armadillo
and horse model. The whole shape similarity is computed
as the sum of the distances between the specified feature
regions of the query model and the corresponding regions
of the target model. Apparently, specifying more feature
regions can achieve more precise results. The ranked
retrieval results in Fig. 17 b show that our method can cor-
rectly retrieve the relevant models from the database even
when the models are somewhat incomplete (like the first
recognized armadillo model).

Other potential applications. Many more practical appli-
cations could potentially benefit from the attractive prop-
erties of our approach. For example, thanks to the
robustness demonstrated in Section 5, our framework can
serve as the foundation for search-based modeling and
coarse-to-fine part replacement that frequently relies
upon the conventional denoising processes in the pre-
processing stage. The reliability demonstrated in the test
of repetitive feature detection shows that our detection
results could potentially help with the recognition of
repeated patterns, cut-and-paste editing, and self-symme-
try detection. Since the technical foci of this paper is to
build the theoretical foundation for our feature descrip-
tion and demonstrate its effectiveness via the core appli-
cations of feature detection, we could not do a full justice
to cover numerous other applications (due to paper’s
page limit). Our future work shall try to broaden the
framework’s application scope.

Limitation. Our feature detection framework is built upon
bi-harmonic distance field, and the boundaries of features
in the approach are defined using the contours, which may
not depict regions confined by arbitrary curved boundaries.
Another limitation is that our approach may have difficul-
ties in dealing with model defects, such as the existence of
big holes or missing large organic parts. These will be the
topics for our future research.

7 CONCLUSION AND FUTURE WORK

In this paper we have detailed the description and detection
of our proposed generalized local-to-global features on 3D
geometric models, which organically couple both local (dif-
ferential) and global (integral) geometric attributes. The
multi-scale and multi-level descriptor based on SGWs has
exhibited its potential in depicting any user-specified fea-
ture region and distinguishing among descriptor vectors in
the corresponding region-wise descriptor space. Further-
more, our novel descriptor is comprising many desirable
properties which can facilitate a host of graphics applica-
tions, as showcased in our comprehensive experiments.
Extensive comparisons with other state-of-the-art techni-
ques/methods have demonstrated certain key advantages
of our method in terms of geometry-awareness, reliability,
robustness, etc.

Our future work will try to make the interface’s func-
tionality more flexible and intuitive, allowing users to
sketch the boundary of any intended feature region. We
plan to incorporate more powerful analytical tools into
our descriptor space for various kinds of analysis. We
also intend to broaden the application scope of the pro-
posed shape features to support feature-centric registra-
tion, structure-driven co-segmentation, and high-fidelity
model production.
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