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Abstract Conventional methods to create fluid animation
primarily resort to physically based simulation via numeri-
cal integration, whose performance is dominantly hindered
by large amount of numerical calculation and low efficiency.
Alternatively, video-based methods could easily reconstruct
fluid surfaces fromvideos, yet they are not able to realize two-
way dynamic interaction with their surrounding environment
in a physically correct manner. In this paper, we propose
a hybrid method that combines video-based fluid surface
reconstruction and popular fluid animation models to com-
pute and re-animate fluid surface. First, the fluid surface’s
height field corresponding to each video frame is estimated
by using the shape-from-shading method. After denoising,
hole-filling, and smoothing operations, the height field is uti-
lized to calculate the velocity field, where the shallow water
model is adopted. Then we treat the height field and velocity
field as real data to drive the simulation. Still, only one layer
of surface particles is not capable of driving the smoothed
particle hydrodynamics (SPH) system. The surface particles
(including 3D position and its velocity) are then employed to
guide the spatial sampling of the entire volume underneath.
Second, the volume particles corresponding to each video
frame are imported into the SPH system to couple with other
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possible types of particles (used to define interacting objects),
whose movement is dictated by the direct forcing method,
and fluid particles’ geometry information is then corrected
by both physical models and real video data. The resulting
animation approximates the reconstruction surface from the
input video, and new physically based coupling behaviors are
also appended. We document our system’s detailed imple-
mentation and showcase visual performance across a wide
range of scenes.

Keywords Video-based reconstruction · Height field ·
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1 Introduction and motivation

Liquids are ubiquitous in our everyday life and fluid simula-
tion is indispensable not only in engineering applications, but
also in graphics field such as special visual effects in movies
or video games. During the last two decades, modeling and
simulating fluid behaviors remains a difficult problem and
continues to attract significant attention with growing inter-
est and progresses in graphics. Although computational fluid
dynamics (CFD) is a well-established research area with a
long history, there are still many open research problems
about natural phenomena that we would like to model and
simulate realistically in interactive graphics applications. In
this paper, we focus on the fluid–solid coupling using recov-
ered data from recorded videos.

The complex movement of liquid and all possible rules
to characterize it make it impossible to formulate the whole
equations of motion without sacrificing accuracy to a certain
extent. Numerous numerical methods have been proposed to
approximate fluid motion, and in the simulation approaches,
there are several competing techniques for liquid simula-
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tion with a variety of trade-offs. These physically based
methods are based on simulating fluid dynamics from the
initial state of a fluid scene. When we examine different
forms of discretization that approximate numerical solu-
tions resulted from the Navier–Stokes (N-S) equation, the
physically based methods are roughly divided into three cat-
egories: lattice Boltzmannmethod (LBM) [4,5,20], Eulerian
method [6,7,29,34], and Lagrangian method such as SPH
[1,9,11,18,19,28]. Although to date, physically based meth-
ods are nowbecoming themainstream for generating realistic
fluid animations, and the three methods documented above
all have their own limitations. The main limitations of
LBM are the poor scalability and small time-steps. The
Eulerian method suffers from lengthy computational time,
aliasing boundary discretization, and poor scalability. Care-
fully designed smoothing kernel, compressibility, and blobby
surface effects have also confined the application scopes of
Lagrangian method. The three types of methods heavily rely
on the initial state, which is tedious to set if we wish to obtain
a specific fluid scene animation. Besides, these approaches
can suffer from numerical errors that accumulate over time,
including volume loss and loss of surface details. The com-
putational cost is another issue in physically based fluid
simulation, since the governing partial differential equations
are expensive to solve and the time-steps need to be suffi-
ciently small to maintain stability and accuracy.

Alternatively, another type of fluid animation could be
enabled by the video-based reconstruction method. In order
to acquire the details of fluid dynamic scenes, the video data
can be captured by a single hand-held camera, binocular
stereo cameras, or camera array from different views, and
the 3D shape information of the scene could be estimated
from videos. With the help of video sequences as input,
higher quality can be obtained and both geometric accu-
racy and visual quality can be improved by exploiting the
redundancy of data. Although the reconstruction techniques
have been developed for many years, the reconstruction of
fluid also gives rise to special challenges [32]. Fluid’s com-
plex dynamics, complex topological change over time and
frequent occlusions make it extremely difficult to match
and track features when using stereo-matching reconstruc-
tion methods. It is also difficult to approximate the realistic
water due to generally non-Lambertian appearance inaccu-
racy and the loss of small-scale details. In the video-based
methods, user interaction and user-assistedmodel refinement
are oftentimes required to refine the initial 3D shape to obtain
high-quality models. Moreover, the reconstructed results are
merely one layer of surface. It lacks volumetric information
and cannot be practically utilized for physical interaction
with their immediate surroundings. For example, the work
in [16] only uses the velocity field to simulate virtual object
floating and ignores the object’s weight, which is not a real
physical interaction at all.

In this paper, we present the idea of combining video-
based reconstruction with physically based simulation to
model dynamic water surface geometry information from
video, and then use the geometry information to realize phys-
ically based simulation and fluid–solid interaction. That is,
we adapt video-based reconstruction methods as a correc-
tion tool to constrain the water surface that couples with
other rigid bodies. The shape-from-shading (SFS) method
is first applied to reconstruct the surface’s height field. In the
height field optimization step, we remove redundant errors,
by applying the hole-filling techniques and smoothness con-
straints. Then the shallow water equation is employed to
estimate velocity field between two reconstructed surfaces
of adjacent frames. The reconstructed surface information
spreads across the entire 3D volume and is imported into the
SPH model to interact with rigid bodies. Visually plausible
fluid–solid coupling animations are devised as our experi-
mental results. The entire process is automatic and efficient.
It may be note that, it is also possible to accelerate such
synthesized results using graphics hardware. To the best of
our knowledge, our work presented in this paper represents
the initial attempt that aims to reuse reconstructed fluid sur-
face information in its physically plausible coupling with
fluid’s numerical simulation and our method has the follow-
ing advantages:

– Video-based data correctionOur system’s input involves
a recorded video with fluid content, together with vir-
tually synthesized objects. The height field and velocity
field are estimated from input video with high fidelity.
The surface geometry is discretized and expanded into
3D volume, which is regarded as real data to guide fluid
particles’ movement. We allow the recovered fluid sur-
face to serve as boundary condition towards the recover
of the entire 3D volume information.

– Two-way coupling We intend to seek the possible
combination of video-based reconstruction techniques
and physically based simulation. The surface geometry
recovered from the input video is employed to serve as
boundary condition, which helps discretize the 3D vol-
ume. A synthesized solid can be tightly coupled with the
fluid volume, and such coupling is implemented in our
experimental results.

– Detail preservation The movement of fluid particles in
the simulation loop is constrained by the recovered real
data and the SPH model. The direct force method is
adopted to analyze force effect on particles of non-fluid
objects . In this way, the final dynamic water model
matches with the high fidelity of real video data and
the synthesized results are physically sound. The sur-
face details could be preserved and the system performs
consistently well across a wide range of water movement
manifested in various videos.
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2 Related work

In the field of physically based fluid simulation, the most
commonly used methods for numerically approximating
fluid motion are Lagrangian method, Eulerian method [15,
34], and LBM [20,25]. Specifically, Lagrangian approaches
consider the continuum as a particle system, such as the SPH
method. WCSPH method is proposed in [2] that utilizes the
Tait equationwith a high speed of sound resulting in aweakly
compressible formulation with very low density fluctuations.
Solenthaler et al. [28] solve the shallow water equations
using 2DSPHparticles and simulate height field fluids. Nadir
Akinci et al. [1] propose a momentum-conserving two-way
coupling method for SPH fluids and rigid bodies that is com-
pletely applied to hydrodynamic forces. A detailed survey
is introduced in [11]. Besides, Ladický et al. [14] propose
a novel machine learning-based approach, which formulates
physics-based fluid simulation as a regression problem by
estimating the acceleration of every particle for each frame.
Nevertheless, physically based simulation methods heavily
rely on the initial state, and it is difficult to obtain a specific
fluid scene animation subject to the user-specific design.

In contrast, video-based methods for modeling and simu-
lating fluid adopt a completely different strategy by analyzing
surface data to obtain fluid surface geometry from video
inputs. The most important advantage of using the input of
video sequences is the higher quality of fluid motion one
could obtain. The best frames in the video could be selected
to get better visualization quality. Related techniques, gen-
erally called shape-from-X methods, have been proposed
to recover surface geometry information from images or
videos, where X could be stereo [8], distortion [12], shad-
ing, and so on. Wang et al. [32] present a hybrid framework
to efficiently reconstruct realistic water surface geometry
from real water scenes by using video-based reconstruction
techniques, together with physically based surface optimiza-
tion. Nevertheless, their experiments are under laboratory
conditions and not suitable for outdoor scenes. In contrast,
SFS [33] is a critical shape recovery technique based on
single image or video recording the ordinary scenes. Tan
et al. [30] introduce a linear approach for shape from shading,
and this approach is first applied to the discrete approxima-
tions for surface normal based on finite difference. Pickup
et al. [23] make the first attempt to show the simultaneous
reconstruction of 3D surface geometry and velocity from sin-
gle input video by combining SFS and optical flow to derive a
watermodel that is incompressible in real world. Li et al. [16]
introduce a video-based approach for producing water sur-
face models, where SFS is used to capture the water surface
geometry first, and then the strategy is to apply the shal-
low water model to estimate the 3D velocity that is missing
from the SFS raw data. Briefly summarizing the above work,
these reconstruction methods are capable of acquiring more

surface detail information, but the acquired and computed
results are merely one layer of the surface (i.e., thin surface
sheet), which in principle is lack of volumetric information
and could not be practically utilized in any type of two-way
dynamic interaction with its surrounding environments.

There are also other techniques that combine video data
and physically based simulation together to generate fluid
animations. Kwatra et al. [13] reconstruct 3D geometry of
real scenes frombinocular video sequences and then simulate
one-way coupling from the video to the fluid. Their rendered
output is constrained by the original viewpoints of the cam-
eras. Comparing to their work, we reconstruct 3D geometry
of fluid from monocular video and focus on new interaction
phenomena corrected by video data and SPH model. The
output animations can be generated at any angles.

Our current work in this paper makes new efforts towards
significant improvement: the reconstructed surface informa-
tion is expanded into 3Dvolume,which is treated as boundary
constraints in the data acquisition process as well as in the
volumetric data initialization process, and the physically
based simulation method (i.e., the SPH model) is applied
to achieve the fluid–solid coupling in order to obtain the new
animation that is exhibiting real dynamic interaction with
two-way coupling and physically plausible behaviors.

3 System overview

The input of our system is single fluid video stream and the
output is a new animation video that contains new coupling
behaviors between fluid and virtual solid. As shown in Fig. 1,
it contains two main components, including the reconstruc-
tion part for volumetric data recovery and the simulation part
for physically coupling.

The first three steps of the system process are designed to
acquire the water surface geometry, including the height field
and velocity field. Tsai’s linear approximation method [24]
is implemented to recover the height field. After obtain-
ing the height field, the post-processing stage comprises the
denoising, hole-filling, and smoothing operations in order
to eliminate noises and consolidate the acquired data into a
clean and reusable state. The underlying physics model uti-
lized to estimate the velocity field is the equation of shallow
water, which is a special case of water simulation that affords
fast computation and high-precision water geometry [21].
Then the surface geometry is further expanded into 3D vol-
ume. This way, the fluid surface guides the formation of a
volumetric data set and one layer of surface expands to many
layers. Here the volumetric data are capable of coupling with
(virtual) solids in the subsequent processes.

The second key component employs the SPH model
to simulate the coupling between solid and reconstructed
volumetric data set. The rigid object is also decomposed
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Fig. 1 The system accepts a single input video (a set of frames) as
input and outputs a 3D water animation. The whole process contains
two main steps: the first step applies the SFS technology, shallow water
equation and surface discretization method to handle each input frame
and acquire initial water surface geometry and volume information; the
second step adopts the SPH model to simulate the fluid–solid coupling
and the ICP method to correct the SPH particles using volumetric data
in the next frame. Finally, the animation result is rendered. In the output
animation, most of the boundary conditions (based on the input video)
are preserved and new coupling behaviors are appended

into particles at the same time. The direct force method is
employed to control the object and preserve the solid shape.
Here the movement of the volumetric particles is restricted
by the SPHmodel and data reconstructed from video frames.
After a few iterations in the SPH system, the iterative closest
point method [3,17] (ICP for short) is adopted to match and
modify the SPH particles using the volumetric data, recov-
ered from the next frame. At the end of such processes, the
marching cubes method is used to extract surface, which is
rendered as visually plausible animation results eventually.
In the following sections, we shall detail our system’s tech-
nical elements step by step.

4 Fluid geometry reconstruction

This section introduces our single video-based approach that
acquires the height field and the velocity field, as well as real-
ize surface discretization.With video input, we can obtain the
basic fluid structure, then add splash details or fluid–solid
coupling with the basic fluid structure preserved. The veloc-
ity field satisfies the shallowwater model property. The color

remapping technique is employed to illustrate the compari-
son between the video frame and the recovered height field.

4.1 Height field reconstruction using SFS

The first step concentrates on recovering some initial geom-
etry information from the input video. For the input video
we shall process each frame independently (where the reso-
lution of the input video is m × n). Tsai’s method [24] is a
very simple and fast algorithm for computing the depth map
from a single monocular image. The reflectance function for
the Lambertian surface is modeled as follows:

E(x, y) = R(p, q) = 1 + pps + qqs√
1 + p2 + q2

√
1 + p2s + q2s

, (1)

where E(x, y) is normalized gray level at the pixel (x, y),
p = ∂z

∂x , q = ∂z
∂y , ps = cos τ sin σ

cos σ
, qs = sin τ sin σ

cos σ
, τ is the

tilt and σ is the slant of the illuminant. The finite difference
is used to compute p and q. Using the Taylor series expan-
sion up through the first-order term, the SFS problem turns
into a linear approximation [24]. After obtaining the depth
z(x, y, , t) at each pixel in the video frame, the actual height
field h(x, y) is calculated as h(x, y) = z(x, y) − zb, where
zb is the minimum height of all pixels. In practice, the sur-
faces tend to have vertical drifts that are caused by the global
luminance changes in the video recording stage. The height
field is recalculated to remove the effect of global luminance
change: h(x, y, t) = h(x, y, t) − 1

mn

∑m
i=1

∑n
j=1 h(i, j, t).

Figure 2 shows several outdoor water examples with shape
from shading recovered surfaces using Tsai method. These
examples are taken from the Dyntex Dataset [22] (including
gentle and breaking waves, fountain and waterfall). The res-
olution effects the density of points in the height field (each
pixel has a height value). The resolution of the videos is
352 × 288 and the number of surface particles in the height
field is 101,376. Interpolation and resampling can be applied
to change the points density in each frame if needed. The
frame rate affects the correction step interval in the simula-
tion step (detailed in Sect. 5.3).

4.2 Height field processing and color remapping

Due to the highlight, splatter or spray in the video frame, large
amount of noise exists in the acquired height field, whichwill
influence accuracy in a negative way. The statistical outlier
removal method is employed to denoise and its equation is
μmean+εdσd, whereμmean is themean distance of neighbors,
εd is the standard deviation multiplier and σd is the standard
distance deviation. For each pixel, the mean distance to its
neighbors (the adjacent pixels in the 3D space) is calculated.
Octree data structure is utilized in the neighbor searching
process, which is the most commonly used to partition a
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Fig. 2 Some example input videos and their SFS surface height field.
The surfaces are rendered from a different view point to reveal the 3D
information. The red color means the larger height value, while the blue

color means the smaller value. The sequence number of the video are
649h310, 649db10, 6486410 and 64adl10 in the Dyntex database

3D space by recursively subdividing it into eight octants.
Assuming that the distribution is Gaussian with a mean and a
standard deviation, all points whose mean distance is outside
an interval defined by the global distances mean and standard
deviation will be considered as outliers.

For each removed outlier’s pixel position, its k2 neighbors
(neighbors in a square window) data are taken into account
to fill these holes. Then the height field is smoothed. The last
step is to smooth the result height. For each pixel, sum up
its neighbors’ height and divide it by k2 and set it as its final
height. Figure 3 gives an example of this process. Finally the
height field of each frame is normalized by subtracting per-
frame means, avoiding dithering in the result animations. In
order to illustrate the accuracy of the reconstructed result, the
mapping between the intensity of pixels in the input video
frame and the height field is defined. The height field is turned
into an RGB picture, as shown in Fig. 4.

According to RGB color information and the recon-
structed height in each frame, a hash table is created and
the mapping relationship between the height value and the
RGB color is built. For the height field of each frame, the

Fig. 3 After the denoising, hole filling and smoothing, we obtain better
height field

Fig. 4 The remapping process is adopted to transform the height field
into an RGB image. The relationship between the RGB information and
height value is created using a hash table and the height field is turned
into an RGB image

maximum height is labeled as hmax, the minimum is hmin,
and the grey value G(x, y) for each pixel’s height h(x, y) in
one frame is:

G(x, y) = (h − hmin)(Gmax − Gmin)

hmax − hmin
+ Gmin, (2)

where h denotes h(x, y) in one video frame, Gmax and Gmin

are the maximum and minimum grey values of the video
frame (in YUV space), respectively. When a grey value G
corresponds to multiple color values, we compute the simi-
larity of neighbors to select themost matching color tomatch
with the grey value. For example, some grey value Gk corre-
sponds to multiple colors c1, c2 . . . cm in the hash table, the
similarity is computed in Eq. 3:
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Fig. 5 The comparison between video frame and the height field is
shown in the remapping image. Notice the right remapping image
approximates the left video frame, revealing a high accuracy

si =
7∑

j=0

(cir − c jr )
2 + (cig − c jg)

2 + (cib − c jb)
2, (3)

where 1 ≤ i ≤ m and j is one of the eight neighbors of pixel
i and cib, cig, cir or c jb, c jg, c jr are the RGB components.
We choose ci as Gk’s color value where si is the minimum,
as illustrated in Fig. 4. Figure 5 shows the comparison. Our
system is capable of producing visually plausible results and
achieves very high percentage of accuracy.

4.3 Velocity field estimation

The 3D velocity missing from the SFS data are estimated
in this subsection. SFS surfaces is considered as a prior to
constrain the velocity estimation. Shallow water is a special
case of water simulation that allows fast computation [26,31]
that describes the flow below a pressure surface in a fluid. In
this paper, we choose shallow water to simplify the deep
water model. The equations are derived from the strategy of
depth-integrating the Navier–Stokes equations, in the case
where the horizontal length scale is much greater than the
vertical length scale. Under this condition, the conservation
of mass implies that the vertical velocity of the fluid is small.
The governing equation is:

ht + hxu + hyv + h(ux + vy) = 0. (4)

In this paper, (u, v,w) represents the velocity field along
(x, y, z) directions, x and y axes are in the image domain
and z axis is perpendicular to the x–y plane. In other words,
each pixel in a frame has a height value along z axis.

As for the additional smoothness constraint [33], it ensures
a smooth surface in order to stabilize the convergence to a
unique solution, and is given by

∫ ∫
(px

2 + py
2 + qx

2 + qy
2)dxdy, (5)

where p and q are surface gradients along the x and y direc-
tions. At this point, our goal is to estimate a relatively steady

velocity field and the smoothness constraint is selected as
that in [16]:

∫ ∫
|∇u|2 + |∇v|2dxdy. (6)

The objective energy function for velocity estimation is a
weighted combination of the shallow water equation and the
smoothness constraint:

E =
∫ ∫

[(ht + hxu + hyv + h(ux + vy))2

+α2(|∇u|2 + |∇v|2)]dxdy. (7)

Here zt can be directly estimated by subtracting the two
consecutive shape from shading surfaces. Equation 4 can be
minimized by solving the associated Euler–Lagrange equa-
tions. The solving process in [16] is applied, but it differs in
that the result zt in each frame remains unchanged to keep its
consistency with the real data. After obtaining the velocity
field, we calculate the acceleration field between two con-
secutive frames.

Here the height field is recovered from the input video
with high accuracy and velocity field satisfies shallow water
equation. However, only one layer of surface geometry is not
enough to drive the SPH simulation system; it is necessary
to obtain 3D volume data.

4.4 Sampling of volumetric particles

In the natural fluid scenes, the same water surface corre-
sponds to different types of volume information, such as
vortex, undercurrent, rocks andmud. To solve the non-unique
volume problem, we simplify the deep water model. The
surface geometry acquired from video frames is regarded as
a physical guidance towards the practical goal of produc-
ing new fluid animation. A lot of efforts have been made
to approximate the same appearance and the most parts in
the result animation are closely similar to the input video.
In addition, new coupling behaviors are appended into the
result video.

We add a river bed, discretize the surface particles, and add
volumetric particles in order to fill into the entire volume (the
length is 352, the width is 288, and the height is max value of
h(x, y, t)) as shown in Fig. 6. Here the river bed is defined
and the volume particles are added from bottom to top. The
value of the river bed on the z axis determines the thickness
of the SPH water.

When the vertical internal particles’maxheight is less than
the surface particle’s height, new particles are continuously
produced. The distance R between two particles controls the
sampling resolution, which is also crucial to density estima-
tion in SPH system. So the radius of particles R is computed
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Fig. 6 This image demonstrates how the surface is discretized into the
3D volume. First, according to the surface points (purple) recovered
from video, the volumetric particles are generated from bottom to top.
You can consider this process as a resampling process. Then we spread
the velocity field (blue arrow) from surface to the river bed (orange
dotted line). Finally, a kernel function (orange circle) is applied on
each volumetric particle to recalculate its velocity. At last, one layer of
surface geometry is expanded to the entire volume

based on the parameters in SPH to avoid explosion. As shown
in Fig. 6, the black dashed arrow indicates the velocity field
decreases in proportion from top to bottom and inner par-
ticle’s velocity is recalculated and smoothed by the kernel
function (in brown circle). First, the velocity and accelera-
tion of the inner particles is initialized to zero and interpolated
based on surface neighbors’ velocities. That is, the velocity
field spreads from the surface to the boundary. The value of
particles’ velocity (including acceleration) between the sur-
face and the river bed decreases in proportion (from 1 to 0
gradually). Then, a kernel function (in the brown circle in
Fig. 6), such as spherical kernel function:

W (d, h) =
{
1 − 3d

2h + d3

2h3
, d ≤ σ

0, otherwise
(8)

is applied to this new velocity field to enhance neighbors’
relationship (each particle’s velocity is recalculated based
on its neighbors). This sampling process on the 2D planar
configuration is illustrated in Fig. 7.

After volumetric sampling of the video 649h310, the num-
ber of particles jumps from 101,376 to 223,468 (with the
assumption of particle radius R in the SPH system being set
to 1.5). The discretization result is illustrated in Fig. 8. At this
stage, we have completed our reconstruction process. In fact,
water surface is moving horizontally, so particles (containing
height field and velocity field) are generated from the video

Fig. 7 In the image coordinate system, each pixel has a height value.
This picture illustrates the proposed sampling process on the 2D planar
configuration. Several pixels are sampled into a bigger SPH particle,
including position and velocity. At last, SPH particles fill the 3D volume

Fig. 8 This picture shows the discretization result. One layer of surface
particles (purple color) is discretized into the whole 3D volume (light
blue color). The value of the river bed on the z axis determines the
thickness of the SPH water

frame-by-frame. It is worth noting that the surface geometry
information is preserved. The volumetric particles recovered
from video frames is marked as Volumekvideo, where k ⊆[1,
the number of frames]. The Volume1video is used to initialize
the SPH system.

5 Fluid–rigid coupling using SPH model

The SPH method works by dividing the fluid into a set of
discrete elements, referred to as particles. The fluid particles
are driven by theN-S governing equation employing the SPH
model.As for solid particles, the direct forcemethod is imple-
mented to realize the two-way coupling. Here Volume1video
data are selected to initialize the SPH system and the SPH
particles are divided into two categories : volumetric parti-
cles in the SPH system (marked as Volumeksph) and the solid
particles (marked as Volumesolid).

5.1 Fluid movement with particles

The force of each fluid particle is composed of three parts:
pressure, viscosity force, and external force. External force
is gravity in general and pressure force is caused by pressure
differences in the fluid. For instance, consider the flow of

123



C. Wang et al.

liquid in the pipe, the pressure of the inlet area will be larger
than the outlet area, so the liquid moves. The force value is
equal to the pressure gradient, from areas of high pressure to
low pressure areas. Viscosity force is caused by the velocity
difference between particles and the value of the force is
associated with fluid viscosity coefficient and the velocity
difference.

The contributions of particles to one certain position are
weighted according to its distance from the particle of inter-
est. Mathematically speaking, this is governed by the kernel
function W . A quantity Ai at an arbitrary position xi is
approximately computed with a set of known quantities A j

at neighboring particles position x j :

Ai =
∑

j

m j

ρ j
A jW (d, h), (9)

where d equals ||xi − x j || and h is the kernel radius.
When searching neighbors, we adopt the uniform grid.

The 3D space is subdivided into cubic cells and each particle
is associated to one cell in the construction stage. To find all
relevant neighbors, the cell of a particle and all adjacent cells
are queried. If the cell size is equal to the kernel support, 27
cells have to be queried in 3D, which is optimal according
to Ihmsen et al. [10]. The number of particles associated with
a cell and the number of neighboring particles depends on
the initial particle distance. It may be noted that, this query
step is easy to parallelize.

When computing density, A is substituted by ρ. Adopting
the formulation in [19], We choose Poly6 function

Wpoly6(d, h) = 315

64πh4

{
(h2 − d2)

3
, 0 ≤ d ≤ h

0, otherwise
(10)

as kernel function for density interpolation and Spiky
function

Wspiky(d, h) = 15

πh6

{
(h − d)3, 0 ≤ d ≤ h
0, otherwise

(11)

for pressure computation. So the final acceleration ai is for-
mulated as follows:

ai = g − m
45

πh6
∑

j

(
pi + p j

2ρiρ j
(h − d)2

xi − x j
d

)

+mμ
45

πh6
∑

j

(
v j − vi
ρiρ j

(h − d)

)
, (12)

where ρ is the density, g is the gravity acceleration, p is
the pressure, μ is the coefficient of viscosity and v is the
velocity. At each time step we recalculate density, pressure,
acceleration, velocity of each fluid particle and update its

Fig. 9 After 40 iterations, the particles in the SPH system (left) and
the particles loaded from the next frame (right) are shown together in
the picture. SPH particles approximate the recovered data, where fluid
surface geometry is preserved. In the following correction process, we
use the recovered data in the next frame (right) to correct the SPH
particles (left)

position. The SPH’s iteration time step is set to be 1 ms and
the interval time between two consecutive video frames is
40 ms (i.e., 25 fps). After every 40 iterations, the next frame
particles’ data are loaded to correct the current particles in
the SPH simulation. Figure 9 shows the comparison of two
groups of particles.

According to the input video resolution, we define the
boundary to restrict the whole scene range. In order to reduce
the computational burden of the collision between the liquid
particles and the boundary, the particles are pushed back by
the boundary and the boundary is set to be stationary. The
force fb is computed as ksn+kd(vr ·n)n, where ks is the spring
coefficient, kd is the damping constant, n is the collision
point’s normal vector, vr is the relative velocity.

5.2 Fluid–solid interaction

In order to simulate the interaction between fluid–solid, the
rigid body is sampled with particles. In fluid volume, sup-
pose the collision point (normal vector n = xf−xs||xf−xs|| , position
xc = xs+nR and velocity vc) between a fluid particleA (with
position xf , velocity vf , massmf ) and a solid particle B (with
position xs, velocity vs, mass ms) can be detected if the dis-
tance of two centers is smaller than 2R. The solid centroid
position xo and velocity vo are computed by

xo = 1

n

n∑

i

xsi , vo = 1

n

n∑

i

vsi . (13)

Here xsi is the i th solid particle position and n is the number
of particles. Then an offset vector qo(qoi = xsi − xo) is
stored, representing each solid particle’s relative position to
the centroid. The solid’s moment of inertia is computed as

I = ms

n∑

i

qoi
Tqoi . (14)
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The collision force between A and B is

Fi = 1

	t

[(
1

ms
+ 1

mf

)
E + rTi I

−1ri

]−1

vi , (15)

where	t is the iteration time in the SPH system, E is a 3×3
identity matrix and ri is the relative position of collision
position with respect to the centroid:

ri = wt × (xc − xo), (16)

and the relationship between vi and relative velocity vr is

vi = β[vr − (vr · n)n] − vr, vr = vf − vc. (17)

β is a coefficient. Here vc = vo + wt × (xc − xo) is the
velocity of collision position andw is a parameter associated
with solid rotation.

The velocity and position of each solid particle is recal-
culated as

vt+1
si = vtsi + Fi

ms
+ wt+1 × qoi − wt × qoi ,

xt+1
si = xtsi + vtsi + vt+1

si

2
	t .

(18)

In each iteration, the state of every solid particle is updated
independently (including both position and velocity). We
recalculate xo andvo, thenqo is used to rearrange the particles
and keep the solid shape unchanged. Finally, qo is updated.
The solid is capable of rotating and translating. During the
entire process, the solid shape is preserved. If the deforma-
tion of the solid is beyond the threshold, the solid particles
will be rearranged based on the centroid parameters and
variable w.

5.3 Video data correction

The brute-force change of the particle positions in the SPH
system will certainly introduce discontinuity. In this step,
data correction is adopted to make the SPH particles as close
to the real data as possible. The frame rate of the input video
affects the correction step interval in the simulation step.
Here the frame rate is 25 and the time interval between two
adjacent frames (transformed into volumetric particles) is
40 ms. The time step in the SPH system is �t , which is set
to be 1 ms in practice. After 40/�t iterations, the volumetric
particles Volumek+1

video in the next video frame is applied to
correct the SPH particles Volumeksph. The volumetric parti-

cles Volumeksph and solid particles Volumesolid in the SPH
system are processed separately and only the volumetric
particles Volumeksph are corrected in this stage. The solid par-
ticles data remains unchanged. As illustrated in Fig. 10(1),
the ICP [3,17] method is employed to match two group of
particles : the SPH particles Volumeksph (red particles) and

new volumetric particles Volumek+1
video (green particles). The

algorithm iteratively revises the transformation (combination
of translation and rotation) needed to minimize the distance
error between two groups of point cloud. Here the point-to-
plane error is adopted.

Mopt = argmin
M

∑

i

((
M · sk+1

i − dki

)
· ni

)2

sk+1
i = (Volumek+1

videoi x
,Volumek+1

videoiy
,Volumek+1

videoi z
, 1)T

dki = (Volumeksphi x ,Volumeksphiy ,Volumeksphi z , 1)
T (19)

where M and Mopt are 4 × 4 3D rigid-body transformation
matrices. ni = (nix , niy, niz, 0)T is the unit normal vec-
tor at Volumeksphi . The relative orientation between the two

Fig. 10 In the correction process, ICP method is applied to match tow
group of particles, as shown in subgraph 1. Then particles are divided
into three categories:matched particles, unmatched volumetric particles
(dark green ones) and unmatched SPH particles (dark red particles) in
subgraph 2. Each pair of matched particles are integrated into one par-
ticle (grey particles in subgraph 3). The distance error of each unpaired
SPH particle (red color) to its nearest volumetric data neighbors (green

color) is calculated. We abandon unmatched SPH particles (purple)
whose distance error below a threshold value. Under the same condi-
tion, unmatched volumetric particles of the next frame are preserved
(dark green ones). As for these unmatched particles whose distance
error above a threshold value (light blue ones), we treat them as new
splatter and spray caused by interaction and retain them in the local area
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group of particles is small, the nonlinear optimization prob-
lem is approximated with a linear least-squares one that can
be solved more efficiently.

After ICP process, two group of particles are divided into
three categories: matched particles, unmatched volumetric
particles (dark green particles)and unmatched SPH parti-
cles (dark red particles), as shown in Fig. 10(2). Each pair
of matched particles are integrated into one particle (grey
particles in Fig. 10(3).The average of both velocity and accel-
eration is calculated as new velocity and acceleration. As
illustrated in Fig. 10(3), the distance error of each unpaired
SPH particle (colored in red) to its nearest real data neighbors
(colored in green) is calculated. As for these unmatched par-
ticles whose distance error below a threshold value, the SPH
particles are abandoned (purple particles) and new volumet-
ric particles of the next frame are selected (dark green ones).
As for these unmatched particles whose distance error above
a threshold value (light blue ones),we treat themas new splat-
ter and spray causedby interaction and retain them in the local
area. Finally, these retained particles Volumek+1

sph (including

grey, dark green and light blue particles in Fig. 10(3) combin-
ingwith solid particlesVolumesolid are imported into the SPH
system again and new iterations are carried out. The fluid par-
ticles geometry information is corrected by both SPHmodels
and real video data. Finally, new splatter and spray caused by
interaction are retained in the local area and the other parts
of the surface particles are correspondingly modified by the
video data. The procedure of the whole process in shown in
Algorithm 1.

Algorithm 1 Video-based Fluid Simulation
1: Initialize SPH using volumetric data Volumn1video
2: Add solid particles Volumnsolid
3: totalFrames ← N //N is the number of frames
4: �t ← 1ms //time step in SPH system
5: k ← 1
6: FPS ← 25
7: Volumnksph = Volumn1video
8: while k ≤ totalFrames do
9: while i terations ≤ (1000ms/(FPS ∗ �t)) do
10: SPH advection(Volumnksph ,Volumnsolid )
11: end while
12: Apply ICP to match Volumnk+1

video and Volumnksph
13: Integrate matched particles
14: Compute distance error for unmatched particles
15: Volumnk+1

sph ← retained particles
16: k ← k + 1
17: end while

5.4 Surface extraction and rendering

Here the marching cubes method is adopted to obtain the iso-
surface. In a grid space the cells that contain the surface are
first identified. After the data correction process, the surface

Fig. 11 Particles are extracted to form a surface using the marching
cubes method and the textures between fluid and solids are different

is extracted. Due to different textures, fluid and solid particles
are processed, respectively, including surface extraction and
texturing. Then, as illustrated in Fig. 11, we integrate them
together and render the result. Different from Kwatra’s work
in [13], the whole 3D simulation scene can be rendered at any
angle. Finally, an angle of the camera’s view is selected and
the simulation results including details are rendered.we place
the camera at (176,−50,50) in the 3D coordinate system,
pointing to (176,144,0).

6 Results and analysis

6.1 Experiments and evaluation

To validate the proposed method, we first choose 649h310
video in the Dyntex dataset [22] and then apply our approach
to estimate the height field and compare them with the
recorded video frame. In the surface reconstruction process,
the Ps and Qs in Tsai’s method [24] are both set to be 0.01.
The statistical outlier removalmethod is applied and the num-
ber of points to use for mean distance estimation is 30 and the
standard deviation multiplier for the distance threshold cal-
culation is 2. The window size for hole filling and smoothing
is 3 × 3. The volume particles’ radius is 1.5. For example,
a volume particle’s position is (x, y, h(x, y, t)) so another
adjacent volume particle’s position is (x + 3, y + 3, h(x +
3, y + 3, t)). When estimating velocity, we set α = 1 and
β = 0.5 (in the fluid–solid interaction stage). The compari-
son between the video frame and reconstructed height field
image is shown in Fig. 5. In the SPH simulation, the kernel
h is twice the radius and �t is 1 ms.

Due to the data independence property of the SPH system,
it is suitable for GPU parallelization. Particle properties are
related to its neighbors’ properties. Neighbors’ properties are
collected to calculate the particle property, avoiding serial-
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Fig. 12 Here we show the output surfaces (the bottom row) of four
different video frames (frame 90, 98, 106, 114 at the top left row). The
video is 649h310 in the Dyntex database. The pictures (top right row)
illustrate splash details. Notice that even the underlying physics in

not perfectly accurate, our method is able to preserve boundary con-
dition based on the input video and produce new visually plausible
two-coupling results

Table 1 Average particles number and average time cost

Video Reconstruction step Simulation step

Surface particles Volumetric particles Time (ms) FPS SPH particles Time (ms) FPS

649h310 101,376 223,468 23.9 41.6 223,768 94.7 10.6

649db10 101,376 254,920 27.2 37.0 255,220 118.7 8.4

6486410 101,376 200,461 22.7 43.5 200,761 85.3 11.7

64ad110 101,376 285,813 30.1 33.3 286,113 126.7 7.9

Table 2 The comparisons of our work with alternative approaches in both the video-based reconstruction method and the physical simulation
method

Reality Input data
independence

Surface details Volumetric data Computation complexity Physical interaction

Video-based
reconstruction [16]

+ + + − − − + + − − − ++ − − −

Physical
simulation [27]

+ + + + + + + + + + + − + + +

Video-based fluid
re-simulation [25]

+ + + + + + − − − + + + − −

Our hybrid method + + + + + + + + + + + + + + + + +

Here ‘+’ denotes the higher quality and ‘−’ denotes the lower quality

ization which is caused by write-after-write fetch operations.
Moreover, the uniform grid is employed for the neighbors’
search. Taking advantage of coalescing and broadcasting
mechanism in CUDA, faster computation could be achieved.
The coupling results are shown in Fig. 12. The similar
appearance of the input video fluid scene is reproduced, fur-
thermore, new coupling behaviors are integrated.

Table 1 demonstrates the efficiency of our method when
the number of particles is huge. Due to the same resolution of
the input video, the number of particles in the reconstruction
step is equal for each frame. The cost times of the recon-
struction step are slightly different on account of diverse

water surface in videos. Volumetric sampling process multi-
plies the number of particles and the ICPmatching algorithm
increases the complexity in SPH simulation and consumes
more time.

We also provide an analysis of our method, using com-
parisons with alternative approaches in terms of perspectives
of the video-based reconstruction, the SPH simulation and
video-based fluid re-simulation, as shown in Table 2. The
SPH system intends to model the equations of hydrodynam-
ics towards the goal of producing fluid animation, which
visually approximates to the real fluid behaviors.Meanwhile,
the video-based reconstruction methods recover the surface
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geometry from the recorded video. Higher quality of the sur-
face details could be obtained, but the volumetric information
is missing. Our approach combines the advantages of two
diverse types of methods, because this newmethod could not
only preserve the surface details, but also utilize volumetric
data to realize the fluid–solid coupling in a physically plausi-
ble sense. The proposed method performs consistently well
across different types of large-scale outdoor water scenes
(including gentle and breaking wave, fountain and waterfall,
etc.).

6.2 Limitation and application domain

In the reconstruction step, the SFS method is first applied to
recover height field from the input video. Then the recon-
structed height field is utilized for velocity field estimation,
which is governed by shallow water equation. The recon-
structed data are treated as ‘real data’ and applied to estimate
volumetric data and correct the dynamics of SPH model.
Obviously, the original reconstructed height field is crucial
in the entire estimation and re-simulation process. So our
method is inevitably subject to possible artifacts of SFS,
which is not yet capable of coping with shadow and reflec-
tion of water surface and might result in possibly serious
geometric distortion. Besides, in the simulation scene, fluid
and solid particles are processed, respectively, including
surface extraction and texturing. The resulting animations
cannot be real-time rendered. The algorithm described here
could be applied into video enhancement and the simula-
tion/animation could be utilized for the rapid production of
special visual effects in movies or video games.

7 Conclusion and future work

In this paper, we have presented an efficient method combin-
ing Lagrangian method (i.e., SPH) and the SFS method. SFS
is employed to acquire water surface geometry from single
input video. We improve the height field by applying denois-
ing, hole-filling, and smoothing operations.When estimating
the velocity field, the shallow water equation is applied as a
physical model. The visual comparison with real pictures
illustrates accuracy of the reconstruction process. Nonethe-
less, only one layer of surface model is not possible to drive
the entire SPH simulation, so the surface geometry from the
acquired dataset is employed to serve as boundary condition
to help discretize the entire fluid volume and couple with
additional (yet virtual) rigid bodies. In the SPH simulation,
the direct force method is utilized to control the movement of
objects. The fluid particles are constrained by both the N-S
equation and the real, reconstructed data. Two-way coupling
is demonstrated as experimental results. Our method has the
attractive characteristics:

– The entire system’s input is only a video sequence
recorded by an ordinary camera, together with (virtual)
objects via synthesis. The surface is expanded into 3D
volume. It works fully automatically and the fluid ani-
mation is closely approximating the input video.

– The real data and physical SPH model are tightly inte-
grated to realize the two-way coupling. The systemworks
consistently across awide range of fluidmovement/scene
acquired by videos.

– The physical fluid–solid coupling is realized, which is
guided by the reconstructed data and SPH model. We
can reproduce a new fluid animation, and the new syn-
thesis is guided by the input videowhile the new coupling
behaviors are appended.

There are many interesting future extensions based on
our current research efforts. First, The reconstructed surface
geometry information is treated as real data, so the system is
solely limited by the artifacts of SFS. Second, in the dis-
cretization process, we simplify the deep water model to
obtain the volumetric dataset. In the near future, more com-
plicated fluid models such as vortex or undercurrent could be
added. As a possible improvement, completely different cou-
pling effects could be achieved according to the same source
of fluid video. Boundary condition handling, and more com-
plex objects could also be considered in order to improve the
entire system’s functionalities.
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