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Abstract—Massive routinely-acquired raw volumetric
datasets are hard to be deeply exploited by cyber worlds
related downstream applications due to the challenges in
accurate and efficient shape modeling. This paper system-
atically advocates an interactive 3D shape modeling frame-
work for raw volumetric datasets by iteratively optimizing
Hessian-constrained local implicit surfaces. The key idea
is to incorporate contour based interactive segmentation
into the generalized local implicit surface reconstruction.
Our framework allows a user to flexibly define derivative
constraints up to the second order via intuitively placing
contours on the cross sections of volumetric images and fine-
tuning the eigenvector frame of Hessian matrix. It enables
detail-preserving local implicit representation while combat-
ing certain difficulties due to ambiguous image regions, low-
quality irregular data, close sheets, and massive coefficients
involved extra computing burden. Moreover, we conduct
extensive experiments on some volumetric images with blurry
object boundaries, and make comprehensive, quantitative
performance evaluation between our method and the state-of-
the-art radial basis function based techniques. All the results
demonstrate our method’s advantages in the accuracy, detail-
preserving, efficiency, and versatility of shape modeling.

Keywords-3D shape modeling; raw volumetric dataset;
implicit surfaces; Hessian constraints

I. INTRODUCTION AND MOTIVATION

3D shape modeling from raw volumetric datasets plays

a vital role in many downstream applications, including

shape understanding, physical simulation, interactive de-

sign and editing, geometric analysis, and visualization.

However, there are still tremendous difficulties spanning

from efficient and accurate volume segmentation to detail-

preserving 3D shape reconstruction.

The volume segmentation approaches can be classified

into clustering based methods and interaction based meth-

ods. Although clustering based methods have advantages

in efficiency and input parameters, it is well-known that

they are hard to achieve accurate segmentation results due

to lacking fine-grained priors. Meanwhile, the involved

parameters’ selection commonly requires domain-specific

expertise to distinguish the foreground region. Specifically,

Owada et al. [1] pointed out that segmentation heavily

depends on the user’s subjective interpretation, which

indicates that effective user interpretation indeed facilitates

accurate segmentation.

Benefitting from user-specified contours, the interac-

tive shape modeling methods usually involve a surface

reconstruction procedure, typically based on certain im-

plicit functions that are commonly considered to be ro-

bust to noise, topologically flexible to be interpolated

and extrapolated, and easily to be converted to other

geometry representations. In the past two decades, a

number of implicit reconstruction methods have been

proposed, mainly including local implicit methods and

global implicit methods. Local implicit methods have well-

known advantages in high accurate representation and

low computation cost. However, they tend to produce

deformed messy shapes when handling low-quality data

with noise, outliers, and uneven sampling density. Global

implicit methods, including RBF based approaches [2],

variational approach [3], graph-cut approach [4], and

Hermite RBF Implicits (HRBF) [5], are less sensitive to

data quality because of their global nature, and thus can

effectively alleviate the problems encountered by the local

implicit methods. However, they inevitably suffer from

low-accuracy reconstruction and computational burden

involved in large system solving.

This paper systematically advocates a detail-preserving

3D shape modeling method from raw volumetric dataset

by generalizing local least squares implicits based on

Hessian constraints and incorporating them into iterative

optimization of local implicit surfaces. In particular, the

salient contributions of this paper can be summarized as

follows:

• We propose an interactive 3D shape modeling frame-

work based on iterative optimization of local implicit

functions, which affords users an intuitive interface

to edit the sample points and their accompanying

curvature-related constraints over volumetric dataset,

and thus gives rise to more accurate results.

• We formulate a new local least squares RBF im-

plicit by incorporating the second-derivative Hessian

constraints, which facilitates detail-preserving implic-

it surface reconstruction over the jagged boundary

voxels of the segmented objects.

• We design an adaptive spherical cover generation

scheme to adaptively determine the supporting do-
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main of local implicits, which guarantees to effec-

tively distinguish the local supporting domain of

close sheets and respects the sharp features during

interactive 3D shape modeling.

II. RELATED WORK

Interactive Contour Assisted Segmentation. Consid-

ering that fully-manual segmentation process is laborious

and time-consuming, while fully-automatic algorithms are

still open for accurate segmentation, it is imperative to

further seek a balance between segmentation accuracy and

the complexity of user input. The contour-based method

is designed to directly specify contours in ambiguous

regions of images with expert knowledge. For example, De

Bruin et al. [6] proposed a method to generate boundary

surfaces by directly connecting well-organized contour

vertices. Aliroteh et al. [7] proposed a SketchSurface

system, which allows users to draw closed contours on

the parallel cross-sectional planes of volumetric images,

and subsequently employed quick-hull algorithm and ac-

tive contour iterations for segmentation. Liu et al. [8]

initialized boundary surfaces using a Voronoi diagram

based algorithm and then smoothed them. Motivated by

physics-based deformable models, Kass et al. [9] proposed

the active contour method, and its many extensions have

also been developed [10]. Such methods can delineate

object boundaries by making the boundary deform, driven

by the internal energy sensitive to the boundary shape

and the external energy sensitive to local image features.

However, since these methods commonly depend on direct

meshing and require well-organized contours, it is difficult

to manage open or non-planar contours. Instead, Turtle-

Seg [11] is an interactive segmentation tool designed for

3D medical images, by interactively contouring on some

sparse slices, and the rough segmentation result will be

generated automatically. To respect more features, it needs

to carefully place dense contours on the cross planes, even

so, the segmented object may still appear jagged.

Implicit 3D Reconstruction. The central idea of im-

plicit reconstruction is to generate certain signed scalar

field from the contour-constrained point set [12], and then

extract the zero iso-surface. Due to its potential to satisfac-

torily handle sparse sample points, great attention has been

paid to RBF [2]. However, early scalar field generating

methods generally require two sophisticated offset points

to ensure the existence of a non-null interpolation im-

plicit function. By incorporating normal into the problem

formulation, Pan et al.[3] proposed Hermite variational

implicit surface, and Macedo et al.[5] proposed Hermite

Radial Basis Function (HRBF), which is a particular case

of Hermite-Birkhoff interpolation with RBF. Wu [13] and

Wendland [14] introduced compactly supported RBF to

arrive at a sparse linear system, but they are sensitive to the

quality of input data and lack extrapolation ability across

large holes. Although such global-support RBFs [2], [15]

are less sensitive to the quality of input data, they require

the solving of large and dense matrix system. Besides, Ijiri

et al. [16] proposed a system to refine volumetric shape

surface by piecewise fine-tuning curved contours, and they

also introduced a new implicit method [17] to evaluate

the scalar field in spatial-range domain. However, these

methods heavily depend on the quality of user-controllable

contours, which is difficult for novice users with little

expert knowledge.

In summary, the existing implicit reconstruction based

3D modeling methods still lack comprehensive abilities

to simultaneously handle smoothness control, sharp-detail

preservation, and efficient computation. In principle, it

requires a globally flexible and locally accurate way to

respect sharp features by taking high-order directional

derivatives, gradients, and scalar value interpolation into

account simultaneously.

Figure 1. Flow chart of our method. (A) Original CT slices; (B) The seg-
mentation mask generated by TurtleSeg; (C) The extracted surface points;
(D) The Hessian frames; (E) Gaussian curvature; (F,G) Spherical cover
generation for local least-squares implicit surface reconstruction; (H) The
iterative refinement based on user-controllable Hessian constraints; (I)
The finally-reconstructed shape.

III. METHOD OVERVIEW

Figure 2. Illustration of the interactive constraint manipulation. (A)
The rough segmentation mask with obvious errors; (B) The potential
surface points exacted from the segmentation mask; (C,D,E, and F)
Interactively placing contours on cross sections; (G,H) The final shape
modeling results.

Our 3D shape framework aims to provide a way for

users to edit the intermediately-segmented surface via

adjusting the eigen-system of Hessian matrix. Fig. 1 shows

the pipeline of our method. Given original volumetric

slices (Fig. 1(A)), we use the TurtleSeg [18] to generate a
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rough segmentation mask (Fig. 1(B)), which can help users

focus on the definition of second-derivative constraints

around sharp-feature areas.

Since the mask is just a rough segmentation result, as

indicated by the red box in Fig. 2(A), it inevitably contains

errors (Fig. 2(B)). To edit the point set via intuitive

interaction, we resort to placing contours on the cross-

sections (Fig. 2(C) ∼ Fig. 2(F)). As shown in Fig. 2,

this process is simple and does not require much expert

knowledge.

Fig. 1(D) demonstrates the frames of Hessian matrix

on some points, and we conduct local quadric least

squares fitting to approximate the Hessian matrix (see

Section IV-B for details). We first approximate the im-

plicit reconstruction locally, and then blend such local

implicits together. We propose an adaptive spherical cover

generation method to divide the original volume domain

into overlapping spherical regions based on the importance

sampling of Gauss curvature (Fig. 1(F)-(G)).

As the spherical covers are independent of each other,

we design a parallel algorithm to solve the Hessian-

constrained least squares RBF systems in a spherical-

cover-wise way. The red box in Fig. 1 illustrates our

interactive and iterative manipulation procedures, and we

can locally edit the Hessian constraints and update the

scalar field until we are satisfied with the results (Fig. 1(I)).

IV. VOLUMETRIC DATA PREPROCESSING

Given a roughly-segmented result, we conduct a series

of preprocessing to convert the volume mask into local

supporting domains, including potential surface point set

extraction, initialization of Hessian constraints, adaptive

spherical cover generation, and determination of local

supporting point samples, which are detailed as follows.

A. Extraction of Potential Surface Point Set

To improve shape modeling accuracy and simplify the

complexity of user input, we use a binary volumetric mask

as input and convert it into a potential surface point set.

As the object region is labeled with 1 and others with 0

in the binary mask, we extract the voxel, which is labeled

with 1 and has at least one of its 26 neighbors labeled

with 0, as potential surface point location. However, the

obtained surface points, which depend on the volume

resolution, may be redundant for surface reconstruction,

so we adopt Possion disk sampling to perform down-

sampling. Considering the boundaries may be jagged, we

further adopt WLOP to reduce noise and outliers of the

potential surface point set. At last, we employ the method

proposed by Lie et al. [19] to calculate the normals of the

point set. Finally, we can convert the input mask into a

point set with normals, which will serve as the input of

our subsequent processing.

B. Initialization of Hessian Constraints

To facilitate the subsequent interactive manipulation

over the scattered surface points, we initialize the Hessian

constraints by locally fitting a quadric surface Gi(x) at

each sample point xi.

Gi(x) =
10∑
j=1

γj ∗ pj , pj ∈ {1, x, y, z, ..., x2, y2, z2}, (1)

argmin
q

∑
xk∈nei(xi)

(Gi(xk)
2+ ‖ ∇Gi(xk)− nk ‖2), (2)

where q = (γ1, ..., γ10) is the coefficient to be determined,

pj is the quadric polynomial basis, nei(xi) represents the

neighbor of xi and ni is the normal associated with point

xi. In general, the number of neighbors is set to be around

20. Therefore, we can get the Hessian matrix of point xi

as follows:

Hi =

⎛
⎝

2γ8 γ5 γ6
γ5 2γ9 γ7
γ6 γ7 2γ10

⎞
⎠ , (3)

where 2γ8 = ∂2Gi

∂x2 , 2γ9 = ∂2Gi

∂y2 , 2γ10 = ∂2Gi

∂z2 , γ5 =
∂2Gi

∂x∂y , γ6 = ∂2Gi

∂x∂z , γ7 = ∂2Gi

∂y∂z .

C. Adaptive Spherical Cover Generation
Since the global RBF methods commonly suffer from

computation overhead and tiny details missing, we propose

a generalized local least squares RBF by integrating Hes-

sian constraints. The local supporting domains are repre-

sented as overlapping spherical covers and each spherical

cover has five components: the center and radius are

defined adaptively, the supporting samples are determined

upon the normal direction of the center (see Section IV-D

for details), the parameters and weight are determined by

Hessian-constrained local least squares RBF implicits (see

Section V-A for details).
In order to respect local sharp features, we design an

adaptive spherical cover generation method by making

points with high-curvature stand out to serve as the spher-

ical cover centers. For each spherical cover with center c,

we determine its radius r as follows.

Q(c, r,x) =
∑
j

w(‖ pj − c ‖ /r)(nj · (x− pj))
2, (4)

here it computes a sum of the squared distances from point

x to the tangent planes at the sample point pj within the

spherical region ‖ pj −c ‖≤ r, w(x) is a weight function

defined as w(x) = (1 − x)4+(4x + 1). If r in Eq. 4 is

fixed, the minimum of Q(c, r,x) can be easily found by

solving a linear system, with xmin = xmin(r). And the

error function is defined as E(r) = 1
L

√
Q(c, r,xmin),

which measures how curved the reconstructed surface is

inside the sphere ‖ x−c ‖≤ r and L is the main diagonal

length of the bounding box of point set P , and please

refer to [20] for more details. Since we expect to make

r as large as possible while maintaining certain accuracy,

we determine r by solving the equation with a specified

accuracy Terr as

E(r) = Terr. (5)

Here the only thing we need to pay attention to is the

parameter Terr, which influences the number of spherical

covers and the number of samples within each sphere.
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Figure 3. Illustration of separable close sheets in a toy example.

D. Determination of Local Supporting Point Samples

Due to the possible existence of close sheets, the

accurate local sample determination is important to avoid

self-intersecting artifacts. As shown in Fig. 3(A), the two

curves represent the cross section of an object, wherein

the red sphere si means the local fitting region with center

O and radius r. In order to correctly select the samples

belonging to si, we first assign the points within the sphere

into small cells, wherein each cell only contains a few

points with similar normal directions (the cell containing

one sample at most), and then convert these cells into

an adjacency graph. Here the adjacency is defined as the

one-ring neighbor with similar normal orientation. Taking

Fig. 3(A) as an example, the one-ring neighbors of C1 are

C2, C3, C5, C6, C7, but only C2 and C3 have the similar

normal orientations with C1, so we consider (C1, C2) and

(C1, C3) are adjacent. After that, we can get a geodesic-

like distance of (Ci,Cj). Next, we consider sphere si,
denoting its sample point set as Si, we first add its center

into Si, and then add the point, which is covered by si
and has the similar orientation with the point in Si, within

the cell C1 into Si. Consider its adjacency cells C2, C3
in the same way and repeat this step until no more points

covered by sphere si can be added. Finally, we can obtain

the points from Si to approximate region si. And Fig. 3(B)

illustrates this process in a toy example.

V. INTERACTIVE AND ITERATIVE IMPLICIT

RECONSTRUCTION

By incorporating Hessian matrix into the generated local

least squares RBF implicits, our method provides users

with an intuitive interface to refine the reconstruction

result by editing the Hessian constraints interactively and

updating the scalar field iteratively.

A. Hessian-Constrained Local Least Squares RBF Implic-
its

Within each spherical cover s, we want to locally con-

struct a signed-distance function f(x) by approximating

the samples of s. Thanks to the superiority of RBF in

handling sparse point clouds, we employ it as our basis

function to fit the implicit surface. In general, a RBF

method has the following form:

f(x) = P (x) +

N∑
i=1

λiφ(‖ x− xi ‖), (6)

where P (x) is a low-order polynomial and the basic

function φ is a real-valued function on [0,+∞), which

is usually unbounded and has non-compact support. The

common choice of the basic function φ includes the

thin-plate spline φ(r) = r2log(r) (usually used for fit-

ting smooth functions of two variables), the Gaussian

φ(r) = exp(−cr2) (mainly for neural network), and the

multi-quadric φ(r) =
√
r2 + c2 (particular suitable for

topographical data). In this paper, we choose φ(r) = r3

as a basic function, because it can better deal with three

variables, with P (x) as a linear polynomial.

Hessian matrix is a square matrix comprising the

second-order partial derivatives of a scalar-valued function

or a scalar field. It essentially depicts the local curvatures

of a multi-variate function. We expect to preserve more

sharp features and obtain smoother surface by incorporat-

ing Hessian constraints into RBF implicit reconstruction.

Therefore, our reconstruction problem within each sphere

sl, is converted into an optimization problem as follows,

fl(x) =

m∑
i=1

αiφ(‖ x− xi ‖) +
4∑

j=1

βjpj(x), (7)

argmin
q

n∑
k=1

λ1fl(xk)
2+λ2 ‖∇fl(xk)−nk ‖22+λ3 ‖Hfl(xk)−Hk ‖2F,

(8)

where pj(x) is the linear polynomials, q =
(α1, ..., αm, β1, ..., β4) is the parameter to be determined,

variable m represents the number of local RBF centers,

n is the number of samples, nk and Hk respectively

represents the normal and Hessian matrix associated with

the sample xk. And Hfl(xk) is Hessian matrix of fl, a

3 × 3 matrix of the second-order partial derivatives of

fl(x) at point xk, whose norm is defined as the Frobenius

norm (i.e., the sum of the squares of nine entries of the

matrix). The weighting parameters λ1, λ2, λ3 (satisfying

λ1 + λ2 + λ3 = 1) control the importance of different

items. The system can be solved by a least squares solver.

B. Global Blending of Local Implicits

For each sphere sl, we define a parameter to evaluate

the approximation accuracy of fl within sl:

errl =

∑
xi∈Sl

abs(fl(xi))

N(Sl) , (9)

where N(Sl) is the number of samples in Sl. The weight

wl of sl is defined as errmax

errl
, errmax is the maximum

of errl. We define our global fitting function F (x) as

follows,

F (x) =

∑
i∈cover(x) wi ∗ fi(x)∑

i∈cover(x) wi
. (10)

Here cover(x) represents the index of spheres si, satisfy-

ing ‖ x− ci ‖≤ ri.
We verify the accuracy of our Hessian constraints

involved local least squares RBF by comparing our method

with only normal constraint involved least squares RBF

method (RBF-N for short), which is similar to ours

without Hessian constraints in Eq.8, over some standard

3D models with ground truth. Fig.4 shows the implicit
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reconstruction results of a Max-Planck model, our method

produces better results than RBF-N around sharp feature

areas, such as the corners of eyes and mouth. The compar-

ison of Fig.4(C) and Fig.4(D) proves the effectiveness of

our global blending procedure. Fig.5 shows the implicit

reconstruction result of a lion model, according to the

enlarged figures, we can see that our method can produce

smooth surface while keeping sharp features.

Figure 4. The comparison of implicit shape modeling results between
our method and RBF-N method over Max-Planck model. (A) shows the
original model, (B) shows the RBF-N result, (C) shows the intermediate
result of our method before global blending, and (D) shows our final
result.

C. Interactive and Iterative Refinement
When getting an initial surface of the segmented object,

we conduct refinement locally by interactively fine-tuning

the frame of Hessian matrix, which corresponds to the

eigenvectors of Hessian matrix. For Hessian matrix Hi of

point xi, we conduct eigenvalue decomposition as Hi =
PΛP−1, where P = (e1, e2, e3), Λ = diag(v1, v2, v3)
and ej is the eigenvector corresponding to eigenvalue vj .

After some necessary manual tuning, we get the new frame

{e′
1, e

′
2, e

′
3}, and then update Hessian matrix as

Hi = P
′
ΛP

′−1, (11)

where P
′
= (e

′
1, e

′
2, e

′
3). After that, we update the local

domains, re-calculate the scalar field and the iso-surface.

Figure 5. The comparison of implicit shape modeling results between
our method and RBF-N method over a Lion model. The first, third
columns show the results of RBF-N method, and the second, fourth
columns show our results.

We can iteratively repeat the refinement process until

we are satisfying with the results. Fig. 6 shows the

reconstruction results with different Hessian-constraints

via interactive manipulation.

Figure 6. The shape modeling results under different Hessian constraints
and the light green color indicates the controlling sphere.

D. Numerical Implementation

To handle the time-consuming computation of Hessian

constraints involved local least squares RBF implicits, we

implement our method in a parallel way by assigning a

well-designed OpenMP thread to each spherical cover.

To achieve this goal, we carefully design the structure

of the spherical cover by storing the samples of each

sphere individually. According to Eq. 7 and Eq. 8, the

optimization problem can be converted into the following

form:

Ax = y. (12)

For a specific sample xi of sphere sl, A and y are defined

as

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

...√
λ1fl(xi)√
λ2∇fl(xi)√
λ3Hfl(xi)

...

⎤
⎥⎥⎥⎥⎥⎥⎦
,y =

⎡
⎢⎢⎢⎢⎢⎢⎣

...

0√
λ2ni√
λ3Hi

...

⎤
⎥⎥⎥⎥⎥⎥⎦
. (13)

Algorithm 1: Parallel Solver of the Local Implicits.

input : The spherical covers.

output: The spherical covers with corresponding

parameters.

OpenMP parallel for spherical covers

{
1. Initialize the parameters in Eq. 8 as λ1 = 0.9,

λ2 = 0.09,

λ3 = 0.01,

2. Calculate matrix A and vector y according to

Eq. 13,

3. Use the Eigen library [21] to solve the

least squares system Ax = y.

}

Following the pipeline in Fig. 1, we detail the overall

numerical implementation of our prototype system in

Algorithm 2. In order to extract zero iso-surface, we need

to calculate a scalar filed of a specific region with a given

resolution. When extracting the entire mesh of an object,

we set the region to be the bounding box of the point set,

and the resolution is set to be 64 ∗ 64 ∗ 64. For a local

partial mesh, the region is set to be the bounding box

2929



Algorithm 2: Numerical Implementation of Interactive

3D Shape Modeling.

input : The segmentation mask volume.

output: The 3D shape modeling result.

1. Point set preprocessing

Including potential surface point set extraction,

Possion disk

sampling, WLOP, normal estimation and Hessian

constraints

approximation;

2. Adaptive spherical cover generation

3. Solve local least squares systems parallelly

Determine local samples,

Invoke Algorithm 1 for all spherical covers;

4. Interactive and iterative surface refinement

Extract global iso-surface,

while(not satisfying with the result)

{
(1) Set controlling region,

(2) Extract local iso-surface,

(3) Interactively edit Hessian matrix according

to Eq. 11,

(4) Update the spheres that cover the

controlling region by

invoking Algorithm 1,

(5) Update global iso-surface.

}

of the controlling sphere, and the resolution is set to be

16 ∗ 16 ∗ 16.

VI. EXPERIMENTAL RESULTS AND EVALUATION

We have implemented a prototype system using C++,

and all the experiments are run on a desktop with Intel

Core(TM) i7-3770 CPU (3.4GHz) and 16G RAM. Ta-

ble I shows the experimental data statistics in details.

The resolution of volume data determines the number of

boundary voxels, i.e., original surface points, thus, our

sequent processing of point set is essential. The time costs

of Hessian constraints calculation, adaptive spherical cover

generation and the solving of local least squares systems

show the efficiency of our framework. Specifically, our

adaptive spherical cover generation procedure requires

to specify a local approximation tolerance Terr, which

controls the sphere radius. Generally speaking, the larger

Terr is, the more samples we could expect to assign to

the sphere. Since we need to solve a least squares system

of each sphere, the number of samples dictates the time

performance of our method. However, benefitting from our

OpenMP based parallel-computing strategy, it only needs

to spend a few seconds to solve such local least squares

RBF system.

Fig. 7 and Fig. 9 compare the shape modeling results

among RBF-N based method, HRBF based method, and

our method. In nature, the HRBF based method is an

interpolation method, which is sensitive to noise when

handling samples with outliers (Fig. 8). From (Fig. 7(B)

Figure 7. The segmented surface comparison among RBF-N based
method, HRBF based method, and our method over the tibia volume.

Figure 8. The artifacts of Fig. 7(B) are shown from another view point,
and the point set visualization of the corresponding regions.

and Fig. 9(B), we can see the segmented surfaces by

the HRBF based method exhibit many obvious artifacts.

Meanwhile, Fig. 7(A) and Fig. 9(A) show that the seg-

mented surfaces by the RBF-N based method also contain

some artifacts caused by the inaccurate scalar field. In

sharp contrast, our method can produce a smooth shape

surface. Meanwhile, Table II documents the statistics of

error approximation on different models. Those from the

RBF-N method are produced with λ1 = 0.9, λ2 = 0.1.

Though our method and RBF-N method can obtain similar

maximal, minimal, and average values, our method can

generate better scalar field than the RBF-N method and

guarantee to generate detail-preserving shape surfaces.

When comparing with the HRBF method, our method can

better deal with unexpected outliers.

Fig. 10 and Fig. 11 compare the shape modeling results

among the B-HRBF based method, TurtleSeg method and

our method, wherein the compared two methods are both

based on interactive contours. As the B-HRBF based

method allows to place contours on arbitrary cross sections

and evaluates the scalar field in spatial-range domain, it is

more efficient than TrutleSeg, which only involves a few

contours, and whose results heavily rely on the number

and the quality of input contours. In contrast, our method

uses a rough segmentation result as input, which alleviates

the heavy dependence on contours, thus we can focus

on the interactive editing of Hessian constraints and the

iterative refinement of the segmented results. From the
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Table I
THE EXPERIMENTAL PERFORMANCE STATISTICS (IN SECONDS).

Dataset Volume resolution Boundary Voxels # Samples #
Hessian
Calculation

Cover
Generation

Total Covers #
Average
Samples #

LS solver
Parallel Serial

tibia 512*512*349 30753 11507 0.613 0.121 271 85.7 4.87 15.1
femur 512*512*220 31098 14118 0.841 0.14 708 38.7 0.45 1.49
kidney 512*512*323 24452 11315 0.661 0.139 295 76.8 3.54 12.2
stone 1024*1024*332 142675 14639 0.868 0.179 486 61.7 2.86 10.2

Figure 9. The reconstructed surface comparison among RBF-N based
method, HRBF based method, and our method in the kidney example.

Figure 10. Comparison with the B-HRBF method, TurtleSeg method,
and ours in the kidney example. (A) shows the input CT slice data;
(B) shows the result generated by the B-HRBF method; (C) shows the
result of TurtleSeg; (D) shows our shape modeling result. The second
row shows the details on the cross-section slices.

Figure 11. Comparison with the ground truth, the B-HRBF method,
TurtleSeg method and ours in the femur example. (A) shows the input CT
slice data; (B) shows the ground truth manually generated by an expert;
(C) shows the result generated by the B-HRBF method; (D) shows the
result of TurtleSeg; (E) shows our shape modeling result. The second
row shows the details on the cross-section slices.

results shown in the cross-section slices, although such

three methods can produce similar results, benefitting from

the full use of the second-order information, our method

achieves more accurate shape modeling results with more

high-fidelity details. Therefore, all the aforementioned ex-

periments have demonstrated our method’s advantages in

accuracy, detail preservation, and high-order smoothness.

Figure 12. The multi-target shape modeling results of our method in a
roadbed example. (A) Original CT slices; (B) Direct volume rendering;
(C) The multi-target shape modeling result.

Figure 13. The multi-target shape modeling results of our method in
a digital human example. (A) Original CT slices; (B) Direct volume
rendering; (C) The multi-target shape modeling results.

Table II
THE STATISTICS OF ERROR APPROXIMATION(MM) ON SAMPLE

POINTS.

model method max min average

kidney
HRBF 4.1e-6 -1.8e-5 1.4e-7
RBF-N 3.8e-3 -3.6e-3 2.8e-4

ours 2.9e-3 -3.8e-3 4.1e-4

tibia
HRBF 1.2e-4 -8.5e-5 5.2e-7
RBF-N 7.8e-3 -5.8e-3 3.4e-4

ours 6.2e-3 -3.9e-3 5.8e-4

Max-Planck
RBF-N 3.9e-3 -5.4e-3 4.3e-4

ours 3.2e-3 -2.4e-3 4.2e-4

lion
RBF-N 7.8e-3 -6.2e-3 2.2e-4

ours 2.8e-3 -1.3e-3 1.1e-4

Besides, Fig. 12 and Fig. 13 respectively show the

multi-target shape modeling results of our method in a

roadbed example and a digital human example, wherein
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the colored objects in the sub-figures (C) represent the

surface meshes of the segmented targets while other ob-

jects are visualized directly using the ray-casting based

volume rendering method. It clearly shows our method’s

versatility in practical applications.

VII. CONCLUSIONS

In this paper we have presented an interactive frame-

work for the detail-preserving 3D shape modeling from

raw volumetric dataset. The newly-introduced Hessian

constraints generalize the least squares RBF implicits,

which can guarantee the segmented object to respect high-

order requirements. Meanwhile, many of the involved

technical elements, including data specific importance

sampling for adaptive spherical cover generation, determi-

nation of local samples in order to separate close sheets,

and parallel solvers of local least squares systems, also

contribute to many cyber world related applications. More-

over, different types of carefully-designed experiments

have demonstrated our method’s apparent advantages in

terms of accuracy, efficiency, flexibility, and versatility.

In the future, we will further improve the convenience

of our method by automatically providing some cues

during user interaction. Besides, although solving local

least squares systems in parallel could reduce temporal

expenses to certain extent, to drastically enhance our

method’s time performance, we should design a GPU-

based parallel algorithm to simultaneously solve all the

local least squares systems in graphics hardware.
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