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Abstract—Manifold learning, especially spectral embedding, is known as one of the most effective learning approaches on high

dimensional data, but for real-world applications it raises a serious computational burden in constructing spectral embeddings for large

datasets. To overcome this computational complexity, we propose a novel efficient embedding construction, Diverse Power Iteration

Embedding (DPIE). DPIE shows almost the same effectiveness of spectral embeddings and yet is three order of magnitude faster than

spectral embeddings computed from eigen-decomposition. Our DPIE is unique in that 1) it finds linearly independent embeddings and

thus shows diverse aspects of dataset; 2) the proposed regularized DPIE is effective if we need many embeddings; 3) we show how to

efficiently orthogonalize DPIE if one needs; and 4) Diverse Power Iteration Value (DPIV) provides the importance of each DPIE like an

eigen value. Such various aspects of DPIE and DPIVensure that our algorithm is easy to apply to various applications, and we also

show the effectiveness and efficiency of DPIE on clustering, anomaly detection, and feature selection as our case studies.

Index Terms—Approximated spectral analysis, power iteration

Ç

1 INTRODUCTION

THE family of Spectral Embedding algorithms, one of
the most popular methods to calculate low dimen-

sional embeddings, has been widely used in diverse
application domains such as clustering [18], [32], [34],
anomaly detection [15], [16], [17] and feature selection [5],
[14], [20], [24], [44]. Spectral Embedding uses a spectral
decomposition of the graph Laplacian [32]. The generated
matrix can be considered as a discrete approximation of
the low dimensional manifold embedded in the original
high dimensional data space and such low dimensional
embedding reveals the intrinsic relationship among data
points and has showed superior effectiveness on machine
learning and data mining.

However, the bottleneck in Spectral Embedding algo-
rithm is its associated high complexity in both time Oðn3Þ
and space Oðn2Þ, which prevents it from practical utiliza-
tion in many real-world applications. For instance, we
cannot practically do spectral clustering analysis on pop-
ular RCV1 benchmark dataset [22] using a single machine
due to its nearly 200;000 documents. Given a dataset with
n data points, spectral methods create an n� n affinity
matrix and apply eigen-decomposition on the subsequent
Laplacian normalized matrix with the time complexity of

Oðn3Þ in general.
To overcome these limitations, several methods are pro-

posed such as [25], [27], [40]. Among them, Power Iteration

Clustering (PIC) [27] is one of the most promising candi-
dates due to its speed, small memory footprint and yet
effectiveness in obtaining clustering results for datasets
with small number of clusters. However, PIC cannot effec-
tively handle large number of clusters, even with the
improved PIC-k (k power iteration vectors with different
random starts) method [26]. In addition, it is also an impedi-
ment to apply this type of power iteration embedding (PIE)
in many other data mining applications, such as feature
selection and anomaly detection.

This paper proposes Diverse Power Iteration Embed-
dings (DPIE) which overcomes the limitations of PIC/PIC-k
and applies it in a broad scope of spectral analysis, while it
requires a far less amount of time and space which is similar
to PIC-k. The proposed algorithm has strong theoretical
foundation and shows excellent empirical performance.
Our contributions in DPIE are as follows:

(1) We proposed a novel power-iteration-based method
that aims to find diverse and yet informative low
dimensional embeddings, which was the main draw-
back in applying previous PIC methods on various
applications.

(2) In theory, our proposed DPIE has the same or similar
representational power of low dimensional projec-
tion with classic spectral embeddings, so that it can
be applicable to various spectral analysis.

(3) Our proposed DPIE, compared with the existing
spectral embedding approximations, achieves a sim-
ilar or even lower time and space computational
complexity, but a more desired quality.

(4) We proposed how to further approximate eigen-
value decomposition by providing Diver Power Iter-
ation Values (DPIV) as the weights for DPIE and
efficient orthogonalization of DPIE. Both theoretical
proofs and quantitative experiments demonstrate
that given certain conditions, DPIVs are good
approximation of eigenvalues. Furthermore, we
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introduced a general procedure to orthogonalize
DPIE.

(5) We analyzed the effect of a regularization in choos-
ing diverse PIE, and gave suggestions about how to
choose regularization parameters in different
situations.

(6) We systematically evaluated DPIE along with sev-
eral closely-related algorithms on a number of
important applications. The results confirmed that
our new algorithm significantly outperformed other
existing algorithms in terms of effectiveness and
efficiency.

2 SPECTRAL EMBEDDINGS CONSTRUCTION

Spectral embedding construction already gained its popu-
larity in the last decade because of its ability to reveal
embedded data structure. It has a strong connection with a
graph cut because it uses eigenspace to solve a relaxed form
of a normalized graph partitioning problem [34]. Its second
desirable aspect is that it can capture the nonlinear structure
of data with the help of nonlinear kernel, which is difficult
for k-means or other linear clustering algorithms.

Algorithm 1. SpectralEmbeddingConstruction(X, c)

Input:X 2 Rn�m where n is#instances andm is#features,
and c is#low-dimensions.

output: Spectral embeddings Y 2 Rn�c.
1 Construct the affinity matrixW 2 Rn�n ofX ;
2 Compute the diagonal matrixD 2 Rn�n where

Dði; iÞ ¼Pn
j¼1 W ði; jÞ andDði; jÞ ¼ 0 if i 6¼ j ;

3 Construct a graph Laplacian L using Lnn ¼ D�W ,

Lrw ¼ I �D�1W or Lsym ¼ I �D�1=2W D�1=2 ;
4 Extract the first c nontrivial eigenvectorsC of L,

C ¼ fc1;c2; . . . ;ccg ;
5 Re-normalize the rows ofC 2 Rn�c into

YiðjÞ ¼ ciðjÞ=ð
P

l ciðlÞ2Þ1=2 ;

Spectral embedding construction, as shown in
Algorithm 1, starts with local information encoded in a
weighted graph that is constructed from the input data with
a certain similarity kernel, and selects embedding vectors
from the global eigenvectors of the corresponding (normal-
ized) affinity matrix.

Although it demonstrated its effectiveness in cluster-
ing [18], [32], [34], anomaly detection [15], [16], [17] and
feature selection [5], [14], [20], [24], [44], it is infeasible
for large-scale data analysis due to its time and space
complexities. The space requirement for constructing
affinity matrix (Step 1) is Oðn2Þ, and the computing time

for eigen-decomposition in Step 4 is Oðn3Þ. Therefore for
real world big data applications, a mechanism to approxi-
mate Algorithm 1 with less time and space complexity is
imperative while retaining similar effectiveness.

3 POWER ITERATION EMBEDDINGS AND ITS
LIMITATIONS

3.1 Power Iteration Embeddings

To address the complexity of classic spectral embedding
construction, Lin and Cohen [27] proposed power iteration

clustering, which finds a one dimensional data embedding
using truncated power iteration on a Laplacian normalized
affinity matrix, and then performs k-means on this one
dimensional embedding. PIC is based on a simple iterative
method called power iteration, which we will briefly intro-
duce here.

According to [32], the c smallest eigenvectors of graph
Laplacian Lrw happen to be the c largest eigenvectors of

random walk normalized affinity matrix Wrw ¼ D�1W .
For our notational convenience, we will use W for Wrw in
the rest of our paper. Let W 2 Rn�n and recall that if c is
an eigenvector for W with eigenvalue �, then Wc ¼ �c.
Therefore in general, there is Wtc ¼ �tc for any t. This
observation is the very foundation of the power iteration
method.

Given C ¼ fc1;c2; . . . ;cng, the set of unit eigenvec-
tors of W forms a basis in Rn�n, and has corresponding
real eigenvalues L ¼ f�1; �2; . . . ; �ng. We assume that the
first c eigenvectors carry informative signals and the rest
eigenvectors are noise [32]. From the spectral theorem,
for the properly normalized affinity matrix W such as
random walk normalization, there are eigenvalues as
follows:

1 ¼ �1 > �2 > . . . > �c � �cþ1 > . . . > �n: (1)

Note that power iteration embeddings assume that 1) there
is at least a large enough eigen-gap between c and cþ 1 and
2) �2 � �3 � . . . � �c, where � indicates that the two values

are close. Now let vð0Þ 2 Rn be a randomly generated vector,
sinceC is a basis of Rn�n, we have:

vð0Þ ¼ a1c1 þ a2c2 þ . . .þ ancn; (2)

where ai is the weight of ith eigenvector. Then, the power
iteration will be:

vt ¼Wtvð0Þ ¼ a1�
t
1c1 þ a2�

t
2c2 þ . . .þ an�

t
ncn

¼ a1c1 þ �t
2

Xn
i¼2

aið�i

�2
Þtci

 !
:

(3)

The power iteration will finally converge to a1c1 which is
useless because it is a constant vector. However, if the num-
ber of iteration t is cleverly set from being too large as

shown in [27], Wtvð0Þ would be a linear combination of the
first c informative eigenvectors, while all the other eigenvec-
tors are gone away due to the eigen-gap. In other words, the
whole process should be controlled very well in order to
remove the terms of ccþ1 . . .cn with diminishing rate

ð�cþ1�2
Þt, but still keep the rate of ð�c�2Þ

t big enough. Fortunately,

if the power iteration reaches the eigen-gap, then the con-
vergence rate will be relatively slow because the similar val-
ues from �2 to �c. PIC defines the velocity at t as

dt ¼ jvt � vt�1j and acceleration at t as " ¼ jjdt � dt�1jjmax as
a measure of the convergence rate and stops power itera-
tions if " is very small for early stopping. Fig. 1 shows the
effect of different number of power iterations and t ¼ 20
shows a pretty good clustering embedding. Power Iteration
Embedding, the key step of PIC proposed by Lin and Cohen
[27], is shown in Algorithm 2.
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Algorithm 2. PowerIterationEmbedding(X)

Input:X 2 Rn�m where n is#instances andm is#features.
output:Power iteration embedding vt 2 Rn�1.

1 Construct the affinity matrixW 2 Rn�n ofX;
2 Perform positive random normalizationW  D�1W ;
3 Initialize v0 2 Rn�1;
4 Repeat

5 vtþ1  Wvt

kWvtk1 ;

6 dtþ1  jvtþ1 � vtj ;
7 t tþ 1 ;

8 until k dt � dtþ1 kmax’ 0 ;

3.2 The Limitations of PIE

Although it showed a pretty good embedding in Fig. 1, it is
not good enough to handle a large number of clusters or
various spectral applications. If the dataset has a relatively
large number of clusters, it is quite difficult to discriminate

clusters with only one PIE. The obvious reason is that if c is
sufficiently large, the number of required eigenvectors
increases. But in PIE, the first few (or even the first one) non-
trivial eigenvectors dominate the whole vector. For instance,
Fig. 2 showed ten selected clusters from 20Newsgroups
(refer to Section 7) violates two PIE assumptions: the biggest
eigen-gap is between �2 and �3 and the second biggest is
between �3 and �4, which also violates similar eigenvalues
before c eigenvectors. So, the PIE is quite similar to c2,
which is not good enough to distinguish the ten clusters. On
the contrary, the ten eigenvectors together reveal more
information such as the blue cluster from c3, the magenta
cluster from c6, etc.

One possible solution for making PIEs more diverse is by
having more (different) starting vectors. Different random
starting vectors v0 may reveal different degrees of impact
on top c eigenvectors due to different ai in Equation (2).
Suppose ck (k > 2 and �2 > �k) is a very informative
eigenvector and there happens to be ak � a2. By attentively

Fig. 1. Single power iteration embedding (the embedding vt� provided by [27] or Equation (3)) for 2D dataset in Fig. 1a with three clusters, of which
each cluster is represented with a different color. In Figs. 1b, 1c, 1d and 1e, the value of each component of vt� is plotted against its index. We can
see that although vt� eventually converges to a uniform vector (Fig. 1e when t ¼ 200), the intermediate vectors (e.g., Fig. 1d when t ¼ 20) reveal the
manifold embedding of the dataset. This example shows that PIE could be an efficient alternative to eigenvectors from traditional eigen-
decomposition.

Fig. 2. Different low dimensional embeddings of 20NG-10 dataset, which consists of 10 cluster subsets from 20Newgroups dataset (Section 7).
Eigenvectors c (Figs. 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j) are sorted by eigenvalues in descending order (Fig. 2a). PIE (Fig. 2k) and PIE-k (Figs. 2l, 2m,
2n, 2o) are quite similar to c2 in Fig. 2b. Relatively DPIEs (Figs. 2p, 2q, 2r, 2s, 2t) reveal more diverse yet informative signals than PIE and PIE-k.
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controlling the number of iteration we may have
a2�

t
2 ’ ak�

t
k � akþ1�t

kþ1, which means that vt holds essential

information from ck without concealing by the first few
eigenvectors ci. So by increasing the number of initial vec-
tors to generate multiple PIEs or PIE-k (k ¼ dlog ðcÞe accord-
ing to [26]), the quality of the generated embedding vectors
has potential to improve to a certain degree. For instance,
the PIE-k of Fig. 2 share the similar general trends with
the second eigenvector but it reveals slightly different
distributions.

However, there is still a crucial and unsolved problem:
there is no guarantee on the quality of starting vectors, and
the first few eigenvectors still overshadow the other less
important but indispensable eigenvectors. Under this cir-
cumstance, these first few eigenvectors are still dominant in
the result vector vt. We can easily see this from Equation (3)
as well : each vtk is still dominated by the first few c1;c2; . . .

because of �t
1 � �t

2 � � � � � �t
n. Therefore, for large c cluster-

ing problems or the other spectral applications such as spec-
tral feature selection or anomaly detection, PIE and PIE-k are
not practical, which can also be verified in Section 7.

4 DIVERSE POWER ITERATION EMBEDDINGS

4.1 Low Embedding Extraction

As analyzed in the last session, the fundamental problem in
PIE/PIE-k is the essential influences by the first few eigen-
vectors in each converged embedding vector. To deal with
this problem, we propose Diverse Power Iteration Embed-
dings,C0 ¼ c01;c

0
2; . . . ;c

0
n. We design DPIE to be a collection

of informative and yet divergent embedding vectors where
each c0k reveals the corresponding eigenvector ck more con-
siderably than any other eigenvector. To achieve this goal, all
the previous eigenvectorsC1:k�1 ¼ ½c1;c2; . . . ;ck�1	must be
removed from c0k, which is the major difference between our
DPIE and PIE/PIE-k. The k-th DPIE can be represented as:

c0k ¼ bk�
t
kck þ bkþ1�t

kþ1ckþ1 þ . . .þ bn�
t
ncn; (4)

where bi is the weight coefficient of the ith eigen-
component.

In our DPIE, the first nontrivial embedding vector c02
would be quite similar to PIE but the subsequent DPIEs will
be different in the sense that we take out all the already-

found DPIEs from the current one. Let v0i denote the ith

starting random seed vector and vti ¼Wtv0i , and the power

iteration was stopped at tth iteration. We compute c0k from
the normalized linear fitting residue of the already-found
k� 1 DPIEs:

c0k ¼
vti �C01:k�1f

�

k vti �C01:k�1f� k1
; (5)

where f� 2 Rðk�1Þ�1 is the weight coefficient vector of those
already-found DPIEs, and is derived by solving the follow-
ing equation:

f� ¼ argminf kvti �C01:k�1fk22 þ a
X
j

jfjjp
 !

; (6)

where a is a penalty parameter that controls the degree of
shrinkage of the coefficient estimates with p-norm (p usually
is set as 1 or 2, and the choice of regularization type will be
further analyzed in Section 4.3). In other words, we treat the
(unnormalized) c0k as residue or regression error, which is
obtained by subtracting the effects of the already-found

DPIEs from vti. After normalization, c0k becomes the next
found DPIE.

However, if we apply the same stopping criteria as that
used in PIE or PIE-k, we cannot discover good DPIEs. The
primary reason is that PIE stopping criteria will suppress
the rest of eigenvector signals except the first few because

ð�k=�2Þt 
 1 if t is as large as the PIE stopping criteria. To
avoid this problem, we need to increase the acceleration
threshold " of PIE as we find more DPIEs. So, our new stop-
ping criteria for DPIE is as follows:

"i ¼ idlog ðcÞe"=n; (7)

where " is a tuning parameter and we used 10�6 by default
as in [27], [28].

Algorithm 3. DPIE(X, e, E, T , "i, h)

Input: X 2 Rn�m where n is #instances and m is #features,
e is the maximum #DPIE, E is #random seed vec-
tors (E > e), T is the maximum #iterations, "i
defines the acceleration threshold for the ith random
seed, and h is the normalized residual threshold.

output: Diverse Power iteration embeddingsC0.
1 Construct the affinity matrix ofX;
2 Perform positive random walk normalization on the affin-

ity matrix and denote asW ;
3 Initialize v0 ¼ ½v02 j v03 j . . . j v0E 	 2 Rn�E ,C0 ¼ f1 2 Rn�1g;
4 For each v0i (i ¼ 1; 2; . . . ; E)
5 Repeat
6 vtþ1  Wvt

kWvtk1;

7 dtþ1  jvtþ1 � vtj;
8 t tþ 1;
9 until (k dt � dtþ1 kmax� "i) or (t � T );

10 Solve equation f� ¼ argminf ðkvti �C01:k�1fk22 þ a
P

j jfjjpÞ;
11 rti  vti �C0f�;

12 If
krt

i
k1

kvt
i
k1 > h

13 c0i  
rt
i

krt
i
k1;

14 Insert c0i intoC0;
15 If size ofC0 equals to e
16 Break;
17 End;
18 End;
19 End;
20 Remove 1 fromC0;

When " is too small or the random seed is similar to one of
what we have already used, it leads to the fact that vti can be
well represented by the existing DPIEs, and therefore the new
DPIE contains no new signal. To avoid this case, we check the
value of normalized residual (line 12 inAlgorithm 3):

# ¼ k v
t
k �C01:k�1f

� k1
k vtk k1

: (8)
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If # is smaller than a certain threshold, we do not add such
PIEs. In practice, we used dlog ðcÞeh=n as our threshold and

h ¼ 10�6 by default. For notational convenience, we denote
the normalized residual threshold as h from now on.

In terms of stabilities, if " is too large which means we do
very early stopping, then we might not be able to find good
eigenvector approximations because PIE is a mixture of
interesting and noisy eigenvectors. Relatively, the small " is
not a big problem because the normalized residual thresh-
old h can detect the duplicated information and it is just a
little bit slower. However, if " becomes too small then it will
lead to over-convergent. In case of h, it is easy to tune
because h has the direct meaning of how much new infor-
mation is added through the new candidate PIE and it is
not relevant to eigen-gaps of specific dataset. We present
the DPIE stability results in regards to " and h in Experiment
Section 7.4.

4.1.1 Connection to Diffusion Theory

On the other hand, the power of DPIE can be also inter-
preted by diffusion theorem. Note that C1:k�1 has been
removed from c0k, so the explicit formula of c0k (Equa-
tion (4)) is:

c0k ¼ bk�
t
kck þ bkþ1�t

kþ1ckþ1 þ . . .þ bn�
t
ncn;

where bi is the weight coefficient of the ith eigen-component.
Considering the 1-norm distance between x and y on c0k
there is:

Dt
kðx; yÞ ¼ jc0kðxÞ � c0kðyÞj ¼

Xn
i¼k

bi�
t
ijciðxÞ � ciðyÞj: (9)

It is actually the same as the diffusion process [7], where
c0kðxÞ is the diffusion coordinate of x after t steps/time
diffusion process, with all the directions of ci ði � kÞ
taken into account. So Dt

kðx; yÞ is a family of 1-norm diffu-
sion distances between x and y with Markov diffusion
process in time t. It reflects the connectivity in the graph

of the data: Dt
kðx; yÞ will be small if there are a large num-

ber of short paths connecting x and y, with large enough
walking time t. In other words, there is a large transition
probability from x to y [7]. In this sense, t plays the role
of a scaling parameter to control the diffusion process.
Therefore DPIE has a potential to be more stable to noise
perturbation.

4.1.2 Algorithm Details

The whole procedure for DPIE is defined in Algorithm 3.
Note that 1) we add one vector 1 from line 3 and take it
out from the final results to simulate the first eigenvector
c1 which is a constant vector, and it plays a role of inter-

cept in line 10 in Algorithm 3, and 2) we start v0 with v02
instead of v01 due to the same reason. In the example
shown in Fig. 2, we can see the final DPIEs are quite
instructive yet different from each other, and it illustrates
the outperformance of DPIEs compared with PIE/PIE-k.
But like PIE/PIE-k, DPIE mainly relies on matrix-vector
multiplications and enjoys the same speed-up and scal-
ability, and it can be easily implemented as distributed

matrix-vector multiplications (Section 5). Since the most
time consuming part (from line 5 to line 9) does not
depend on the other DPIE computations, we can further
parallelize Algorithm 3.

4.1.3 Justification of DPIE

In the rest of this section, we provide a justification for DPIE
that can obtainC0 (Equation (4)), of which each c0k has dom-
inant eigenvector ck while removing the previous eigenvec-
torsC1:k�1.

Claim 1: Assume that 1) t is sufficient large; and 2) there
exists clear eigengap between every two successive eigen-
values. Given the first nontrivial DPIE c02 is found, the
regression solver (Step 10 to 11 in Algorithm 3) can remove
the eigenvectorsC1:2 while constructing a DPIE, c03.

Justification: For notational convenience, we assume the
constant eigencomponent (c1) has been removed from rT2 ,

c02 and vt3. Note that all the eigenvalues except �1 are less
than 1 and non-negative as shown in Equation (1). We now
justify that we can get c03 from vt3:

vt3 ¼ a2�
t
2c2 þ a3�

t
3c3 þ . . .þ an�

t
ncn;

rT2 ¼ b2�
T
2c2 þ b3�

T
3c3 þ . . .þ bn�

T
ncn;

c02 ¼ rT2 =krT2 k1;
(10)

where T ¼ tþ Dt with Dt � 0 (because we do earlier stop-

ping by controlling �i when i increases) and rti is the
residual vector (Step 11 in Algorithm 3). Since 1) t is suffi-
ciently large, 2) there exists clear eigen gap between any
two successive eigenvalues, 3) �t

j 
 1 and 4) C forms

orthonormal basis, we get f� ¼ f2 � a2�
t
2krT2 k1=ðb2�T

2 Þ for
f� ¼ argminfkvt3 � c02fk22 þ a

P
j jfjjp. In other words, the

first nontrivial eigenvector c2 is removed from the resi-

due rt3:

rt3 ¼ vt3 � c02f2 ¼
Xn
j¼2

aj�
t
j � bj�

T
j

a2�
t
2

b2�
T
2

� �
cj

¼
Xn
j¼3

aj�
t
j � bj�

T
j

a2�
t
2

b2�T
2

� �
cj

¼
Xn
j¼3

�t
j aj � bj�

Dt
j k2

� �
cj;

(11)

where k2 ¼ a2�
t
2

b2�
T
2

. Unless a3 � b3�
Dt
3 k2 is close to zero, c3

becomes the dominant factor for c03 because of �t
3 � �t

j for

large enough t and j > 3 and thus similarly the other eigen-

components can be removed from the coming DPIEs.

4.1.4 Discussion

In practice, DPIE procedure does not guarantee to find
eigenvectors because 1) the eigengap is not always big
enough between two successive eigenvalues, 2) t may be
small (especially for finding large number of DPIEs), or 3)
there is a randomization effect on ai and bi. However, our
proposed DPIE procedure guarantees to find linearly inde-
pendent PIEs, which are good enough as an approximated
eigenvector solution for our proposed and other candidate
applications.
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4.2 Diverse Power Iteration Values

In this section, we propose a set of special scalar, called
Diverse Power Iteration Values L0 ¼ f�01; �02; . . . ; �0ng associ-
ated with each DPIE respectively. They play a similar role
as eigenvalues in classic eigensystem. We define �0i through
the following equation:

Wc0i ¼ �0ic
0
i; (12)

so that the �0i can be calculated by

�0i ¼ ðWc0iÞc0i�1; (13)

where c0i
�1

can be calculated by Moore-Penrose
pseudoinverse.

We now prove that �0i can approximate the real eigen-
value �i given certain conditions.

Proposition 1. Assume that t is sufficient large, clear eigengap
exists between every two successive eigenvalues and ci is
removed from c0iþ1, �

0
i is an approximation of the true eigen-

value �i to certain degree.

Proof. Start from the following equation:

�0ic
0
i ¼ �0iðbi�t

ici þ biþ1�t
iþ1ciþ1 þ . . .þ bn�

t
ncnÞ

¼ �0i�
t
i bici þ

Xn
j¼iþ1

bj
�j

�i

� �t

cj

 !
:

(14)

On the other hand, we also have:

Wc0i ¼ �tþ1
i bici þ

Pn
j¼iþ1 bj

�j
�i

� �tþ1
cj

� �
: (15)

If t is sufficient large and clear eigengap exists between �i

and �iþ1, we have

Wc0i ¼ �0ic
0
i ) �0i�

t
i 
 �tþ1

i ) �0i 
 �i: (16)

tu
Now we show some experimental result of how close

DPIV can approximate the true eigenvalues. We plot DPIV
and true eigenvalues of four text datasets, 20Newsgroups,
Reuters21578, Sector-Scale and RCV1 (The description of
these datasets can be found in Section 7. Here we only use a
subset of RCV1 which contains the 30 largest clusters, since
the eigendecomposition on the whole RCV1 dataset has out-
of-memory issue). The results are shown in Fig. 3 where �0i
(DPIV) and �i (eigenvalues) are sorted in decreasing order.

The comparisons here are to give performance evidences
that our proposed DPIV can approximate the true eigenval-
ues very closely. However, since not all the compared

baselines in the experimental Section 7 have eigenvalue
approximations (and usually only the low embedding
approximations are used in practise), we didn’t include
DPIV in the experiment settings in Section 7.

4.3 The Choice of Regression Types

One practical issue in solving DPIE is to address the regu-
larization type in the following Equation (copy from Equa-
tion (6)):

f� ¼ argminf ¼ kvti �C01:k�1fk þ a
X
j

jfjjp:

We analyze three different regression types, namely the
ordinary least squares regression (a ¼ 0), the lasso
(a > 0; p ¼ 1) and ridge regression (a > 0; p ¼ 2).

For lasso and ridge regression, the parameter a can be
treated as a penalizing cost or complexity parameter. As a

increases, less and less effective terms or variables are likely
to be excluded (lasso) or decreased (ridge). Therefore, the
value of a should be chosen adaptively, in order to mini-
mize an estimate of the expected prediction error. Lot of
prior research have focused on deciding the best regulariza-
tion parameter a but in practice, on supervised learning,
cross validation is usually adopted to find the optimal a.
However in unsupervised learning setting, there is no con-
sensus method that provides a universally optimum choice.

In this paper, we use an unsupervised way to estimate a
reasonable default value for a. Recent research such as [3]

and [13] suggested that a should be set as b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� log ðk� 1Þp

,
where n is the number of samples and k� 1 is the number
of existing DPIEs, and b is a scaling parameter. We evaluate
the performance of lasso (in red) and ridge (in green) of
Equation (6) on clustering task using awith the range of b in
f�15;�14:5;�14; . . . ; 14; 14:5; 15g. The result is shown in
Fig. 4 and we also include least square (a ¼ 0) of which per-
formance is illustrated as a straight blue line.

From Fig. 4, we can observe the following: 1) Both lasso
and ridge have very similar performance with least square
when a is very small, which corresponds to the fact that
when the regularization or penalty terms are close to zero,
regression result is close to least square. 2) Lasso with larger
a shows worse performance because lasso does variable
selection, resulted in excluding already discovered DPIEs.
So we may fail to discover new diverse PIE and it is really
bad for the smaller number of DPIEs. 3) With the large num-
ber of required DPIEs, ridge regression slightly outperforms
least square with certain value of a. When there are large
number of DPIEs, there could be an overfitting issue and
ridge regression suppresses such issue without excluding
variables. In the Experimental Section 7, we will further

Fig. 3. Comparison between DPIV and the true eigenvalues (sorted in decreasing order). DPIV can approximate the true eigenvalues very closely.
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compare the performance between least square and ridge
regression in the construction of DPIE.

4.4 Orthogonalizing DPIE

Note that the DPIE obtained in Algorithm 3 are not orthogo-
nal. In this section, we introduce an efficient orthogonaliza-
tion procedure proposed in [23], which can transform any
decomposition of the form G ¼ C0L0C0T to G ¼ ĈL̂ĈT ,

such that Ĉ is orthogonal (i.e., ĈT Ĉ ¼ I). The procedure is

general in that it does not require C0 or L0 to be positive
semi-definite.

The orthogonalization procedure is shown in Algo-
rithm 4. It can be easily seen that the time complexity of
Algorithm 4 is Oðnk2Þ and its space complexity is OðnkÞ.
Thus, this orthogonalization procedure does not increase
the complexity of the proposed Algorithm 3. Further
complexity analysis of the whole DPIE algorithm is
given in Section 5.3.

We now give the theoretical support for Algorithm 4.

Algorithm 4. DPIE-Orthogonalization(C0, L0)

Input: C0 2 Rn�k where n is #instances and k is #DPIE,

L0 2 Rk�k is the diagonal matrix of DPIV.
output: Orthogonal DPIE Ĉ 2 Rn�k and the corresponding

DPIV L̂ 2 Rk�k.
1 P  C0TC0;
2 Perform eigen-decomposition: P ¼ VSV T ;

3 B S1=2V TL0VS1=2;
4 Perform eigen-decomposition: B ¼ V 0L̂V 0T ;

5 Ĉ C0VS�1=2V 0;

Proposition 2 (Restated from [23]). The equation
C0L0C0T ¼ ĈL̂ĈT holds.

Proof.We have the following derivation:

C0L0C0T ¼ ðC0VS
�1=2ÞðS1=2V TL0VS

1=2ÞðC0VS
�1=2ÞT

¼ ðC0VS�1=2ÞðV 0L̂V 0T ÞðC0VS�1=2ÞT

¼ ĈL̂ĈT :

(17)

tu
Proposition 3 (Restated from [23]). The output Ĉ of

Algorithm 4 are orthogonal.

Proof.We have the following derivation:

ĈĈT ¼ V 0TS�1=2V T ðC0TC0ÞV S
�1=2V 0

¼ V 0TS�1=2V T ðVSV T ÞV S
�1=2V 0

¼ V 0TV 0 ¼ I:

(18)

tu

5 EFFICIENT KERNEL COMPUTATION AND

COMPLEXITY ANALYSIS

DPIE provides a scalable and effective alternative to spectral
embedding construction, but it still requires the construc-
tion of normalized affinity matrix W (line 1 and 2 in Algo-
rithm 3), which is a huge space cost. This section first
describes how to avoid the overhead for storing the affinity
matrix by using exact cosine similarity or an approximated
Gaussian kernel, and then analyzes the time and space com-
plexity of the whole algorithm.

5.1 Cosine Kernel

A popular similarity kernel for text dataset is the cosine
angle between two vectors, which is defined as:

WðCOSÞði; jÞ ¼ XðiÞ �XðjÞ
k XðiÞ k2 � k XðjÞ k2 : (19)

X is usually tf-idf weighted sparse matrix and the two
norm normalizations in the denominator term enable us to
fairly compare documents with different length.

We apply implicit manifold [28] which is represented
with a series of sparse matrix multiplications. As described
in [28], for the denominator term an additional diagonal

matrix Nii ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðiÞXðiÞT

q
is computed and the affinity

matrix A and degree matrix D can be calculated with:

A ¼ NðXðXTNÞÞ;
D ¼ NðXðXT ðN1ÞÞÞ; (20)

where 1 is a constant vector of all 1’s. The parentheses here
and hereafter in this section emphasize the calculation
order, thereby keeping low space complexity. To remove
the diagonal on A, we use a modified equation

D ¼ NðXðXT ðN1ÞÞÞ � 1. Therefore we can represent ran-
dom walk power iteration as:

Wvt ¼ D�1ðNðXðXT ðNvtÞÞÞ � vtÞ: (21)

Since vt is a n� 1 vector, and D and N are diagonal matrix
which can be stored in a sparse format, Equation (21) is a lot
more efficient to implement and at the same time keeps the
same output as the conventional implementation. It is also
worth to mention that in anomaly detection application we
use bi-normalization instead of one-side random walk nor-
malization to make the anomalies more salient:

Wvt ¼ D�1ðNðXðXT ðNðD�1vtÞÞÞÞ �D�1vtÞ: (22)

Fig. 4. Comparison between lasso (in red) and ridge (in green) across different value of a. When the number of required DPIE (set as the number of
clusters) in the dataset are small (such as 20Newsgroups and Reuters21578), Least Square (in blue) can give desirable performance. But with larger
number of required DPIE (say#DPIE or#clu: > 80, such as (RVC1 and Sector-scale)), ridge regression with 10�7 is a reasonable choice.
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5.2 Gaussian Kernel Approximation

One of the most commonly used similarity measurements is
the Gaussian kernel:

WðGAUÞði; jÞ ¼ exp
� k XðiÞ �XðjÞ k2

2s2

� �
; (23)

where s controls the width of neighborhood [32].
Gaussian kernel is a little bit more complicated than

Cosine similarity since it is not a linear construction. In our
implementation we approximate it in a space-efficient way
by using random Fourier bases [35], [26] shown as follows:

1) Draw d i.i.d. samples $ð1Þ; . . . ; $ðdÞ from pð$ � 1
s2Nð0; 1ÞÞwhere pð�Þ is fast Fourier transform;

2) Draw d i,i,d. samples (offsets) bð1Þ; . . . ; bðdÞ from uni-
form distribution on ½0; 2p	;

3) Compute R where Rði; jÞ ¼ ffiffiffiffiffiffiffiffi
2=d

p ½cosð$ðjÞTxðiÞ þ bÞ	;
4) Use Equation (21) or (22) by replacingX with R.
This approximation can be interpreted as a random pro-

jection with Gaussian basis. It projects each point onto a ran-
dom direction and passes it through a sinusoidal function
with s as bandwidth, and then slides the function by a ran-
dom amount (offset) [26]. According to the analysis in [35],
as the number of samples d increases, the error of this ran-
dom Fourier bases approximation goes to zero.

5.3 Analysis of Complexity

Space complexity. Cosine similarity compresses every inter-
mediate result in a vector form OðnÞ, while the Gaussian
kernel approximation is based on sampling matrix of which
size is OðndÞ. Therefore, the space complexity is at most
OðnmÞ, which is only as the size of original datasetX, which

is much smaller than Oðn2Þ in general.
Time complexity. Since a matrix vector multiplication

requires OðnmÞ, the process from line 5 to line 9 in Algo-
rithm 3 takes OðnmT Þ, while the operation of solving linear

systems takes Oðne ffiffiffi
k
p Þ when using conjugated gradient

method (k ¼ ��1=�
�
2 is the condition number of C0 where ��1

and ��2 are the first and second eigenvalue of C0) [37]. In

practise, there is usually mT > e
ffiffiffi
k
p

and T � k, therefore
the time complexity of DPIE is almost OðnmkÞ.

6 DISCUSSION AND CONNECTIONS TO THE

EXISTING METHODS

This section justifies the utility of our proposed DPIE by
briefly discussing the theoretical distinctions and connec-
tions with a few existing methods, which also lays a solid
foundation for DPIE’s attractive properties for practical use.

6.1 Sampling Based Methods

Research like [6], [36], [41] first analyze a subset of original
instances and later extend the analytic result to the whole
dataset. Other research like [9] generate a sparse version of
matrix by sampling which can be stored more efficiently
and multiplied faster. Alternatively the similarity matrix
can also be sampled, which is known as the Nystr€om
method [10], [23]. These methods, although reduce the com-
putation cost, are quite sensitive to the sampling quality
[41]. Therefore the embedding quality deteriorates with
poor sampling (it will be shown later in Experiment
Section 7). On the contrary, our proposed DPIE does not
rely on any sampling strategy on the instance side.

6.2 Random-Projection Based Methods

Yan et al. proposed a general framework [43] for fast
approximate spectral clustering. It leverages random projec-
tion tree to produce a set of reduced representatives and
uses them as centroids to cluster all the instances. Khoa and
Chawla [21] bypass the eigen-decomposition by using ran-
dom projection and near-linear time solver. Gittens et al.
[12] used randomized sketching to approximate the eigen-
vectors. Their qualities rely on the subspace embedding
qualities which result from random projections. However
the generated embeddings, because of the indeterministic
process, could contain a lot of noisy signals and fail to pro-
vide stable and desirable result (it will be shown later in
Experiment Section 7). In spite of the fact that our DPIE also
has random seed vectors as initial status, the seed vectors
eventually converge to certain patterns of eigenvector com-
bination during power iteration.

6.3 Frequent-Direction Based Methods

Recent research drew on the similarity between matrix
sketching and the item frequency estimation problems, and
proposed frequent-direction based methods [11], [25] with
two major contributions: 1) because they are one-pass
streaming algorithms, they can be implemented in space
and time efficiently, and 2) they approximate the truncated
Singular Value Decompositions (SVD) in batch setting.
These methods are claimed to be deterministic since they
have no sampling or any randomized components. How-
ever, their quality is highly related to the input order. For
instance, we evaluated the matrix sketching quality of [25]
on 20NG-10 dataset 20 times and each time we randomly
shuffled the order of input, and performed K-means cluster-
ing on the final sketched matrix (evaluated by NMI [39]).
Fig. 5 shows its poor results and the instability recorded in
NMI across the 20 randomly shuffled experiments. On the
other hand, our proposed DPIE is constructed with random
walk process. Thereby, DPIE is more stable against pertur-
bation or noisy features. We will further compare their per-
formance in Experiment Section 7.

6.4 Power Iteration Based Methods

Power iteration clustering [27] computes a linear combina-
tion of the important eigenvectors. It is extremely simple
and elegant, and efficient in practice and this is why our
work shares the same foundation. Different from the
sampling methods and random projection methods, PIC

TABLE 1
Notations Used in the Complexity Analysis

Notations Meanings

1 n the number of instances
2 m the number of features
3 d the number of samples
4 T maximum power iterations in DPIE
5 e maximum number of DPIEs
6 k condition number of data eigensystem
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in theory does not modify the original data distribution thus
there is no lost information (with cosine kernel). However
the major drawback it suffers is that it tends to return
only the first few (or even only one) eigenvectors, which are
not enough to represent the datasets with multiple classes
or patterns. Although an advanced version, PIE-k, has been
proposed later in [26] with multiple output vectors, it does
not guarantee to solve the signal-overlapping problem.
Comparably, our proposed DPIE aim to diminish the effect
of the previously found signals, thereby boosting up the
effect of the later ones.

6.5 Deflation Based Methods

Recently deflation based method was proposed [40]. It
applies Schur complement deflation to remove the previ-
ously found pseudo-eigenvectors from the current matrix,
so that it computes multiple orthogonal vectors without
redundancy. However, in the process of deflation method,
the orthogonality requires more iterations to extract certain
eigenvectors with smaller eigengaps, therefore deflation-
based methods take more time to converge. On the other
hand, our DPIE also intends to eliminate the previously
found embedding vectors from the next one. But Algorithm
3 does not require the embeddings to be orthogonal to each
other: each embedding is a different linear combination of
eigenvectors. DPIE (from Algorithm 3) has similar represen-
tation power as real eigenvectors but takes much less
iterations than the deflation PIC, resulted in faster computa-
tional speed. However, please note that we can always use
Algorithm 4 to orthogonalize DPIE. We will further com-
pare the performance against [40] in Experiment Section 7.

6.6 Fast Clustering Methods on Graphs

For a different input setting (therefore not included in the
experiment section), fast spectral clustering algorithms on
graphs [4], [31], [42] have been proposed, where typically
the input of algorithm is a graph of all the nodes (n2 matrix).
While these approaches work well on network datasets such
as blogs, it is hard to maintain the whole input with limited
memory when the number of samples is large. On the con-
trary, our proposed DPIE only requires OðnmÞ complexity
which is usually more space-efficient.

7 EXPERIMENTS

The low rank embedding can be used on various data min-
ing applications. We evaluate the quality of the generated
embedding vectors through three different application

areas: clustering, anomaly detection, and feature selection.
Please note that since not all the baselines have eigenvalue
approximation, we didn’t include DPIV (Section 4.2) in the
experiment settings.

7.1 Clustering

We perform K-means on the generated low-rank embed-
dings and evaluate the clustering result with NMI (Normal-
ized Mutual Information [39]). Higher value of NMI means
better embedding quality for clustering applications.

7.1.1 Datasets

We evaluate our algorithm on four text datasets : 20News-
groups, Reuters21578, Sector-Scale and RCV1, and two
image datasets USPS and MNIST, all summarized in
Table 2. 20Newsgroups is a balanced dataset that covers
20 news topics. Reuters21578 is a collection of documents
that appeared on Reuters newswire. Sector-scale dataset
consists of company web pages classified in a hierarchy of
industry sectors. RCV1 dataset contains an archive of man-
ually categorized newswire stories made available by Reu-
ters [22], and here we only include those documents with
single topic category. Both of the USPS and MNIST data-
sets are 10 classes of handwritten digits. Reuters21578 and
USPS are selected because they are unbalanced datasets
with quite different size of clusters, while RCV1 and
Sector-scale are chosen to show the potential effectiveness
of ridge-regression over least square because of their high
number of clusters.

For text datasets, cosine similarity (Section 5.1) is used.
For USPS, MNIST, magic04 and satellite, Gaussian kernel
(Section 5.2) is employed.

7.1.2 Baselines

We test two versions of our proposed algorithm: DPIE-rr
(DPIE using ridge regression, or more specifically the ver-
sion in [8]) and DPIE-ls (DPIE using simple least square
regression, or more specifically the Conjugate Gradient
Least Square (CGLS) [2]). For details about these two ver-
sions please refer to Section 4.3.

We select the following representative and diverse base-
lines for comprehensive comparison: 1) Spectral Embedding

TABLE 2
Statistics of Datasets (Including Number of Instances,

Features, and Clusters or Anomalies)

Dataset # ins. # fea. # clu.

1 20Newsgroups 18,846 26,214 20
2 Reuters21578 8,293 18,933 65
3 RCV1 193,844 47,236 103
4 Sector-Scale 9,619 55,197 105
5 USPS 9,298 256 10
6 MNIST 70,000 784 10

Dataset # ins. # fea. # ano.

7 20NG-10-11 4,991 26,214 100
8 Reuters21578AD 6,261 18,933 493
9 RCV1AD 7,803 29,992 200
10 magic04 19,020 10 6,688
11 satellite 6,435 36 2,036

Fig. 5. MatrixSketching [25] clustering results (recorded in NMI) on
20NG-10 dataset, which is a subset of 20Newsgroups with 10 clusters.
We ran the algorithm 20 times and every time we shuffled the input order
randomly. Obviously the results are NOT stable against different input
order, and a lot worse than our DPIE result (NMI = 0:4373).
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(SE) which is from the conventional spectral clustering NJW
[34] (refer to Algorithm 1 with Lsym); it uses true eigen-
decomposition which is time and space consuming but pro-
vides the best spectral embedding quality in theory; 2) Power
Iteration Embedding [27] and 3) PIE-k [26] which are two
classic power iteration based methods (refer to Sections 3.1
and 3.2); 4) Frequent-direction Sketching (FDSket) [25] which
is a recently proposed deterministic matrix sketching
method; 5) Deflation PIC (DFL) [40] that applies Schur com-
plement deflation to extract non-overlapping embeddings/
signals; 6) Column Sampling Approximation (ColSpl) [23]
based on Nystr€om sampling method and 7) Randomized
Sketching (Rndm) [12] that approximates the eigenvectors
using randomprojections.

In clustering experiments, once we get the embeddings
we perform a l2-norm normalization along instance side
that is similar to the last step of NJW (Algorithm 1), and a
WCSS (minimizing within-cluster sum of squares, with 100
inner loops and 100 outer loops) K-means to obtain the clus-
ter assignments.

7.1.3 Parameters

For clustering (and feature selection as well), suppose the
number of clusters c to be a priori known as in previous
works [34], [5], we set k ¼ c and use the first c embeddings
of SE, FDSket, DFL, ColSpl and Rndm. PIE generates only
one vector while PIE-k set k to be dlog ðcÞe [26]. We set the
maximum number of DPIEs to be e ¼ 6dlog ðcÞe out of
E ¼ maxð30dlog ðcÞe; 2cÞ random seeds. When we use
Gaussian kernel to build the actual similarity matrix (e.g., in
SE), to adopt an adaptive width of neighborhood s instead
of a fixed value, we assign s to be the average Euclidean dis-
tance of each instance to its second nearest neighbor. When
using Gaussian kernel approximation (Section 5.2) we set
the number of samples d ¼ 2;000 and s ¼ 2;000. The maxi-
mum number of power iteration T is fixed to be 1;000.
Acceleration convergence rate in PIE and PIE-k is set to be

" ¼ 10�5=n where n is the number of samples, as described

in [27] and [26]. In our proposed DPIE, we set "i ¼
idlog ðcÞe"=n with " ¼ 10�6, and normalized residual thresh-

old as dlog ðcÞeh=n with h ¼ 10�6 by default. In Section 7.4
we test DPIE stability with different " and h.

It is also worth to mention the following: 1) As the
other methods, we use normalized affinity matrix as the
input in matrix sketching method (FDSket) to provide
manifold insight; 2) In Nystr€om method (ColSpl), the
number of sampled columns is fixed at 1;000 as in [23],
and these columns are selected by uniform sampling
without replacement; and 3) For each method with sam-
pling steps or random seeds, we run 50 times and report
the average performance.

7.1.4 Result Analysis

The clustering results are summarized in Table 3. We
reported the time used for the affinity matrix and embed-
dings constructions but we excluded the final K-means
steps. For SE (NJW), we also excluded the time for the affin-
ity matrix construction.

Generally speaking, SE has the best average performance
in NMI since it has full knowledge of the real eigenvectors,
but at the same time requires the most expensive cost in
time and space. Compared with PIE, PIE-k is 17 times
slower on average since it requires more initial vectors to
generate more PIE, but PIE-k improves about 18 percent on
NMI because of its potential to contain different aspects of
signal resulting from different starting vectors. However, it
only gets 44 percent of SE in NMI. By truncated SVD on nor-
malized affinity matrix, FDSket can deterministically extract
the low rank approximation. So it covers additional signals
in a more effective way than PIE-k (more than 70 percent
better in NMI). But at the same time FDSket is also 1; 000 þ
times slower than PIE-k since it requires lots of SVD calcula-
tions. DFL on the other hand, computes multiple orthogonal
pseudo-eigenvectors using deflation technique, so that it
could approximate the original eigenvectors to certain
degree. It shows improved performance in USPS and

TABLE 3
Clustering Results in NMI and Time Consuming

NMI SE PIE PIE-k FDSket DFL ColSpl Rndm DPIE-rr DPIE-ls

20Newsgroups 0.5326 0.2519 0.3266 0.4877 0.4847 0.4541 0.4998 0.5025 (2) 0.5061 (1)
Reuters21578 0.5048 0.2557 0.2718 0.5322 0.5014 0.4624 0.4519 0.5101 (3) 0.5143 (2)
RCV1 [38]0.2875 0.1022 0.1237 0.1521 0.1941 0.1837 0.2708 0.2701 (2) 0.2644 (3)
Sector-scale 0.3995 0.2211 0.2629 0.1275 0.3876 0.3273 0.3557 0.4232 (1) 0.3945 (2)
USPS 0.6207 0.2026 0.2401 0.4667 0.5871 0.5167 0.5392 0.5623 (3) 0.5786 (2)
MNIST 0.4433 0.0022 0.0028 0.3522 0.3788 0.3342 0.3416 0.3922 (2) 0.4032 (1)

Average 0.4778 0.1629 0.1930 0.3982 0.4292 0.3902 0.4207 0.4434 (2) 0.4435 (1)

Time(s) SE PIE PIE-k FDSket DFL ColSpl Rndm DPIE-rr DPIE-ls

20Newsgroups 5,653.0193 0.1461 5.0816 4131.7741 35.4688 6.0374 29.3142 5.4873 5.0834
Reuters21578 1,958.5777 0.0671 2.3548 830.7118 13.7681 2.0011 9.1132 1.8332 1.6388
RCV1 —— 5.1961 110.5477 108,998.2234 923.6324 159.3213 562.3231 139.3193 127.6903
Sector-scale 5,832.7020 0.1673 5.7768 4,213.1350 37.3254 6.5263 30.1232 6.6233 5.8651
USPS 1,665.3840 0.0675 1.9807 395.9329 7.2451 0.8987 5.9983 0.7111 0.6584
MNIST 201,581.2017 4.0707 38.8645 46,072.8311 196.3723 50.1781 152.3238 48.8324 43.6582

Average —— 1.6191 27.4344 27,440.4300 202.3020 37.4938 131.5326 33.8011 30.7657

For each dataset, the bold-faced number indicates the best approximation method (excluding SE (NJW) which is the approximation target), and the numbers
in the parentheses indicate the ranks of our two versions of DPIE. Average is the average NMI and Time of each method across all the datasets respectively. *We
couldn’t run SE on RCV1 dataset due to out-of-memory issue, but instead cite its NMI score from [38] for reference.
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MNIST compared with FDSket. But since it requires more
matrix computations in the deflation equation, it is notice-
ably much slower than PIE-k.

Our two versions of DPIE, although not always the best,
stay on the top three among all the (approximate) methods
on any dataset. Specifically, DPIE-ls achieves more than 95
percent performance of SE in NMI, and at the same time
only requires quite a short running time which is close to
PIE-k. And DPIE-rr outperforms DPIE-ls about 3% � 7%
when the number of cluster in the dataset is high (e.g.,
RCV1, Sector-scale).

Due to out-of-memory problem, the SE experiment on
RCV1 could not be finished since it requires full affinity
matrix construction. However, using the space-efficient
ways introduced in Section 5 it is not a problem for the other
listed methods, especially our proposed DPIE. Notably,
DPIE only takes about 2 minutes to process RCV1 dataset
but more than 35 percent better than the second best
approximation method with considerable faster speed.

7.2 Anomaly Detection

In a straightforward assumption, the node degree tells how
isolated (anomalous) one sample is with respect to the sur-
rounding neighborhood [1]. Therefore we compute degree
matrix on the generated low-rank embeddings and evaluate
the diagonal score in AUC (Area under Receiver Operating
Characteristics Curve [33]), which is cut-off independent
and commonly used to evaluate anomaly detectors [30].
Higher value of AUC means better embedding quality for
anomaly detection applications.

7.2.1 Datasets

We choose three text datasets and two scientific datasets
(summarized in Table 2). 20NG-10-11 is a subset of 20News-
groups, which consists of all the samples from six computer-
related clusters (from “comp.graphics” to “comp.windows.
x” and treated as regular samples) and 100 randomly-
selected samples from “talk.religion.misc” (anomalous sam-
ples). Reuters21578AD is a subset of Reuters21578 which is
composed of the first two largest categories as regular

documents and the smallest 45 categories as anomalous
documents. RCV1AD is a subset of RCV1 which is made up
of four categories “C15”, “ECAT”, “GCAT”, and “MCAT”
and we selected 200 documents from “C15” category as
anomalies and the rest of three categories as regular docu-
ments. Magic04 is a binary classification dataset from the
UCI repository which was generated to simulate registration
of high energy gamma particles. Satellite consists of the
multi-spectral values of pixels in 3� 3 neighborhoods in a
satellite image which has unbalanced classification associ-
atedwith each neighborhood central pixel.

7.2.2 Baselines

Besides all the baselines used in clustering experiments, to
have a more comprehensive comparison we also include
IForest [30], which is a well-known anomaly detection algo-
rithm for its efficiency and reasonable effectiveness at the
same time. IForest detects data-anomalies with binary trees,
using the property that anomalies are more susceptible to
isolation.

7.2.3 Parameters

All the parameter setting are the same as in clustering. But it
is worth to mention that: 1) We compute the degree matrix
with (the first) five output embeddings for all the baselines
except for PIE which again has only one embedding output;
2) In IForest, to conduct a safe and fair comparison, we set
the sub-sampling size r ¼ 4;000 and the number of trees
nt ¼ 100 because these parameters are the authors’ recom-
mendation [29]. For text dataset in IForest experiments, we
use l2-norm normalized X as input to make sure that the
result is not sensitive to the document length.

7.2.4 Result Analysis

Table 4 shows the anomaly detection results. Similar to the
clustering comparisons, PIE-k performes better than PIE
(more than 20 percent improvement), with the reason that
PIE-k is possible to provide more informative signals. DFL
and FDSket can capture supplementary yet important

TABLE 4
Anomaly Detection Results in AUC and Time Consuming

AUC SE PIE PIE-k FDSket DFL IForest ColSpl Rndm DPIE-rr DPIE-ls

20NG-10-11 0.9022 0.3294 0.4858 0.6331 0.2318 0.6176 0.6013 0.6172 0.8832 0.8844 (1)
Reuters21578AD 0.8145 0.3034 0.5131 0.4824 0.7863 0.6048 0.5904 0.7351 0.9236 0.9271 (1)
RCV1AD 0.5504 0.4403 0.5049 0.4619 0.5925 0.4879 0.4762 0.5197 0.5565 0.5547 (2)
magic04 0.7184 0.5757 0.5757 0.5799 0.4205 0.7506 0.5732 0.5757 0.7183 0.7179 (3)
satellite 0.7065 0.3378 0.3378 0.5062 0.5416 0.7173 0.4873 0.6013 0.7154 0.7193 (1)

Average 0.7384 0.3973 0.4835 0.5327 0.5145 0.6356 0.5457 0.6098 0.7594 0.7607 (1)

Time(s) SE PIE PIE-k FDSket DFL IForest ColSpl Rndm DPIE-rr DPIE-ls

20NG-10-11 876.9247 0.0297 0.8683 181.7283 5.7138 7.6199 1.5279 4.9213 0.8685 0.8193
Reuters21578AD 4,141.9718 0.0528 1.1995 170.0181 7.3392 8.2016 2.5782 5.7284 1.1246 1.0608
RCV1AD 4,199.1405 0.0476 1.3253 475.9983 10.6519 5.5944 3.0021 8.3717 1.2023 1.1128
magic04 14,732.0387 0.1252 0.3402 3,241.6766 20.3112 53.8751 3.5443 17.6214 2.4211 2.2759
satellite 779.7334 0.0145 0.1121 152.7320 8.9713 49.3959 1.6767 7.1368 0.6343 0.5889

Average 4,945.9618 0.0540 0.7691 844.4307 10.5975 24.9374 2.4658 8.75592 1.2502 1.1715

For each dataset, the bold-faced number indicates the best approximation method (excluding SE which is the approximation target), and the numbers in the
parentheses indicate the ranks of our two versions of DPIE. Average is the average AUC and time of each method across all the datasets respectively.
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eigenvectors, which leads to a 6 and 10 percent boost up
respectively compared with PIE-k, but still much worse
than SE (only about 70 percent). IForest is efficient in that
it detects the anomalies by recording the short expected
path lengths, so that it has 200 percent faster running time
than SE and still acquires more than 85 percent perfor-
mance of SE. However, our proposed DPIEs are 4;000 þ
times faster than SE and yet reach the best average
performance.

It is also very interesting to see that DPIE have better
effectiveness than SE in this test. We do not have a very
clear answer for this but the following answer is what
we conjecture. As we claimed, DPIE can be interpreted
using diffusion theorem and thus closely related instan-
ces are better connected, which is especially good for
anomaly detection. However, such diffusion distances do
not necessarily improve clustering effectiveness always
because we need to find k clusters compared to outlier

TABLE 5
Feature Selection Results in NMI

20Newsgroups SE PIE PIEK FDSket DFL ColSpl Rndm DPIE-rr DPIE-ls

50 0.2971 0.1691 0.1590 0.2691 0.2552 0.2013 0.2311 0.3402 (2) 0.3446 (1)
200 0.3361 0.3089 0.3181 0.3603 0.3274 0.2934 0.3352 0.3799 (2) 0.3834 (1)
800 0.4118 0.3899 0.4115 0.4061 0.4256 0.3962 0.4011 0.4342 (2) 0.4372 (1)
1200 0.4256 0.4696 0.4498 0.4692 0.4335 0.4513 0.4621 0.4803 (2) 0.4819 (1)
1800 0.4865 0.4671 0.4587 0.4340 0.4748 0.4602 0.4683 0.4944 (2) 0.4993 (1)

Average 0.3914 0.3609 0.3594 0.3877 0.3833 0.3605 0.3796 0.4258 (2) 0.4293 (1)

Reuters21578 SE PIE PIEK FDSket DFL ColSpl Rndm DPIE-rr DPIE-ls

50 0.3957 0.3959 0.3889 0.4399 0.3973 0.3821 0.3913 0.4368 (2) 0.4366 (3)
200 0.4607 0.4539 0.4598 0.4745 0.4677 0.4599 0.4614 0.4767 (2) 0.4814 (1)
800 0.5125 0.5021 0.5183 0.5113 0.4993 0.5097 0.5133 0.5203 (2) 0.5176 (3)
1200 0.5125 0.4783 0.4882 0.4971 0.5122 0.4923 0.5029 0.5245 (2) 0.5297 (1)
1800 0.5081 0.5104 0.5078 0.4980 0.5200 0.5069 0.5136 0.5284 (2) 0.5308 (1)

Average 0.4779 0.4681 0.4726 0.4842 0.4793 0.4702 0.4765 0.4973 (2) 0.4992 (1)

RCV1 SE PIE PIEK FDSket DFL ColSpl Rndm DPIE-rr DPIE-ls

50 —— 0.1266 0.1422 0.1531 0.1632 0.1512 0.1613 0.1652 (1) 0.1621 (3)
200 —— 0.1285 0.1436 0.1734 0.1867 0.1622 0.2402 0.2377 (2) 0.2232 (3)
800 —— 0.1305 0.1523 0.1845 0.2029 0.1864 0.2683 0.2709 (1) 0.2595 (3)
1200 —— 0.1312 0.1567 0.1934 0.2239 0.2017 0.2815 0.2853 (1) 0.2702 (3)
1800 —— 0.1511 0.1732 0.2011 0.2188 0.2256 0.2817 0.2861 (1) 0.2735 (3)

Average —— 0.1336 0.1536 0.1811 0.1991 0.1854 0.2466 0.2490 (1) 0.2377 (3)

Sector-scale SE PIE PIEK FDSket DFL ColSpl Rndm DPIE-rr DPIE-ls

50 0.3211 0.1284 0.1325 0.0877 0.3156 0.2721 0.3002 0.3198 (1) 0.3013 (3)
200 0.3556 0.1624 0.1783 0.0945 0.3693 0.3134 0.3438 0.3821 (1) 0.3613 (3)
800 0.3793 0.2181 0.2479 0.1161 0.3743 0.3216 0.3510 0.4048 (1) 0.3852 (2)
1200 0.3868 0.2187 0.2572 0.1254 0.3852 0.3278 0.3522 0.4286 (1) 0.4099 (2)
1800 0.4023 0.2205 0.2634 0.1283 0.3857 0.3309 0.3545 0.4325 (1) 0.4122 (2)

Average 0.3690 0.1896 0.2159 0.1104 0.3660 0.3132 0.3403 0.3936 (1) 0.3740 (2)

USPS SE PIE PIEK FDSket DFL ColSpl Rndm DPIE-rr DPIE-ls

25 0.3843 0.1323 0.1331 0.3192 0.3612 0.3215 0.3564 0.3809 (2) 0.3813 (1)
50 0.4792 0.1517 0.1614 0.4177 0.4513 0.4314 0.4416 0.4823 (1) 0.4817 (2)
100 0.5853 0.2013 0.2213 0.4597 0.5624 0.4768 0.4882 0.5734 (1) 0.5722 (2)
150 0.5862 0.2015 0.2395 0.4672 0.5711 0.4902 0.4973 0.5851 (1) 0.5838 (2)
200 0.6192 0.2024 0.2413 0.4794 0.6018 0.5237 0.5399 0.6011 (2) 0.6001 (3)

Average 0.5308 0.1778 0.1993 0.4286 0.5096 0.4487 0.4647 0.5246 (1) 0.5238 (2)

MNIST SE PIE PIEK FDSket DFL ColSpl Rndm DPIE-rr DPIE-ls

25 0.3375 0.0011 0.0011 0.2511 0.3099 0.2764 0.2869 0.3306 (2) 0.3322 (1)
50 0.3535 0.0015 0.0015 0.2974 0.3516 0.2811 0.3115 0.3572 (1) 0.3563 (2)
100 0.4385 0.0013 0.0013 0.3166 0.3634 0.3197 0.3213 0.4356 (2) 0.4378 (1)
150 0.4421 0.0018 0.0018 0.3293 0.3717 0.3231 0.3296 0.4323 (1) 0.4312 (2)
200 0.4513 0.0019 0.0023 0.3465 0.3803 0.3311 0.3467 0.4404 (2) 0.4499 (1)

Average 0.4046 0.0015 0.0016 0.3082 0.3554 0.3063 0.3192 0.3992 (2) 0.4015 (1)
Total Average —— 0.2219 0.2337 0.3167 0.3821 0.3474 0.3711 0.4149 (1) 0.4109 (2)

For each dataset, the bold-faced number indicates the best approximated method, and the numbers in the parentheses indicate the ranks of our two versions of
DPIE. Average is the average NMI of each method on each dataset, while Total Average is the global average across all datasets. Due to space limitation and the
close connections between clustering and feature selection technique we used in this paper we do not list the time consuming here. *We couldn’t run SE on
RCV1 dataset due to out-of-memory issue.
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detection where the focus is to find instances not belong
to majority.

7.3 Feature Selection

We exploit Multi-Cluster Feature Selection (MCFS) frame-
work [5] (details will be explained later in this section)
with the low-rank embeddings as the regression target to
extract feature subset. Although it would be best to evalu-
ate based on ground truth of feature importance, it is dif-
ficult to find such ground truth. Therefore we evaluate
with NMI by applying K-means clustering on the selected
feature space. Higher value of NMI means better feature
subset quality, and therefore better embedding quality for
feature selection.

The datasets, baselines and parameters used in this experi-
ment are the same as those in clustering section. The experi-
ments here are integrated within the MCFS framework [5]
which measures the importance of each feature along each
generated embedding that corresponds to each cluster by
minimizing fminspðk vp �Xsp k2 þb j sp j Þg, where sp is a
m-dimensional vector and b controls the sp’s approximation
speed to zero. For the jth feature, MCFS defines the feature
importance as maxpjsp;jj where sp;j is the jth element of vec-
tor sp. And we select the important feature subset based on
the decreasing order of feature importance, and evaluate
the quality of the feature subsets by WCSS K-means cluster-
ing. It is also worth to mention that in the MCFS framework,
we perform l2-norm normalization along sample side of X
to evaluate uniform feature scales.

7.3.1 Result Analysis

We tested all the embedding construction methods within
MCFS framework [5] with f50, 200, 800, 1;200, 1;800g
selected features on text datasets, and f25, 50, 100, 150, 200g
selected features on image datasets (due to their less num-
ber of features). The full result is reported in Table 5. Similar
to clustering experiments, DFL and Rndm perform better
than PIE-k and PIE, while ColSpl and FDSket have slightly
worse performance. But DPIE extracts more representative
features (always among the top-three methods across differ-
ent datasets and feature subset sizes), which sometimes are
even with better quality than those derived from original
spectral embeddings (SE), such as on 20Newsgroups,

Reuters21578 and Sector-scale. This can be explained by the
fact that DPIE formulates all the informative signals within
diffusion space, which is a more compact and profound
way than discrete eigenvectors.

Comparably speaking, DPIE-rr outperforms DPIE-ls
about 5 percent on the datasets with larger number of
required DPIE (for those datasets with higher number of
cluster such as RCV1 and Sector-scale). It is because of the
shrinkage effect by ridge regression, and the consequently
more accuracy of extracting informative DPIE.

7.4 Stability Experiments

We conduct experiments with different acceleration
threshold " and normalized residual threshold h to study
the parameter tuning sensitivities of DPIE (for the sake of
convenience we only include DPIE-ls in this test). The
results are illustrated in Fig. 6. It indicates that DPIE has
a stable range of performance on clustering with large
enough " and small enough h. The reason is that for clus-
tering we need more embeddings which cover enough
informative eigenvectors. Consequently the iteration
should have early stopping controlled by increasing " to
prevent the iteration procedure to remove the less strong
eigencomponents, and lowering h to include more diverse
DPIEs. Similarly, for anomaly detection DPIE performs
stably with large " and small h. If the anomalies only take
a small percentage of total instances, more PIEs are
required to separate anomalies from the normal ones. By
assigning large enough " and small enough h, we ensure
to obtain enough PIEs while removing the negative influ-
ence from the later (noisy) ones.

7.5 Time and Space Complexity Comparison

In the end, we give a general complexity comparison among
all the baselines, which is shown in Table 6. For FDSket, n0 is
the size of each stream and ‘ is the size of matrix sketch
(‘ > k). For IForest, ntr is the number of trees and r is the
number of sample. It is worth to mention that: 1) In our
experiments, DPIE is implemented and run in parallel due
to the designed efficiency characteristics. However, other
algorithms (such as FDSket and DFL) are not capable to run
in parallel; 2) Some operators inside each loop/iteration
also contribute to the difference of actual running time,
even the algorithms have the same big-O time complexity.

Fig. 6. Stability experiment with different acceleration threshold " and normalized residual threshold h.
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8 CONCLUSION

We proposed a power-iteration-based low dimensional
embeddings to cope with the time and space complexities
of traditional spectral analysis. Our proposed Diverse
Power Iteration Embedding, inspired by the power itera-
tion embedding (PIE [27]), can eliminate duplicated infor-
mation due to a few dominant eigenvectors, which makes
it achieve outstanding performance. We also proposed a
way to calculate Diverse Power Iteration Value which
gives weight or importance for each DPIE. Furthermore,
we analyzed the effect of using different regression meth-
ods to construct DPIE and gave suggestions of choosing
the proper model in different cases, and introduced a
way to orthogonalize DPIE. The proposed algorithm can
be used for not only clustering but also various spectral
analysis including feature selection and anomaly detec-
tion. Extensive experiments and evaluations on the three
spectral analysis applications have demonstrated that our
proposed DPIE is the most effective in improving the
clustering, anomaly detection, and feature selection meth-
ods in the comparison with state-of-the-art baseline
approximation algorithms.
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