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Salient motion detection is vital for security surveillance, pattern and motion recognition, traffic control,
human–computer interaction, etc. Although such a subject has been very well investigated for analysis of
stationary videos, many technical challenges still prevail when correctly handling and analyzing non-
stationary videos recorded by hand-hold and pan-tilt-zoom cameras. To ameliorate, this paper develops
a novel and robust salient motion detection method (especially valuable for quantitative analysis of non-
stationary videos) by employing new computational strategies, including low-rank analysis aided by the
divide-and-conquer approach, and exploration of the space–time semantic coherency. The key idea in
our new approach is to respectively conduct multi-purpose low-rank analysis over a temporal series of
well-decomposed frame-batches that have relatively-consistent backgrounds. First, we conduct bilateral
random projection (BRP)-based low-rank analysis to accurately keep track of short-term stable-back-
ground observations, which consist of frames with similar global appearance and small local variations.
Then, to eliminate the side effects due to visual variations induced by view angle changes, we incorporate
the low-rank background prior into previous short-term observation to guide robust principal compo-
nent analysis (RPCA) low-rank revealing based robust salient motion detection over current short-term
observation. Meanwhile, a series of saliency clues extracted from the stabilized short-term observations
are leveraged to expedite the proper updating of the low-rank background information, which enables us
to effectively combat several obstinate problems. Finally, we conduct comprehensive experiments on the
public CD2014 benchmark and other five non-stationary videos recorded from the hand-hold camera,
and make extensive and quantitative evaluations with six state-of-the-art methods. Experimental results
indicate that our method not only outperforms all other methods in the case of non-stationary videos but
also obtains outstanding performance for stationary videos.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction and Motivation

Salient motion detection is one of the most active research
subjects in computer vision, which is extremely valuable in many
subsequent applications, including object tracking [1], surveillance
[2], traffic control [3], and intruder detection [4]. Despite the fact
that the motion detection methods have achieved great success in
recent years, many obstinate challenges still prevail for widely-
used non-stationary videos [5], which may confine the application
scope of motion tracking based intelligent systems in successfully
coping with realistic and complicated scenarios, such as robotics
and security monitoring. Therefore, there has been a strong
.edu.cn (S. Li).
expectation for more robust, stable, automatic, and versatile sali-
ent motion tracking methods.

Among the state-of-the-art salient motion detectors, modeling-
based methods tend to have strong assumptions: the videos are
obtained from stationary camera [6,7], and the pixels in the con-
secutive video frames have spatially-aligned coherency; so that
they can directly employ the pixel-level background-pattern var-
iations to distinguish the potential salient motions, such approa-
ches include, but are not just limited to, Gaussian model [8],
Gaussian mixture model (GMM) [9], and the extended GMM [10].
However, the contemporary modeling-based methods are still
facing difficulties to properly handle relatively complicated situa-
tions with camera jitter compounded by dynamic backgrounds.
Meanwhile, other state-of-the-art motion tracking methods
follow the tracking-by-detection strategy [11], and they tend to
frame-wisely detect the salient motions from the background via
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pixel-wise correspondence matching among consecutive video
frames [12]. However, on the one hand, such methods usually
require to manually initialize the target motions as well as limiting
their tracking numbers, and the observation models have to be
elaborately tuned; on the other hand, the incorrect matchings
caused by occlusion can easily lead to false-alarm detection. To
improve, low-rank analysis based methods in recent years began
to gain momentum with ever-increasing interest from researchers
in the salient motion detection field [13,14]. The principle behind
it is that, the low-rank coherency not only implies the intrinsic co-
occurring backgrounds among cross-frame observations, but also
can serve as the matching criteria of current-frame candidate
motions, and thus, the involved salient motions can be regarded as
the sparsity derived from low-rank decomposition. Despite recent
research advances, for more complex non-stationary videos lasting
for a longer period of time, naively using low-rank analysis still
encounters certain difficulties for the task of meaningful and
robust salient motion detection. In particular, the key technical
challenges are highlighted as follows.

First, the long-term robust motion tracking in unconstrained
videos remains to an open research problem, especially for long-
term non-stationary Pan-Tilt-Zoom (PTZ) video, it tends to contain
multiple continuously-varying scenarios, wherein the back-
grounds should exhibit stronger scale and affine variations due to
camera jitter and view/pose change. Since the traditional low-rank
motion detection mainly focuses on the background observation
modeling in a global perspective, it will fail to handle such time-
varying relationships between the salient motions and the non-
aligned backgrounds. Therefore, intuitively speaking, we need a
smart divide-and-conquer computing strategy to assist multiple
local region-based low-rank analysis for visual clue variation,
which is required to the smooth coherency transitions among
different scene contents.

Second, although human beings are sensitive to the objects-of-
interest with salient appearance/motion relating to the unique-
ness, rarity, and surprise of a scene, and the classical robust
principal component analysis (RPCA) based low-rank analysis
model well follows this physiological principle, which assumes
that the salient motions are sparse with respect to the low-rank
structured background. However, even if locally-stationary video
is given, this sparse assumption may not always conform to the
physical reality due to the dynamically-changing appearance
pattern of the background and embedded objects, illumination
variation, occlusion, etc. Therefore, the already-powerful low-rank
based motion saliency model should be further improved to clo-
sely couple with the adaptive learning of high-level physiological
priors.

Third, robust salient motion detection requires to selectively
localize noticeable motions in a scene, however, the existing low-
rank trackers commonly ignore the contextual interactions
between the intermittent moving targets and the background [13]
due to the high computational cost of online maintenance of the
context model. Therefore, it is urgently expected to efficiently
integrate the spatio-temporal coherency cues into an improved
low-rank model by conducting online exploration over the com-
plementary color, structure, and sparse residuals.

To tackle the aforementioned challenges encountered by state-
of-the-art low-rank models, our current research endeavors are
aiming at the robust salient motion detection from non-stationary
videos. In this paper, we advocate a series of novel computational
strategies to seamlessly integrate the stable background priors and
spatio-temporal coherency clues into a generalized yet much-
improved low-rank analysis model. We propose to perform high-
level background tracking first to adaptively obtain short-term
frame batches with relatively-consistent backgrounds, and then
we explore the salient motions via low-rank analysis based
background modeling. Meanwhile, inspired by our previous works
[1,15], we continue to improve the global compressive sensing
based object tracker to afford local low-rank swarm voting based
background tracking. In addition, we aim to tackle the nontrivial
challenges caused by feature deviations by incorporating the
exploited motion coherency occurred in the consecutive frame
batches into low-rank analysis. In particular, for each frame batch,
we propose to introduce low-rank background prior obtained from
previous frame batch into the aligned RPCA low-rank revealing
process, wherein multiple saliency clues are simultaneously
employed to guide low-rank prior updating. Consequently, our
method can take full advantages of both modeling-based methods
and matching-based methods, collectively to improve the state-of-
the-art performance. Specifically, the salient contributions of this
paper towards novel computational strategies can be summarized
as follows:

� We propose a versatile and robust background tracking method
to decompose original long-term non-stationary videos into a
series of short-term frame batches with relatively-consistent
backgrounds, which can expedite the intrinsic temporal low-
rank information revealing.

� We integrate low-rank background prior with coherency reveal-
ing based on the aligned RPCA low-rank analysis, which can
guarantee to effectively eliminate the side effects caused by
dynamically-changing background and camera jitter.

� We define a series of saliency clues via online exploration of the
spatio-temporal coherency over the residual sparsity derived
from low-rank decomposition, which naturally gives rise to
adaptive the updating of the low-rank background prior for
complex scenes with intermittent motions and occasionally-
occluded sub-regions serving as backgrounds.
2. Related work

2.1. Background modeling methods

Since the backgrounds of stationary video tend to stay chan-
geless in general, modeling methods are usually adopted to
represent the intrinsic feature distribution of the background, and
regard its corresponding deviations as the salient motions. Wren
et al. [8] adopted single Gaussian model [16] to model the object's
intensity distributions. However, because of the existence of
background variation, it is infeasible to represent the entire
background status solely on single Gaussian. Therefore, GMM
[17,9] is adopted to model the complex background. Moreover,
Zivkovic et al. [18] proposed to use recursive manner to update
parameters of the GMM model adaptively. Although this method
can well handle variations of the background, its pixel-level
modeling has encountered massive false-alarm detections. To
boost the detector's robustness against sudden background var-
iations, recent works tend to concentrate on the exploration of
temporal coherency [19,20] and spatial information. Varadarajan
et al. [10] proposed to model regions as mixture distributions
rather than a collection of individual pixels. Similarly, Bilodeau
et al. [21] proposed to perform the salient motion detection in
feature space spanned by the local binary similarity patterns
(LBSP) descriptor, which exhibits high discriminative power than
traditional pixel-wise color information and is robust to noises.
Different from the regional strategy (in LBSP), Liang et al. [22]
proposed to explore spatial information by seeking local pixel's co-
occurrence to model the background in a pixel-pair manner.
However, because dynamic backgrounds frequently share similar
Gaussian deviations with respect to the moving object, these
methods tend to be very vulnerable to massive false-alarm
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detections, which are mainly caused by mistakenly classifying
dynamic backgrounds as salient motions [23]. Therefore, more and
more research works suggest that sparse templates or historical
intensity variations based background modeling can further
improve the detection results. Thus, StCharles et al. [6] proposed
pixel-level feedback strategies to adaptively adjust internal para-
meters without any prior intervention. Maddalena et al. [24–26]
proposed to use artificial neural networks to model the back-
ground, which has demonstrated robust performance against
motions with frequent interruptions and illumination variations.
However, these methods need plenty of training periods to esti-
mate the neural networks' parameters, thus Gregorio et al. [27,28]
proposed the weightless neural networks to boost the training
period. Most recently, Wang et al. [7] integrated the flux tensor
with both foreground model and background model and achieved
the best performance so far.

2.2. Matching based motion recognition methods

For non-stationary videos, due to the absence of direct corre-
spondences among consecutive frames, matching based methods
tend to integrate correspondences into motion sensors by resort-
ing to discriminative descriptors. Dollar et al. [29] proposed to
build cross-frame patch-wise correspondences via temporal
coherency, which achieves much stronger discriminative power
than pixel-level solutions. Similarly, Liu et al. [11] employed mul-
tiple interest point detectors (Harris Laplacian, Hessian Laplacian,
and MSER [30]) and strong local descriptor (like SIFT) to span the
feature space with higher discriminative power. In addition, based
on the temporal motion clues proposed in [29], Liu et al. [11]
adopted the page ranking algorithm [31] to prune those false-
alarm interest point-pairs, and achieved robust region of interest
(ROI) detection for non-stationary videos. Vijay et al. [4] extended
traditional pixel-level matching to region-level registration. By
convolving with the blur kernel, the differences between these
registered regions are taken as the salient motions. Meanwhile,
some works employ the camera's motion clues [32] to guide the
detection. Kim et al. [33] proposed to use Gaussian regression to
represent camera's motion tendency as a stochastic vector field,
which can detect the regions of interest (ROIs) in non-stationary
videos. Xu et al. [12] found that the robotic's motor signals are
heavily correlated to the background motion, and they adopted
learning based solution to learn fundamental matrices as functions
of motor signals to facilitate the salient motion detection. Recently,
instead of one-to-one matching based detection, from the per-
spective of visual saliency, Kim et al. [34] proposed to leverage the
specifics of motion clues to determine salient motions, which
explores spatio-temporal directional coherence at each pixel
position via well-designed local gradient field. Similarly, Fang et al.
[35] adopted multiple features, which perform data fusion of
illumination, color, and texture feature with motion features
(extracted from the motion vectors), to carry out video saliency
computation in a compressed feature domain. Although these
methods have achieved great success over ROI detection or motion
recognition, the specific application toward salient motion detec-
tions is rarely developed.

2.3. Low-rank revealing methods

The main task of low-rank revealing is to recover the low-
rank information from corrupted observations, which decom-
poses the input matrix into the low-rank part and the sparse
part. Two most appealing methods to solve this problem are
robust principal component analysis (RPCA) [36] and bilateral
random projection (BRP) [37], and in practice the accuracy of
the RPCA is better than that of BRP, yet its computation cost is
much higher. As for the salient object detection problem, due to
the nature of the visual saliency, variations resulted from the
contrast to its surroundings can be regarded as the most trust-
worthy saliency clue. Yan et al. [38] proposed to perform RPCA
on color information spanned feature space, and the residuals in
sparse matrix are directly regarded as the saliency degree.
Similarly, Shen et al. [39] proposed the learning based transform
to constrain the RPCA based low-rank structure toward the
backgrounds. Our previous work [15] attempts to explore the
multi-scale saliency degree by way of varying the BRP rank
level. As for the object tracking problem, because the appear-
ance of the target object varies over time, the low-rank infor-
mation of previous appearances can also be regarded as the
trust-worthy indicator to locate the target object in the current
frame. Zhang et al. [40] proposed to incorporate the low-rank
constraints into the appearance model learning process. In a
more direct fashion, our previous work [1] adopts the low-rank
information of previous target templates as the “low-rank
coherency” clue to locate the target object. Since the low-rank
information of previous target appearance represents the most
common patterns, the frequent occlusion or appearance varying
induced drift problem can be well handled achieving robust
object tracking results. However, as for the background tracking
problem mentioned in this paper, these kinds of object tracker
cannot perform well because of the short-term nature of non-
stationary videos which need frequent initialization to capture
frame batches with stable backgrounds breaking the “low-rank
coherency”. Most recently, low-rank based background model-
ing schemes become prevalent [13,14] in salient motion detec-
tion field, which can suppress dynamic background deviations
much better than the template based solutions. Zhou et al. [13]
proposed to perform low-rank revealing on those pre-aligned
video frames, and the residuals to the established low-rank
structure are regarded as the salient motions. Following the
original work by Gao et al. [14], to further restrain dynamic
backgrounds, the frames' pre-alignment steps are introduced
into the low-rank revealing process, and multiple low-rank
revealing processes (e.g., two-pass RPCA) are also adopted to
carry out the coarse-to-fine computational strategy in order to
eliminate false-alarm detections brought by the dynamic back-
grounds. Moreover, to pursue robust salient motion detections
in a global manner, [14] performs the low-rank revealing over
the entire input video sequences, which severely adds heavy
burden on both memory and computation (FPSo0:05), and such
a method is incapable of handling non-stationary videos. The
time consuming characteristic of this method is mainly brought
by two components: the “two-pass” RPCA; and the alignment
steps to handle camera jitter problems. Because [14] does not
adopt the background tracking strategy, for the camera jitter
category, the variance of the initial input frames is very large,
which causes the alignment steps to be extremely time con-
suming. Specifically, although [13] can detect the salient
motions for non-stationary videos in certain special cases (with
user intervention), challenges such as spatio-temporal over-
lapping induced hollow effects and ghost effects are not yet
taken into consideration, which gives rise to our motivation
aiming to overcome these limitations.

2.4. Brief summary

In general, according to the comprehensive evaluations
recently performed by Goyette et al. [41,5], modeling based salient
motion detection methods are already capable of tackling most of
the conventional challenges, and as a result, they frequently out-
perform matching based methods for the process of stationary
videos. However, the situation becomes odd for non-stationary
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videos. When matching based methods are used to handle non-
stationary videos, suffering from the discontinuous nature of the
motions in the wild, they tend to wrongfully take those motions
with broken coherency (e.g., occlusions and intermittent moving)
as the non-salient backgrounds. Therefore, strongly inspired by the
aforementioned methods, we plan to decompose non-stationary
long-term videos into stationary short-term frame batches via
background tracking, and then conduct low-rank analysis, assisted
by a series of saliency clues, to obtain robust salient motion
detection. And the high-level overview of our method is described
in the following section.
Fig. 1. Computational architecture of our salient motion detection. The yellow rectangle
current low-rank prior. (For interpretation of the references to color in this figure capti
3. Method overview

As shown in Fig. 1, our method mainly consists of three com-
ponents: low-rank background tracking (Fig. 1(a), (c) and (d)),
background prior guided low-rank analysis (Fig. 1(b), (e), (f) and
(g)), and background saliency clues based prior updating (Fig. 1(h),
(i) and (j)). In strong comparison with traditional modeling based
methods, our method emphasizes to leverage background tracking
for the convenient conversion of the original input video sequence
into frame batches with relatively-stable background (which still
affords small-scale affine variations induced by view angle
in (b) indicates the previous low-rank information, and the blue rectangle indicates
on, the reader is referred to the web version of this paper.)
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changes), and the details are discussed in Section 5. To avoid
hollow effects that frequently occur in traditional low-rank based
methods [13], we further integrate previous frame-batches' low-
rank prior into the current batch's low-rank revealing process
(Fig. 1(b)), wherein the current frame batch is decomposed into
low-rank parts (biased toward the low-rank prior) and sparse
parts (Fig. 1(e)). Meanwhile, because the salient motions usually
correspond to certain changes or variations, the column-wise L1-
norm of the sparse information is utilized to measure the motion
saliency (Fig. 1(g)), and the details are discussed in Section 6.
Besides, we introduce the dynamic background saliency clues to
guide the saliency-value assignments in dynamic background
regions (Fig. 1(h)). And the update of the current low-rank infor-
mation, which will be used to guide the low-rank revealing of next
subsequent frame batch, is guided by the LKP saliency clue (Fig. 1
(j)) to avoid ghost effects (Fig. 6(b)), and the details are docu-
mented in Section 7.

To assist readers to fully understand our mathematical for-
mulations, Table 1 summarizes the mathematical symbols used in
the following sections, wherein normal-case letters denote scalars,
bold lower-case letters denote vectors, and bold upper-case letters
denote matrices.
4. Brief review of the low-rank revealing methods

The low-rank revealing aims to decompose the original input
matrix A into a low-rank component L and a sparse component S,
that is A¼ LþS. Thus, the problem formulation can be defined as

min
L;S

rankðLÞþλJSJ0 s:t: A¼ LþS: ð1Þ

Although Eq. (1) represents a highly non-convex optimization
problem (which is also NP-hard), it can be approximately solved
by its relaxing convex envelope via

min
L;S

JLJnþλJSJ1 s:t: A¼ LþS: ð2Þ

Here J � Jn indicates the nuclear norm of L. Two representative
methods to solve the low-rank decomposition problem are RPCA
[36] and BRP [37]. We shall briefly review these two
methods below.

4.1. The RPCA based low-rank revealing method

The key solution of the RPCA low-rank revealing is consisting of
two steps: the singular value thresholding based low-rank com-
ponent estimation (Eq. (3)), and the soft thresholding based sparse
Table 1
The list of the key mathematical symbols used in this paper.

m;n The dim
space

W ;H The wid
T The num
R;X;V Measure
O Occlusio
k The upp
w The voti
ω;ψ ; η The loca
ε The pen
λ The pen

degree
β The com
A; L; S Appeara
G; J Frame b
τ; ϵ; μ 2D trans
UT1;2;DT1;2 Hard th
component computation (Eq. (4)):

L’U½Σ�μI�þV; ðU;Σ;VÞ’svdðY1Þ; ð3Þ

S’signðA�S�LÞ½jA�S�Lj �λμ�þ ; ð4Þ

where I denotes the identity matrix, A denotes the original input
matrix, and the details of the remaining symbols are identical to
what have been explained earlier in our manuscript. Obviously,
the RPCA low-rank revealing iterates these two steps to gradually
establish both the low-rank component L and the sparse compo-
nent S. In summary, the main characteristic is its good low-rank
revealing performance in spite of being a bit time-consuming,
whose slow convergency speed is mainly caused by the SVD steps
and the data fidelity matrix Y1, Y1’ ~L�1

2ð ~Lþ ~S�AÞ, and ~L ; ~S can be
updated via the following equation:

~L j’Ljþ
tj�1�1

tj
ðLj�Lj�1Þ; ~S j’Sjþ

tj�1�1
tj

ðSj�Sj�1Þ; ð5Þ

where the details of the parameter tj can be found in Algorithm 2.

4.2. The BRP based low-rank revealing method

The key idea of BRP method is to use the approximated random
matrix based projection to boost the convergency speed of the
low-rank revealing process. The size of the initial random matrix
Y2 is supposed to be rank� cards, wherein the rank and the cards
are separately used to control the low-rank degree and the sparse
degree. The BRP low-rank revealing mainly consists of two steps:
the bilateral random projection based low-rank matrix L revealing,
and the entry-wise hard thresholding to compute the sparse
matrix S:

L’ðL � Q Þ � Q T ; ð6Þ

S’ΩðA�LÞ; ð7Þ

where ½Q ;R� ¼ qrðY2Þ, qr denotes the QR decomposition, Y2’LT �
ðL � Y2Þ is the power scheme (similar to the power iteration [42]
with fixed iteration times) to boost the convergency speed, Ωð�Þ
denotes the function to select the largest top cards elements from
jA�Lj . In summary, the main characteristic of BRP based low-
rank revealing is its fast computation, but its accuracy is much
worse than the RPCA based method. Moreover, the BRP based low-
rank revealing method requires the user to provide the approxi-
mated rank and cards, which heavily depends on the user
experience, and thus limits its broad applications.
ension of original data, and the dimension of feature

th and height of candidate target rectangle, m¼W � H
ber of tracking candidates
ment matrix, original input matrix, and feature matrix
n mask
er bound of the tracked background frame number
ng confidence of sub tracker
l/global saliency indicator and the local scope constraint
alty coefficients for sub tracker coincidence
alty coefficients for low-rank decomposition sparsity

pensation strength along the gradient direction
nce model, the low-rank matrix, and the sparse matrix
atch and Jacobian matrix
form, standard basis, and a small constant
resholds to compute the dynamic background mask



Fig. 2. Illustration of the key steps for background tracking. The yellow dots in (b) denote the tracking results in the previous frame, red cycle indicates the locally-searching
area, and the blue points in (d) denote the newly-tracked sub-background locations. (For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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5. Background tracking

Since the backgrounds of non-stationary video usually vary
dramatically, it is difficult to perform salient motion detection on
frames with continuously-changing backgrounds. However, due to
the existence of semantic coherency, background variations in
short-time consecutive frames are oftentimes limited. Therefore,
we propose to use localized bilateral random projection (BRP)
tracking to decompose the input video frames into subgroups
(frame batches) sharing relatively-stable backgrounds.

5.1. Localized background tracking

Following our previous work [1], we adopt localized compres-
sive sensing (CS) based feature representation (Eq. (8) and Fig. 2
(c)) to represent the “target background” in a patch-wise manner
efficiently:

V¼ ½v1; v2;…; vn�T ¼
1
Z
ðR � hÞX; ð8Þ

where � denotes the column-wise OR operation, Z is the nor-
malization factor, VAR1�n, RARn�m is the constrained random
Gaussian matrix, XAR1�m, m¼W � H, n⪡m, and the formulation
of the rectangle filter h can be defined as

hi;jðx; yÞ ¼
1; irxr ðiþγWÞ; jryr ðjþγHÞ
0 otherwise

�
; ð9Þ

where W and H denote the rectangle width and height respec-
tively, and γ is set to be 1/7.

Supposing the ith video frame as the start of current observa-
tion, we use Vi to denote the locally-constrained CS-based repre-
sentation of the target background patch, and the appearance
model of the background (denoted by A) can be initialized as

A’½A Vi�; s:t: CðAÞrk; ð10Þ
where AARn�1, n is the feature dimension of Vi, and Cð�Þ indicates
the column size of the matrix A. Since there exist strong correla-
tions among consecutive video frames, the low-rank part L of A
can be regarded as the intrinsic background clue to locate back-
ground patch in the (iþ1)th frame, which can obtained via

BRPð½A B�Þ ¼ LþS; ð11Þ
where BRPð�Þ denotes the bilateral random projection (BRP) based
low-rank decomposition, L and S respectively indicate the low-
rank part and sparse part, B¼ ½V ðt;1Þ;V ðt;2Þ;…;V ðt;TÞ�, V ðt;jÞ indicates
the jth background patch candidate in the tth video frame (blue
points in Fig. 2(b)), T is the number of the candidates. Obviously,
the l0-norm of S matrix can be regarded as the metric of the true
background candidate, which has the minimum feature distance
with respect to the previous intrinsic background feature pattern,
and V ðt;jÞ will be selected as the tracking result only if
Pn

p ¼ 1 jSp;j j
¼mini

Pn
p ¼ 1 jSp;i j (see blue points in Fig. 2(d)).

In [1], the partial appearance model ~A , which is formulated by
selecting 0:2� k observations from A according to JSJ1 in an
ascending order, is regarded as the clue to compute the novel low-
rank prior (via another BRP low-rank revealing) to refine the
current tracking result. Meanwhile, similar procedures (via per-
forming BRP low-rank revealing over the entire A) are adopted to
control updating the appearance model A. In order to effectively
track relatively-stable background patches within limited k frames
(see details in Section 5.2), the object appearance model and the
updating strategy used in [1] should be further simplified to
accommodate frequent initialization, because they are originally
designed to facilitate the long-term tracking. That is, instead of
using the partial appearance model ~A to perform the tracking
refinement, we directly adopt the appearance model A with much
smaller search radius (i.e., random sparse sampling) to refine the
tracking results. Meanwhile, instead of using BRP low-rank
revealing guided appearance updating, we directly use currently-
tracked target observations to replace the oldest records in the
appearance matrix A.

In fact, except for the low computational cost, neither the
tracking precision nor robustness of this simplified tracker is
remarkable. Fortunately, the spatial information among the sub-
backgrounds tends to remain constant within limited consecutive
frames, we can utilize such information to facilitate the back-
ground tracking, and we will detail them in next section.

5.2. Robust global background tracking

Based on the localized background tracking, for each input
video frame, we regard the corresponding sparse matrix S as the
current tracking indicator. To fully utilize the spatial information
among different sub-backgrounds, the most practical strategy is to
employ sub-background-wise multiple trackers simultaneously
and seek the globally optimal tracking result according to the
tracking displacements of these trackers. The underlying principle
is that the background commonly undergoes mild variations in
limited consecutive video frames, such as small-scale affine
transformation and camera jitter induced blur.

Therefore, we introduce a global constraint to each individual
sub-background tracker (Fig. 2(b)), which guarantees that each
tracked sub-background possesses similar displacements and low-
degree sparse residual in S. Here the optimization function subject
to the global constraint for the tth video frame is defined as

arg min
x;y

Xu
i ¼ 1

wt
i �
Xn
j ¼ 1

Ot
j � jSti;jðxi; yiÞj

0
@

1
A�ε �

Xu
i ¼ 1

d
!

i

�����
�����
2

; ð12Þ
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where u is the sub-tracker number (we set it to 9 in this paper), n
denotes the feature dimension,wt

i ¼ 10=Z � expð�POt�1
i � jSt�1

i j Þ
is a weighting parameter, Sti;�ðxi; yiÞ denotes the candidate patch
centering at ðxi; yiÞ of the ith sub-tracker, ε is the parameter to control
the influence of the displacement penalty term, OAR1�n denotes the
occlusion mask, which has large value for those potential occluded

regions. And d
!

i ¼ ðxti �xt�1
i ; yti �yt�1

i Þ=J ðxti �xt�1
i ; yti �yt�1

i ÞJ2 is
the individual tracker's displacement between two consecutive
frames, and J � J2 denotes the l2-norm, x¼ ½x1; x2;…; xu� and y¼ ½y1
; y2;…; yu� indicate the tracked center location of each sub-tracker.
Obviously, the first term of Eq. (12) guarantees that the global
tracking result should exhibit the minimum feature variation with
respect to the intrinsic low-rank pattern of A, andthe second term
concentrates on the displacement coincidence of each sub-tracker.
Algorithm 1. Numerical implementation of Eq. (11).

Input: Sparse matrix S; Sub-tracker weight w; Occlusion mask O;
The ith sub-tracker's previous position ðxp; ypÞ.

Output: The newly detected position of the ith sub-tracker ðxi; yiÞ.
Initialization: ε¼ 0:4; Total number of sub-tracker: u¼9; The confidence score of the kth target candidate:

ϑ0
k ¼Oi;�ðxk; ykÞ � jSi;�ðxk; ykÞj ; iAf1;2;…;ug.

For t¼1:5
1. Search the local minimum position of the ith sub-tracker:

ðxi; yiÞ ¼minkðϑt�1
k Þ; kAf1;2;…;150g.

2. Compute the displacement direction vector of the ith sub-tracker:

d
!

i ¼ ðxi�xp; yi�ypÞ=J ðxi�xp; yi�ypÞJ2.
3. Eliminate the influence from occlusion via restraining the largest displacement:

d
!

j ¼ 0 if d
!

j ¼maxið d
!

iÞ.
4.

Compute the global direction: D
!¼ 1

u�1
Pu
i ¼ 1

wi � d
!

i.

5. Compute displacement direction around ðxi; yiÞ:
d
!

k ¼ ðxk�xi; yk�yiÞ=J ðxk�xi; yk�yiÞJ2 if J ðxk; ykÞ�ðxi; yiÞJ2r5.
6. For the ith sub-tracker, compute all the candidates's confidence scores via biasing

toward the global direction: ϑt
k ¼Oi;�ðxk; ykÞ � jSi;�ðxk; ykÞj �ε � J D!þ d

!
k J2.

End For
In fact, the optimal solution of Eq. (12) can be obtained via the
coordinate descent or dynamic programming method, yet the com-
putational cost of both choices is expensive. However, since the var-
iations among sub-backgrounds tend to stay uniform, we can seek the
sub-optimal solution by being bias toward the second term

(J
Pu

i ¼ 1 d
!

i J2). That is, we constrain the searching directions of each
sub-tracker to be identical as much as possible, and then the center
location of the global background can be determined by seeking the
minimum feature variation with respect to the previous low-rank
information (i.e., the first term in Eq. (12)). The performance
improvement directly benefitting from this strategy is demonstrated in
Fig. 3. Since the traditional object tracker is easily affected by the
moving object, the tracked background areas tend to bias toward the
moving object when its surrounding areas are similar. Obviously, our
background tracking method exhibits much robust tracking result, and
more quantitative evaluation to verify the effectiveness of our back-
ground tracking can be found in the Experimental Result section. The
entire computation procedure of Eq. (12) is summarized in Algorithm 1.

After the current target background being located, we need to update
each sub-tracker's appearance model to accommodate background var-
iations. However, because the target background tends to occupy the
majority of the given frame, we need to re-initialize the corresponding
sub-tracker bymoving the current trackingwindow toward the opposite
directionwhen it reaches frame boundary. Therefore, due to the frequent
initializing process, the updating process of appearance model A only
needs to replace the oldest observation with the current tracking
observation (as we mentioned in the previous sections).
6. Exploration of semantic coherency based on the integrated
computing strategy of divide-and-conquer and low-rank
analysis

Till now, we can obtain batches of tracked frames, which are
relatively consistent with slight variations induced by tracking,
view angle change, or camera jitter, etc. Since the salient motions
usually exhibit high sparse residual, we can further conduct low-
rank analysis over these frame batches respectively, which will
decompose each frame batch into low-rank part and sparse part.
Nevertheless, there still exist two challenges which hinder the
straight-forward utility of low-rank analysis for salient motion
detection: (1) the tracking drift induced displacements easily lead
to false-alarm detection; and (2) the slow movements induced
feature overlapping easily results in hollow effect, which tends to
leave the inner region of the detected moving object being empty,
see details in Fig. 4 (more demonstrations can be found in Section
3 in our Supplement Material). Therefore, we propose to incor-
porate alignment into the low-rank revealing process (Section 6.1),
and integrate the previous-batch low-rank prior to guarantee the
robustness of salient motion detection (Section 6.2).

6.1. Low-rank background recovery based on aligned RPCA

Given a frame batch containing m-frame similar backgrounds
G¼ ½G1;G2;…;Gm�, the low-rank decomposition [36] is defined as

ðLn; SnÞ ¼ arg min
L;S

ðj jLJnþλJSJ1Þ; s:t: G¼ LþS; ð13Þ



Fig. 3. Demonstration of the performance improvements via our background tracking strategy. The top part shows the results of the traditional object tracker [1], and the
bottom part shows the results of our background tracking. For each demonstration, the top row is the tracking result, and the bottom row is the demonstration of tracked
backgrounds.

Fig. 4. The demonstration of the hollow effect on Turbulence3 sequence. The middle row marked by blue rectangle shows the results produced without the low-rank prior,
and the bottom row marked by red rectangle shows the results produced with the low-rank prior. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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Fig. 5. Demonstration of the introduction of previous low-rank prior. Each tracked frame batches (with stable backgrounds) are denoted by Pi. Low-rank information are
marked with dash-line rectangle, and the corresponding salient motion detection results are shown in the middle bottom.
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where L and S denotes the low-rank part and sparse part
respectively. Since the residuals in sparse matrix S indicate the
saliency degree of the corresponding frame patch, the column-
wise l1-norm of S can be regarded as the motion saliency indicator.
Suppose that these tracked frame patches G are aligned by seeking
a set of 2D transform τ¼ ½τ1; τ2;…; τm�, the formulation of Eq. (13)
becomes

ðLn; SnÞ ¼ arg min
L;S;τ

ðJLJnþλJSJ1Þ; s:t: G○τ¼ LþS: ð14Þ

In fact, because the constraint G○τ¼ LþS is non-linear, it is diffi-
cult to solve Eq. (14) directly. Following the methods in [14,43], we
rewrite Eq. (14) with the following linearized formulation:

ðLn; SnÞ ¼ arg min
L;S;Δτ

ðJLJnþλJSJ1Þ; s:t: G○τþ
Xm
i ¼ 1

JiΔτiϵTi ¼ LþS;

ð15Þ
where Ji is the Jacobian of the ith background patch, and the 2D
transform τi and ϵi denote the standard basis in Rm. Hence, the
aligned low-rank recovering process consists of three main steps:
(1) compute the Jacobian matrices Ji’ð∂=∂ζÞðvecðGi○ζÞ= JvecðGi○
ζÞJ2Þj ζ ¼ τi , where iA ½1;2;…;m�; (2) warp and normalize the input
background patches G○τ; and (3) solve the linearized convex
optimization Eq. (15) via the accelerated proximal gradient (AGP)
method. Therefore, the drifting displacement can be well handled,
and then we should further make use of the previous low-rank
prior to guide the RPCA based low-rank recovery in Eq. (15).

6.2. Low-rank prior biased RPCA for salient motion detection

The traditional solution of RPCA based low-rank (Eq. (13))
revealing can be solved via the proximal gradient approach (Eq.
(16)) [36,44], which is a relaxed version of Eq. (13):

ðLn; SnÞ ¼ arg min
L;S

μJLJnþλμJSJ1þ
1
2
JG�L�SJ2F

� �
; ð16Þ

where J � JF denotes the Frobenius norm, μ is a small constant,
and the solutions of Eq. (16) are approximately equal to those of
Eq. (13) if μ↘0. In fact, we can simply perform quadratic approx-
imation on L and S separately as

Lkþ1 ¼ arg min
L

μJLJnþ JL� ~Lk�
1
4
∇L JG�L�SJ2F j ~Lk ; ~Sk

� �
J2F ; ð17Þ

Skþ1 ¼ arg min
S

λμJSJ1þ JS� ~Sk�
1
4
∇S JG�L�SJ2F j ~Lk ; ~Sk

� �
J2F ;

ð18Þ
And these two sub-problems can be efficiently solved via imposing
soft thresholding on S and singular value thresholding [45] on L.

Since we have decomposed the original video into many small
sub-groups sharing relatively-stable backgrounds via background
tracking, the low-rank information obtained via RPCA should well
represent the backgrounds. However, due to the limited-number
observations in each frame batch, some small parts, which closely
connect the salient moving object, may stay salient throughout the
entire observation (see Fig. 6(a)). Such “feature overlapping”
phenomenon ultimately results in incorrect RPCA low-rank
structures and cause false-alarm detections (see Fig. 6(b)). There-
fore, we propose to introduce previous low-rank background
information into current-batch low-rank revealing process (Fig. 5),
and convert the thresholding (soft thresholding on Stþ1 ¼ signðSt
ÞðjSt j �λμÞ and singular value thresholding on L) based iterative
solution into the following form:

Ltþ1 ¼Φ U Σ�μ
0:5 0
0 I

� �� �
þ
V

 !
; ðU;Σ;VÞ ¼ svdðYt HÞ: ð19Þ

Here Ltþ1ARn�k denotes the low-rank information obtained
from the (tþ1)th RPCA low-rank revealing process, I denotes the
identity matrix, n is the feature dimension, k is the total frame
number of current frame batch, function Φð�Þ selects the left k
columns from the input matrix. By putting the previous low-rank
information into the last column of G, we have
Yt ¼ ~Lt�1

2ð~Ltþ ~St�GÞ, ~Lt ¼ LtþδðLt�Lt�1Þ; ~St ¼ StþδðSt�St�1Þ,
δ is a parameter controlling the iteration step size, and HARn�k=2

denotes the low-rank prior matrix.
Therefore, the previous low-rank information will dominate Yt ,

and the singular value thresholding can facilitate the low-rank
revealing process to bias toward these low-rank prior (by setting the
thresholding of the largest singular value (0.5) to be smaller than
others, and refer to the details in Eq. (19)). The entire computation
procedure is summarized in Algorithm 2, and Fig. 6(c) show the per-
formance improvement thanks to the introduction of low-rank prior.

Algorithm 2. The coupling of short-term aligned RPCA and low-
rank prior.
ut: Tracked the t-th frame batch Gt; Low-rank prior in (t–1)

th frame batch Ht�1.
tput: The revealed low-rank information Lt and sparse
residual St .
tialization: μ¼ JGt J2=1:25; Compute the Jacobian matrix

Jt; t ; t ¼ 1.
0 1
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Fig. 6. Demonstration of the performance improvement benefitting from the introduction of the low-rank prior. (a) shows the tracked background patches. The top row in
(b) is the low-rank information derived from (a) without previous low-rank prior, and the salient detection results are given in the bottom row (false-alarm detections are
marked by red dash cycle). (c) demonstrates the low-rank decomposition results guided by the previous low-rank prior, wherein the top row is the low-rank information and
the bottom row is the sparse information (salient motion detection result). (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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j¼1:10

Yj ¼ GtþDj�Stj þμ � Rj.

Introduce low-rank prior via Yj ¼ ½Yj H�.

Compute current low-rank Ltj via Eq (19), and update Yj

with δ¼ tj� 1 �1
tj

.

Compute the sparse matrix via Stj ¼ signðYjÞðjYj j �λμÞ.

Update Yj ¼Gt�Ltj �Stj þμ � Rj.
Approximate gradient of aligned Yj via Dj ¼ JtðJtÞTYj.

Update the gradient of current residual via
7.

Rj ¼ RjþμðGtþDj�Stj �Ltj Þ, and set μ¼ μ=1:25,

tjþ1 ¼ 0:5ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4t2j

q
Þ.

d For
En

7. Saliency clues for dynamic background modeling

In principle, the major challenges in robust salient motion
detection come from two aspects: (1) ghost effects caused by
intermittent object moving (IOM); and (2) false-alarm detections
induced by dynamic backgrounds (DB). As for the IOM problem, we
can leverage the previously detected salient motion to guide the
update of the current low-rank prior, and see the details in Section
7.1. As for the DB problem, the basic principle of our solution is
“short-term thresholding”, which separates the stable region from
the dynamic backgrounds by performing statistics on the variation
of sparse residuals, and see the details in Section 7.2. In fact, to
further avoid the false-alarm detections (especially for non-
stationary videos), we also adopt the voting strategy to improve
the accuracy and robustness, and see the details in Section 7.3.

7.1. Saliency clues for low-rank background prior updating

Given a long-term video sequence, the background tends to be
time-varying, background updating is indispensable for most
modeling based salient motion detection methods. However, the
IOM problem can be practically solved with the help of the fol-
lowing two strategies: (1) we should suspend the background
updating for those regions where the detected moving object
comes to standstill by making the static object keep a high sal-
iency value; and (2) as for the newly-exposed background areas
that are previously covered by the “current static object”, their
updating should be further boosted. In fact, because traditional
methods usually model the foreground and the background
separately in a pixel-wise manner, the IOM problem can be well
handled. Yet, because massive computation is needed for each
observed frame batch to frequently conduct initialization, the
pixel-wise modeling strategy becomes invalid in our method.
Therefore, we resort to employing the saliency-degree analysis
over the previously detected salient motion to guide the updating
of current low-rank information. Here the key rationality is that
the newly-exposed backgrounds should exhibit strong similarity
with respect to its non-salient surroundings in RGB feature space,
while the currently-stopped object should maintain high con-
trasts. Thus, the updating strength of the low-rank information,
which is obtained from the current aligned short-term RPCA
analysis, should fully respect this saliency metric. The “saliency
degree” is defined as

Salði;jÞ ¼
1
n

X
DAη

ω � J ðRði;jÞ;Gði;jÞ;Bði;jÞÞ�ðRðp;qÞ;Gðp;qÞ;Bðp;qÞÞJ2; ð20Þ

where RGB indicates the RGB color value of the original frame,
D¼ J ði; jÞ�ðp; qÞJ2 and η¼ 100 control the local scope of the
contrast computation of our saliency clue, ωAf0;1g is an indicator
used for saliency computation, which guarantees to exclude
(ω¼ 0; if Sðp;qÞo0:1� S) the pixels with high residuals in the
sparse matrix S. And S denotes the mean of jSj . Obviously, the
saliency value of the newly-exposed background should be con-
sistently lower than the moving object, and we leverage this
information to obtain the saliency clue mask to guide the updating
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of the low-rank prior via Eq. (21).

SMði;jÞ ¼
1
Z
ψ � expðξ � Stði;jÞ � Salði;jÞÞ; ð21Þ

where Z denotes the normalizing factor, ξ is a scaling parameter,
and we empirically set it to 10, St denotes the sparse residual of
the last video frame in the tth frame batch, and ψAf0;1g guar-
antees SM only concentrates on the pixels with high Sði;jÞ
(ψ ¼ 1; if Sði;jÞ42� S). Furthermore, instead of computing the
saliency clues in a pixel-wise manner, we employ super-pixels [46]
to alleviate the computation burden, and Fig. 7(e) demonstrates
the computation of the saliency clues. Although the newly-
exposed “white arrow” is regarded as salient motion (ghost
effect) in the 160th frame (see the yellow dashed rectangle in
Fig. 7(d)), the corresponding region in the saliency clue mask
exhibits low saliency. As shown in Fig. 7(e) and (f)), it guarantees
correct low-rank prior updating, wherein the newly-exposed
arrow is correctly classified as low-rank information.

After obtaining the Saliency Clue Mask (SM), the low-rank prior
updating procedure can be formulated as

Lt ¼ ð1�SMÞ � LtþSM � Lt�1þβ � SM � ðLt�Lt�1Þ; ð22Þ

where Lt denotes the low-rank information obtained in the tth
frame batch, and β¼ 0:1 controls the compensation strength along
the gradient direction. The salient motion detection improvements
are demonstrated in Fig. 8. Compared to the method that directly
performs low-rank revealing strategy over frame batch (Fig. 8(b)),
the introduced low-rank information can greatly alleviate the
hollow effects caused by feature overlapping. However, incorrect
low-rank revealing still exists when the moving object undergoes
extremely slow movements, and the ghost effects can be easily
found in the last three rows of Fig. 8(c). Directly benefitting from
our saliency clue strategy, Fig. 8(d) shows that the incorrect low-
rank revealing has been properly handled.
Fig. 7. Illustration of the low-rank prior updating. (a) demonstrates the low-rank inform
representation, (d) shows the salient motion detection result of the 120th frame, (e) i
information of the 160th frame via Eq. (22). (For interpretation of the references to col
7.2. Saliency clues for dynamic background

Another critical issue in salient motion detection is how to
detect the correct moving object while eliminating the influences
from complex dynamic backgrounds. Because the dynamic back-
grounds and the true motions tend to have variance of similar
degree, if solely depending on the pixel-level feature distance
measurement with respect to the moving object model, it is dif-
ficult to obtain satisfactory salient motion detection results.
Moreover, for non-stationary videos, it is equally hard to leverage
the pixel-wise thresholding strategy due to the absence of pixel's
correspondence among consecutive video frames.

Therefore, following our batch-wise salient motion detection,
we propose to define another saliency clue over the sparse matrix
S to filter out the dynamic backgrounds globally. Our rationality
originates from the following observations: (1) the sparsity degree
of dynamic background regions varies more frequently around
their mean value than the stable background region; (2) the
sparsity degree of dynamic background regions tends to become
relatively weak when some moving objects are passing through;
and (3) the sparsity degree of moving objects can be either fre-
quently changing (e.g., moving vehicles in a lineup fashion) or not
(e.g., slow walking pedestrians), but both its amplitude and its
duration are larger than those of dynamic background regions.
Thus, according to the “third” observation above, we batch-wisely
count the “switch” times around four pre-defined hard thresholds
to measure the saliency degree, and “switches” are marked with
blue cycle in Fig. 9(C). Given the ith pixel, the formulations of these
four hard thresholds (UT1, UT2, DT1, DT2 are illustrated in Fig. 9(c)):
DT1 ¼ 0:9� Si ; DT2 ¼ 0:8� Si ; UT1 ¼ 1:1� Si ; UT2 ¼ 1:2� Si . Here
Si denotes the mean value of the ith row of S (see Fig. 9(b)).
According to the “first” observation above, both UT1 and DT1
guarantee to only consider those “large” variations. According to
the “second” observation above, both UT2 and DT2 guarantee to
exclude the variations caused by moving objects. Thus, the
“switch” time ST1 (Eq. (23)) around UT1 and the “switch” time ST2
ation of the 120th video frame, (b) is the original 160th frame, (c) is (b)'s super-pixel
s the saliency clue mask obtained via Eq. (21), (f) is the newly updated low-rank
or in the text, the reader is referred to the web version of this paper.)



Fig. 9. The pipeline of the stable background mask generation. Red points in (a) separately indicate the pixels belonging to dynamic background regions and foreground
motion areas. The left column of (c) demonstrates the column-wise sparse residual distribution of S, the mean value of S is marked with red line, and the gray regions
indicate the thresholding range, which correctly separate the dynamic background regions from the true motions. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Fig. 8. Demonstration of the performance improvement thanks to the introduction of the Low-rank Prior and Saliency Clue. (a) is the original video sequence, and the
corresponding frame indices are marked with yellow color in the right bottom, (b) demonstrates the low-rank information (left column) and the salient motion detection
results (right column) obtained from our short-term RPCA, (c) demonstrates the results after incorporating the low-rank prior, (d) demonstrates the results when using
saliency clue to guide the updating of the low-rank prior. Both hollow effects and ghost effects have been properly handled by our saliency clue strategy. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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(Eq. (24)) around DT1 can be computed as follows:

ST1 ¼
Xk�1

j ¼ 1

J ðjSði;jÞ j �UT1ÞJ0 � J ðjSði;jþ1Þ j �UT1ÞJ0

�J ðjUT2�jSði;jÞ j ÞJ0; ð23Þ

ST2 ¼
Xk�1

j ¼ 1

J ðDT1�jSði;jÞ j ÞJ0 � J ðDT1�jSði;jþ1Þ j ÞJ0
Fig. 10. Demonstration of the performance improvement thanks to the stable backgroun
(b) demonstrates the salient motion detection results without considering the stable bac
(d) demonstrates the detection results by considering the stable background mask. Obv
filtered out and this is a direct gain from our novel computational strategy.

Fig. 11. Illustration of our multiple-observ
�J ðJSði;jÞ j Þ�DT2 J0; ð24Þ

where J � J0 denotes l0-norm, and k denotes the image number of
current frame batch. Then, we define the saliency clues as SalU ¼
f ð1=ST1Þ and SalD¼ f ð1=ST2Þ, as shown in the right column of Fig. 9
(c), f ð�Þ denotes a 9�9 Gaussian filter. Therefore, the formulation
of our stable saliency mask (Fig. 9(d)) can be obtained according to
the voting result of SalU and SalD, and the final salient motion
d mask. (a) shows the video frames separately from Fountain01 and Fall sequences,
kground mask, (c) demonstrates the saliency degree based stable background mask,
iously, most of the false-alarm detections caused by the dynamic background are

ation coincidence computing strategy.



C. Chen et al. / Pattern Recognition 52 (2016) 410–432 423
detection result can be computed by JSJ1 � f ððSalU � SalDÞ2Þ (see
Fig. 10(d)).

7.3. Multiple observation coincidence

As mentioned in Section 5, the frame number of each observing
batch (k) is determined by the background tracking procedure. How-
ever, because the tracking procedure heavily relies on the choice of the
initial video frame, given an identical frame, different batch assign-
ments may lead to different detection results. Thus, the detection
performance (accuracy rate) can be further boosted by introducing a
separate voting strategy. That is, given the ith frame batch with frame
index from t to tþN, we regard the tþN=2 (instead of the
traditionally-chosen tþNþ1 frame) frame as the initial tracking
position for the ðiþ1Þ�th frame batch. Hence, we can obtain two
salient motion detection results for each video frame, and the coin-
cidence of these two independent detection definitely indicates the
most trust-worthy salient motions. Therefore, we can obtain the final
salient motion detection result via f ðJSit J1Þ � f ðJSiþ1

t�N=2 J Þ, and see
the details in Fig. 11. However, this computational strategy is optional
because it will inevitably double the overall computation cost, and we
Fig. 12. Performance comparison on CD2014 benchmark. The second row demonstrate
SuBSENSE14 [6], CwisarDH14 [28], MOD13 [13], ViBe11 [32], and KNN06 [18], respectiv
suggest users to adopt this step when the accuracy is of utmost
importance with the highest priority.
8. Experimental results and evaluations

8.1. Experiment settings

We compare our method with six state-of-the-art methods via
comprehensive experiments over CD2014 benchmark [5] (mainly
consisting of stationary video sequences except the PTZ category,
see Fig. 12 and five non-stationary video sequences [47].

The involved six state-of-the-art methods include FTSG14 [7],
SuBSENSE14 [6], CwisarDH14 [28], MOD13 [13], ViBe11 [32], and
KNN06 [18]. Of which, FTSG14, SuBSENSE14, and CwisarDH14 are
three top-performance salient motion detection methods sug-
gested by CD2014 benchmark, and MOD13 adopts a low-rank
analysis based solution similar to our method, while ViBe11 and
KNN06 are two methods with the highest reference rate. All the
quantitative comparison metrics in this paper are based on three
widely-used criteria, which are Precision (TP=ðTPþFPÞ), Recall
s the Ground Truth (GT), rows 3–9 depict the results of our method, FTSG14 [7],
ely.
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(TP=ðTPþFNÞ), and F-measure (2nPrecisionnRecall=ðPreciosion
þRecallÞ). And TP denotes the true positive, FP denotes the false
positive, and FN denotes the false negative.

We test the methods over seven categories of CD2014 bench-
mark dataset, including Baseline, Dynamic Background, Intermittent
Object Moving, BadWeather, Turbulence, Camera Jitter, and PTZ. The
Baseline category has four stationary videos consisting of simple
motions. The Dynamic Background category has six sequences,
wherein the involved motions are frequently interrupted by
dynamic backgrounds (e.g., swaying leafs in tree or gushing foun-
tains). Similarly, the Bad Weather and Turbulence category sepa-
rately contains four videos with interrupted motions induced by
time-varying weather. The Intermittent Object Moving category
Table 3
The averaged F-measure comparisons between state-of-the-art methods and our indivi
indicate the second-best ones, and bold italic fonts indicate the third-best ones. BL: base
IM: intermittent object motion, Five: five additional categories, and ‘–’ indicates the res

Methods BL DB BW

SuBSENSE14 0.950 0.817 0.861
FTSG14 0.933 0.879 0.822
MOD13 0.921 0.708 0.624
CwisarDH14 0.914 0.827 0.683
ViBe11 0.870 0.719 0.391
KNN06 0.841 0.685 0.758
Baseline System 0.572 0.626 0.747
þBackground

Tracking
0.572 0.650 0.747

þLow-rank Prior 0.464 0.703 0.771
þSaliency Clue 1 0.754 0.702 0.796
þSaliency Clue 2 0.752 0.863 0.851
þSaliency

Refinement
0.814 0.913 0.873

Table 4
The comparisons of average precision and recall over Baseline sequences.

Method Precision

SuBSENSE14 0.9495
FTSG14 0.9170
MOD13 0.9126
CwisarDH14 0.9337
ViBe11 0.9288
Ours 0.8568
KNN06 0.9245

Table 2

The detailed standard variance (�10�4) of different tracking strategies, including the tr
5�5 over three datasets: Camera Jitter, PZT, and Additional Five categories. The best pe

Sequences 1�1 2�2

Badminton 0.472 0.424
Boulevard 1.359 0.822
Sidewalk 0.291 0.243
Traffic 0.472 0.467
ContinuousPan 0.722 0.689
IntermittentPan 0.081 0.073
TwoPositionPZTCam 0.135 0.109
ZoomInZoomOut 1.088 1.088
Bike 0.237 0.227
Diving 0.135 0.156
Ski 0.256 0.248
Woman 0.366 0.357
David 0.252 0.251
Average 0.451 0.396
contains six intermittent-motion videos, wherein the challenge is
how to keep high saliency value for those stop-and-go objects while
avoiding ghost effects when objects start moving again. The Camera
Jitter category has four video sequences, wherein the motions are
frequently interrupted due to camera jitter. The PTZ category con-
tains four most challenging video sequences obtained from pan-tilt-
zoom (PTZ) camera. Because of the non-stationary feature of PTZ, to
the best of our knowledge, none of the state-of-the-art methods can
very well handle such category. Particularly, the other give addi-
tional non-stationary video sequences are all from object tracking
benchmark, including Woman, Diving, Ski, David3, and Bike
sequences, wherein both the moving objects and the salient-motion
ground truth are marked with rectangles.
dual system components. Bold fonts indicate the best performance, the italic fonts
line, DB: dynamic background, BW: bad weather, CJ: camera jitter, Tur: turbulence,
ult is not available.

CJ Tur IM PTZ Five

0.815 0.779 0.601 0.347 0.050
0.751 0.712 0.789 0.324 –

0.777 0.383 0:594 0.558 0.520
0.788 0.722 0.575 0.321 –

0.753 0.159 0.509 0.124 0.019
0.689 0.519 0.502 0.212 0.055
0.461 0.720 0.400 0.534 0.203
0.471 0.720 0.400 0.703 0.574

0.553 0.739 0.395 0.739 0.585
0.717 0.762 0.532 0.726 0.678
0.716 0.762 0.537 0.726 0.679
0.740 0.780 0.554 0.745 0.668

Recall F-measure

0.9520 0.9503
0.9513 0.9330
0.9306 0.9215
0.8972 0.9145
0.8204 0.8700
0.8379 0.8442
0.7934 0.8411

aditional object tracker [1] (1�1), our background tracking 2� 2, 3�3, 4�4 and
rformances are marked with bold font.

3�3 4�4 5�5

0.404 0.400 0.411
0.749 0.757 0.752
0.249 0.246 0.250
0.357 0.343 0.353
0.678 0.690 0.694
0.074 0.080 0.078
0.117 0.113 0.113
1.087 1.088 1.087
0.233 0.236 0.231
0.132 0.159 0.149
0.253 0.251 0.247
0.364 0.364 0.368
0.242 0.250 0.245
0.380 0.382 0.382



Table 5
The comparisons of average precision and recall over Dynamic Background sequences.

Method Precision Recall F-measure

Ours 0.9216 0.9072 0.9132
FTSG14 0.9129 0.8691 0.8792
CwisarDH14 0.8499 0.8144 0.8274
SuBSENSE14 0.8915 0.7768 0.8177
ViBe11 0.7291 0.7616 0.7197
MOD13 0.7538 0.6682 0.7084
KNN 0.6931 0.8047 0.6854

Table 6
The comparisons of average precision and recall over Intermittent Object Moving sequences.

Method Precision Recall F-measure

FTSG14 0.8512 0.7813 0.7891
SuBSENSE14 0.8149 0.5626 0.6012
MOD13 0.5032 0.7262 0.5945
CwisarDH14 0.7417 0.5549 0.5753
Ours 0.7213 0.5371 0.5540
ViBe11 0.7513 0.4729 0.5093
KNN06 0.7121 0.4617 0.5026

Table 7
The comparisons of average precision and recall over Bad Weather sequences.

Method Precision Recall F-measure

Ours 0.8482 0.9055 0.8730
SuBSENSE14 0.9091 0.8213 0.8619
FTSG14 0.9231 0.7457 0.8228
KNN06 0.9114 0.6537 0.7587
CwisarDH14 0.8762 0.6228 0.6837
MOD13 0.5016 0.9159 0.6248
ViBe11 0.3086 0.7249 0.3918

Table 8
The comparisons of average precision and recall over Camera Jitter sequences.

Method Precision Recall F-measure

SuBSENSE14 0.8115 0.8243 0.8152
CwisarDH14 0.8516 0.7437 0.7886
MOD13 0.7832 0.7721 0.7776
ViBe11 0.8064 0.7293 0.7538
FTSG14 0.7645 0.7717 0.7513
Ours 0.7985 0.7127 0.7403
KNN06 0.7018 0.7351 0.6894
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8.2. Parameter selection

We quantitatively evaluate the performance improvements by
comparing our Background Tracking (with different sub-tracker
numbers, Section 5) with traditional object tracker [1]. Since the
aim of our Background Tracking is to obtain frame batches with
relatively-stable backgrounds, the level of standard variance of
each frame batches can be regarded as the true tracking perfor-
mance indicator. Meanwhile, to obtain objective and qualitative
results, areas related to salient motions (indicated by Ground
Truth) are excluded from the computation of frame batch's stan-
dard variance. Detailed results are documented in Table 2.
Because the traditional object tracker [1] mainly concentrates
on the candidate target with global minimal residual in sparse
matrix S, the standard variance of the ‘1�1’ background tracking
solution (in the traditional object tracker) stays at the highest
level. In fact, the level of the standard variance gradually decreases
with the increasing of the sub-tracker number. However, because
the tracking performance of the sub-tracker drops fast with lim-
ited tracking area (due to too many sub-trackers, see details in the
‘5�5’ column in Table 2), we choose ‘3�3’ as the optimal choice
to make balance between efficiency and performance (the effi-
ciency and performance results can be found in Fig. 15(a)).



Table 9
The comparisons of average precision and recall over Turbulence sequences.

Method Precision Recall F-measure

Ours 0.7855 0.7943 0.7806
SuBSENSE14 0.7814 0.8050 0.7792
CwisarDH14 0.8942 0.6068 0.7227
FTSG14 0.9035 0.6109 0.7127
KNN06 0.5117 0.7682 0.5198
MOD13 0.4160 0.6260 0.3835
ViBe11 0.1363 0.6272 0.1594

Table 10
The comparisons of average precision and recall over PTZ sequences.

Method Precision Recall F-measure

Ours 0.8014 0.7127 0.7454
MOD13 0.4777 0.8329 0.5585
SuBSENSE14 0.2840 0.8306 0.3476
CwisarDH14 0.4824 0.3363 0.3218
FTSG14 0.2861 0.6730 0.3241
KNN06 0.1979 0.6980 0.2126
ViBe11 0.0801 0.6728 0.1246

Table 11
The comparisons of average precision and recall over five non-stationary sequences.

Method Precision Recall F-measure

Ours 0.8346 0.5703 0.6680
MOD13 0.5319 0.5696 0.5204
KNN06 0.0289 0.7983 0.0550
SuBSENSE14 0.0312 0.2280 0.0508
ViBe11 0.0100 0.6348 0.0196

C. Chen et al. / Pattern Recognition 52 (2016) 410–432426
We also evaluate the performance influence of different ε in
(12). In fact, a large value of ε means to emphasize the displace-
ment penalty term, which makes the background tracking result
bias toward the averaged initial position at the first iteration.
However, a small value of ε tends to degenerate our Background
Tracking into the traditional object tracker. Following the quanti-
tative evaluation results in Fig. 15(b), we set ε¼ 0:4 as the optimal
choice in our Background Tracking component.

Meanwhile, the quantitative evaluations of the hard thresholds
(UT1;UT2;DT1;DT2) in our Saliency Clues for Dynamic Background
(Section 7.2) component are demonstrated in Fig. 15(c). Because
the value ranges of the threshold pairs UT1, UT2 and DT1, DT2 are
symmetric under the constraints DT14DT2;UT24UT1, Fig. 15
(c) only demonstrates the averaged F-measure with different
choices of DT1 and DT2. Obviously, the optimal choice is to set
DT1¼0.9, DT2¼0.8, and we set UT1¼1.1, UT2¼1.2 accordingly.

8.3. Experiment comparisons and evaluations

Experiments over videos with intermittent motions: As docu-
mented in Tables 4 and 6, our method achieves poor performance
on Baseline and Intermittent Object Moving datasets. In fact, all
these methods except MOD13 belong to modeling-based methods,
and they keep high background updating rate at the beginning
while setting low updating rate for remaining frames. Directly
benefit from this strategy, the stopped moving objects can be
easily detected, and we can notice plausible performance. How-
ever, we do not adopt such a strategy to achieve biased
performance. Besides, because of the short-term nature of our
method (batch-wise low-rank revealing), our low-rank informa-
tion updating strategy can not guarantee to obtain 100% pure
background model, wherein incorrect updating may occur when
the currently-moving object turns into static all of the sudden.
Meanwhile, the poor performance of our method on Camera Jitter
(Table 8) category is mainly caused by the worse performance on
Side Walk sequence (with the recall rate of 0.41), which contains
static moving pedestrians (the frames with static pedestrians
exceed 80%). MOD13 also conducts the pre-alignment steps before
low-rank revealing process, and it has strong constraints that the
newly-detected salient motions must adjoin previous detections.
Thus, it outperforms our method on these two datasets, however,
it inevitably gives rise to poor precision rate for the sequences
with frequent interruptions (see MOD13 in Tables 5, 7 and 9).

Experiments over videos with frequent interruptions: As for Bad
Weather (Table 7), Dynamic Background (Table 5), and Turbulence
(Table 9) categories, all these three categories have frequently-
interrupted motions caused by dynamic background (large dupli-
cate variations within fixed regions) or weather induced variations
(unfixed regions with lower variation degree than dynamic back-
ground). Our method achieves comparable performance over
Dynamic Background category, benefitting from our saliency DB
mask. Although traditional modeling-based methods also adopt
thresholding strategies to suppress saliency assignments in
dynamic regions, our method has much better local properties
than those of other methods (i.e., our saliency DB masks are batch-
wisely independent), especially for Fountain02 and Over Pass
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sequences with moving objects passing through dynamic back-
ground regions. For Bad Weather and Turbulence categories, since
the variations induced by external factors are much lower than
those induced by salient motions, our low-rank revealing solution
can automatically eliminate those small false-alarm variations.
Specifically, it should be noted that pixel-wise modeling-based
methods (FTSG14 and ViBe11) tend to exhibit poor performance
due to the absence of spatial constraints, wherein both of the
variations, induced by salient motion and external factors, tend to
be similar locally.

Experiments over non-stationary videos: As shown in Fig. 14, all
the modeling-based methods perform worse when being
Fig. 13. Overlapping rate (OR) based comparison results on PTZ and five additional non
and FTSG14 (FTS14) [7] are not available, we cannot evaluate the performance of these
employed to handle non-stationary videos. For PTZ category, the
ZoomInZoomOut video is the most challenging sequence due to
continuous scale variations. Because our method organically
integrate the alignment steps into the low-rank revealing process,
the background variations induced by scale change can be easily
classified as low-rank background information, thus, we can
effectively avoid false-alarm detection. But MOD13 has poor per-
formance in this case, because its PCP-based alignment only serves
as a preprocessing step before low-rank revealing. As for the
ContinuousPan sequence, the camera undergoes slow pan move-
ments, which is the easiest situation for non-stationary videos.
However, because of the continuous background variation caused
-stationary video sequences. Because the source code of CwisarDH14 (CWI14) [28]
two methods on the five non-stationary video sequences of our own.
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by camera movements, all the modeling-based methods in com-
parison exhibit worse performance. Meanwhile, for the additional
five non-stationary sequences, comparing to other six state-of-
the-art methods, our method has absolute advantages in recall
rate and precision rate (see the details in Tables 10 and 11).
Especially for Ski sequences, which contain fast moving objects
and drastic camera movements within 79 frames, none of the
compared methods can successfully overcome such challenges,
because they must rely on training in order to establish a robust
background model.

Meanwhile, to clearly demonstrate the superiority of our method
for robust salient motion detection in non-stationary videos, as
shown in Fig. 13, we also adopt the Overlapping Rate (OR) to conduct
quantitative comparison over nine non-stationary sequences (Four of
them are from PTZ category). And OR can be computed as

OR¼ areafROIT⋂ROIGg
areafROIT⋃ROIGg

; ð25Þ

where ROIT is the detected salient motion and ROIG is the ground
truth.

Besides, it should be noted that the ground truths for PTZ
category are human-labeled foreground masks, while the ground
truths for the other five non-stationary sequences are human-
marked rectangles. Therefore, the quantitative results (Precision
rate and Recall rate) over PTZ dataset are commonly better than
those over the other five non-stationary sequences.

We further evaluate the performance of each component
involved in our method by disabling individual components,
including: (1) the Baseline System, which solely leverages the RPCA
low-rank analysis strategy to detect the salient motion; (2) the
Background Tracking component; (3). the Low-rank Prior, which is
integrated into current low-rank revealing; (4) the Saliency Clue 1,
which guides the low-rank prior updating; (5) the Saliency Clue 2,
which restrains dynamic background; (6) the Saliency Refinement
component. The overall experimental results (averaged F-measure
over 8 video categories) are listed in Fig. 16, and the detailed
results are documented in Table 3.

Obviously, the Background Tracking component can greatly
improve the performance for the PTZ category and the Five Addi-
tional categories. This is because, video sequences in these cate-
gories are all non-stationary, and the traditional solution (the
Baseline System) is incapable of handling these scenarios. Bene-
fitting from the introduction of the Background Tracking compo-
nent, the traditional long-term videos are converted into short-
term frame batches, and the low-rank revealing solution finally
becomes available, which greatly improves the salient motion
detection performance.

However, for both stationary and non-stationary videos,
because of the limited frame number (mainly in the non-
stationary sequences) and potential feature overlapping caused
by slow motion (which mainly exists in the stationary sequences),
it is still hard to obtain satisfactory salient motion detection via
performing low-rank analysis over short-term batches directly
(easily resulting in hollow effect, and refer to Section 3 of our
Supplementary Material). Therefore, we introduce the Low-rank
Prior component to guide the low-rank revealing, which can well
conquer the above limitation and simultaneously improve the
overall performance for all 8 categories, and refer to Fig. 16 and
Section 1 of our Supplementary Material for details.

It can be easily found from Fig. 16, the Saliency Clue 1 imposes
strong positive effect on the baseline category, the camera jitter
category, the intermittent motion category, and the turbulence
category. In fact, the performance improvement over the camera
jitter category mainly comes from the Sidewalk sequence for its
long period of stop-and-go motions, while incorrect low-rank
prior updating can easily result in “missing detection”.
Benefitting from the Saliency Clue 1 guided low-rank prior
updating, the challenges over traditional stationary videos can be
well conquered (including ghost effect caused by intermittent
motions and hollow effect caused by slow movements), and Fig. 16
demonstrates the large F-measure improvement.

The Saliency Clue 2 is designed for the Dynamic Background
category to avoid assigning large saliency value to those dynamic
backgrounds. Because of the Saliency Clue 2 based dynamic back-
ground mask (see details in Section 7), this component contributes
to enhancing the precision rate over the dynamic background
category by a large margin.

Because the observations (salient motion detection results)
from different frame batches are partly different, the voting pro-
cedure (see details in Section 7) can greatly increase the precision
rate. Thus, the Saliency Refinement component can simultaneously
improve the overall performance for all these 8 categories (see
Section 1 of our Supplementary Material).

It can be easily observed from Fig. 16, our method outperforms
the state-of-the-art methods by a large margin over non-
stationary sequences (the PTZ category and the Five Additional
categories) even without the Saliency Clue 1 component, the Sal-
iency Clue 2 component and the Saliency Refinement component.
As for the traditional stationary sequences (e.g., Bad Weather,
Dynamic Background and Camera Jitter), the performance of our
method is comparable to others even without the Saliency
Refinement component. However, the traditional modeling based
methods outperform our method, because the short-term frame
batch strategy breaks the low-rank coherency.

Meanwhile, the corresponding time cost comparison results
can be found in Table 12. Obviously, both the Baseline System
(costing 0.182 s per frame) and the Saliency Refinement component
(total consumption�2) are the most time-consuming steps, yet
the remaining components (Saliency Clue 1: 0.021 s per frame;
Low-rank Prior: 0.001 s per frame) can improve the performance
greatly with much less computational cost. It also should be noted
that the Background Tracking component (costing 0.014 s per
frame) can greatly improve the performance over non-stationary
videos, and the Saliency Clues 2 component (costing 0.024 s per
frame) can greatly improve the performance over the dynamic
background category (DB) and the bad weather category (BW).

8.4. Limitations

Due to the short-term low-rank revealing strategy, our low-rank
information updating method tends to gradually accumulate those
temporally static moving objects, which are expected to give rise to
the possible error of taking “static motions” as part of the non-
salient backgrounds. As we can see in Fig. 17, because the walking
person stands still at identical position for over 160 frames (from
Fig. 17(a)–(c)), and the original correct low-rank prior (Fig. 17(d))
was gradually updated (Fig. 17(e)) with perhaps accumulated
potential errors. Hence, the salient motion detection in the #893
frame fails to detect some parts of the target object. One way to
overcome this limitation is to further develop new foreground
models aided by certain motion clues (e.g., flux tensor or optical
flow), so that we can keep assigning saliency values to the regions
that are similar to the foreground templates, even if such regions
belong to the currently-stopped objects which have been moving
till this very moment.

Besides, our method is a bit time-consuming, which can only
achieve the time performance of three frames per second for the
300n300 video frames (on a computer with Quad Core i7-3770
3.4 GHz, 8GB RAM). Table 12 demonstrates the detailed time cost
comparison results. In fact, for the time-consuming Multiple Obser-
vation Coincidence strategy documented in Section 7.3, it can be
implemented in a parallel fashion, which should greatly improve the



Fig. 14. Performance comparison on five additional non-stationary video sequences. Ground Truth is marked with red rectangle in the first row, and rows 2–6 depict the
results of our method, MOD13 [13], SuBSENSE14 [6], ViBe11 [32], and KNN06 [18], respectively. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)

Fig. 15. Parameter selection analysis. (a) demonstrates the trade-off between the standard variation of tracked background frame batch and the time consumption of
adopting different sub-tracker number, (b) shows the performance analysis for different choices of ε, (c) demonstrates the performance with different choices of DT hard
thresholds.
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time efficiency of our method. Meanwhile, we can perhaps make
trade-off between efficiency and performance by appropriately redu-
cing the RPCA low-rank revealing iteration times and/or introducing
an incremental SVD method to expedite the convergence speed.
9. Conclusion and future work

In this paper, we have systematically presented a novel and
versatile method to address a suite of research challenges



Fig. 16. The evaluation results for each component involved in our method (best viewed in color). The colors from blue to red indicate the averaged F-measure results from
low to high. The horizontal axis lists the eight video categories, and the vertical axis indicates the different components involved in our method. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 12
Time cost comparisons. The left column demonstrates the time performance of the state-of-the-art methods, and the right column demonstrates the time performance of
each component involved in our method. All of these methods (components) run on a computer with Quad Core i7-3770 3.4 GHz CPU, 8GB RAM.

Method Precision Recall F-measure

SuBSENSE14 0.043 Baseline System 0.1824
MOD13 0.213 þBackground Tracking 0.1967
FTSG14 0.114 þLow-rank Prior 0.1978
CwisarDH14 0.138 þSaliency Clue 1 0.2193
ViBe11 0.028 þSaliency Clue 2 0.2434
KNN06 0.031 þSaliency Refinement 0.4868

Fig. 17. Demonstration of our method's limitation. (a–c) show that the walking person stands still at the same position for over 160 video frames, (d) demonstrates the low-
rank prior obtained before the #736 frame, and (e) demonstrates the low-rank prior after #892 frame. (f) is the #893 frame's salient motion detection result. Obviously, some
parts of the standing-still person are not properly detected.
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encountered in the motion tracking of non-stationary videos. The
central idea of our method is to collectively incorporate the
respective advantages of matching (i.e., background tracking) and
modeling (i.e., low-rank information modeling for background)
based methods into a unified low-rank analysis driven tracking-
by-detection framework. Key novel technical elements include
multiple local low-rank swarm based background trackers, a suite
of new computing schemes involving divide-and-conquer strategy
and low-rank semantic coherency analysis, low-rank prior biased
salient motion detection based on aligned RPCA, and online
updating of low-rank background prior assisted by multiple sal-
iency clues, all of which contribute to the robust salient motion
detection for long-term non-stationary videos with proved excel-
lent performance. Consequently, our novel computational schemes
promise to combat many obstinate problems induced by camera
jitter, dynamic background, intermittent motion, and occasionally-
occluded contextual interactions. Our comprehensive experiments
and extensive comparisons with other state-of-the-art methods
have demonstrated our method's superiorities in terms of
robustness, accuracy, reliability, and versatility.

Our ongoing research endeavors are concentrated on extending
our key ideas to correctly perform the motion recognition in hand-
hold videos, saliency motion guided object tracking, multi-view
non-stationary video expression, etc.
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