
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2016; 27:385–393

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1711

SPECIAL ISSUE PAPER

Pipelining image compositing in heterogeneous
networking environments
Ning Liu1,2*, Dengming Zhu1, Zhaoqi Wang1, Hong Qin3, Jianfeng Zhan1 and Jinzhu Gao4

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China
3 Stony Brook University, Stony Brook, NY, USA
4 University of the Pacific, Stockton, CA, USA

ABSTRACT

Because of intensive inter-node communications, image compositing has always been a bottleneck in parallel visualization
systems. In a heterogeneous networking environment, the variation of link bandwidth and latency adds more uncertainty to
the system performance. In this paper, we present a pipelining image compositing algorithm in heterogeneous networking
environments, which is able to rearrange the direction of data flow of a compositing pipeline under strict ordering con-
straint. We introduce a novel directional image compositing operator that specifies not only the color and ˛ channels of
the output but also the direction of data flow when performing compositing. Based on this new operator, we thoroughly
study the properties of image compositing pipelines in heterogeneous environments. We develop an optimization algo-
rithm that could find the optimal pipeline from an exponentially large searching space in polynomial time. We conducted
a comprehensive evaluation on the ns-3 network simulator. Experimental results demonstrate the efficiency of our method.
Copyright © 2016 John Wiley & Sons, Ltd.

KEYWORDS

pipeline; image compositing; heterogeneous networking environment; optimization algorithm

*Correspondence

Ning Liu, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
E-mail: liuning01@ict.ac.cn

1. INTRODUCTION

Parallel visualization has been widely used to analyze
large-scale data sets. It typically consists of three stages:
data distribution, local rendering, and image compositing.
In a sort-last parallel visualization system, image com-
positing must be carried out every time the rendering
parameters change. Bentes [1] studied the overhead com-
ponents involved in a parallel volume visualization system
and showed that the network communication incurred the
largest cost. In a heterogeneous environment, the varia-
tion of networking characteristics adds more uncertainty
to the system performance. Consequently, image com-
positing could easily become a bottleneck of parallel
visualization systems.

In the past, researchers have proposed various image
compositing algorithms, such as direct send [2], binary
swap [3], 2-3 swap [4], radix-k [5], and pipelining image
compositing [6]. They are all designed for homogeneous
networking environments. The main issue caused by the
homogeneity assumption is bad load balancing among

the nodes. Bad load balancing usually leads to poor
use of the networking and computing resources of the
underlying environment.

An image compositing algorithm uses compositing
operators to perform actual pixel blending. The most com-
monly used operator is over, which was introduced in [7].
It specifies the color and ˛ channels of the output but puts
no restrictions on the direction of data flow when perform-
ing compositing. So it is not an ideal operator to model
the image compositing problem in heterogeneous envi-
ronments where the direction of data flow has significant
impact on the overall compositing efficiency.

In this paper, we propose a pipelining image composit-
ing algorithm in heterogeneous networking environments.
It is able to rearrange the direction of data flow of a com-
positing pipeline under strict ordering constraint. We intro-
duce a novel directional compositing operator that specifies
not only the color and ˛ channels of the output but also
the direction of data flow when performing compositing.
Based on this operator, we thoroughly study the properties
of compositing pipelines in heterogeneous environments.

Copyright © 2016 John Wiley & Sons, Ltd. 385



Pipelining image compositing in heterogeneous environments N. Liu et al.

It turns out that the number of all valid pipelines is expo-
nentially large with respect to the number of nodes. Using
a brute-force solution to find the optimal pipeline is obvi-
ously not feasible. We propose a dynamic programming
algorithm that can find the optimal pipeline in polynomial
time. To demonstrate the efficacy of our algorithm, we
conduct a comprehensive evaluation on the ns-3 network
simulator and study our algorithm from various perspec-
tives. Experiment results demonstrate the efficiency of
our method.

2. RELATED WORK

Parallel visualization has been proven to be an effec-
tive technique to analyze large-scale data sets. Molnar [8]
classified the parallel rendering algorithms into three cat-
egories: sort-first, sort-middle, and sort-last. Among these
categories, the sort-last algorithm has gained most atten-
tions for its simplicity, good load balancing, and high
scalability. Image compositing is the last stage of a sort-last
parallel visualization system and is usually the bottleneck
of all stages. Many algorithms have been proposed to
address this problem.

Group-based methods. Group-based methods mainly
include direct send [2], binary swap [3], 2-3 swap [4],
and radix-k [5]. Nodes are divided into groups, and only
nodes in the same group can exchange data with each
other. The grouping scheme usually changes as the com-
positing process proceeds from one stage to another.
Thanks to grouping, the number of data exchanges
among the nodes is effectively reduced. Direct send
partitions the image space evenly among the nodes.
Each node takes care of one portion of the final image.
The rendering results of all nodes within the corre-
sponding region are sent directly to this node. This
algorithm requires n messages to be transmitted. Binary
swap reduces the number of exchanged messages per
node from n to log n, but it restricts the number of
nodes to be a power-of-two. Yu [4] extended binary
swap and proposed a new image compositing algorithm
named 2-3 swap that enjoys similar benefits as that in
binary swap but allows an arbitrary number of nodes.
Peterka [5,9] proposed a configurable compositing algo-
rithm called radix-k, which embodies and unifies binary
swap and direct-send. As reported in [10,11], radix-k
has lower cost than existing algorithms. It can over-
lap data transmission and computation without causing
network congestion.

Pipeline-based methods. Pipeline-based mainly consist
of the pipelining image compositing algorithm [6]. It
arranges all participating nodes in a linear order. At first,
each node holds a partial image. These partial images
are then partitioned into a set of parts, which will flow
through the nodes in a predetermined order. Once the
pipeline is fully set up, it can composite one part of the

Table I. Notations.

Notation Meaning

B Directional compositing operator
s A segment
p A node
p.s/ The node hosting segment s
P A node set
P.�/ A pipeline
QP.�/ Compositing result of P.�/
t.P.�// Compositing cost of P.�/
B.pa, pb/ Link bandwidth from pa to pb

L.pa, pb/ Link latency from pa to pb

C.pa/ Computing power of pa

final image at every time step. It has lower cost than
binary swap with respect to the final image display time.

All these algorithms assume the environment is
homogeneous. This assumption holds for traditional
parallel computing environments, such as clusters and
supercomputers. However, the networking environment
is becoming more and more heterogeneous. These algo-
rithms could no longer guarantee the optimal cost in a
heterogeneous environment.

3. PROBLEM FORMULATION

In this section, we firstly explain the basic concepts of
image compositing, such as segments and the over oper-
ator. After that, we introduce the novel directional image
compositing operator to address the limitations of the over
operator. Based on this novel operator, we then thoroughly
study the properties of compositing pipelines in heteroge-
neous environments. The notations that will be used in this
paper are listed in Table I.

3.1. Segments

A segment is basically a collection of pixels with color
and ˛ channels. The involved segments will be blended
together by the compositing operator to form the final
result. A segment must reside on a node. The node hosting
segment s is denoted as p.s/.

Given a viewpoint, there is an ordering among the host-
ing nodes. Each node is assigned a unique rank such that
nodes with lower ranks are in front of the ones with higher
ranks. At first, each segment inherits the rank from the
hosting node. During compositing, segments with differ-
ent ranks are blended together to produce a new segment.
The newly formed segment has the contributions from dif-
ferent segments. Instead of storing the ranks of all these
contributing segments, we choose to store only the low-
est and highest ranks for space efficiency. In our work, a
segment s is defined as

� c(s): color channel;
� ˛(s): ˛ channel;

386 Comp. Anim. Virtual Worlds 2016; 27:385–393 © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



N. Liu et al. Pipelining image compositing in heterogeneous environments

� r(s): the highest rank;
� r(s): the lowest rank; and
� p.s/: the node hosting s.

For two segments sa and sb, sa < sb means

r.sa/ < r.sb/ (1)

that is, sa is in front of sb. Two segments sa and sb are
considered comparable if

sa < sb or sb < sa (2)

Note that all operators discussed in this paper are
order-sensitive and should only operate on comparable
segments.

3.2. over Operator

The most commonly used image compositing operator is
over, which was introduced in [7]. Given two segments sa

and sb (sa < sb), their compositing result so D sa ˝ sb,
where ˝ represents the over operator, is given by

˛.so/ D ˛.sa/C .1 � ˛.sa//˛.sb/,

c.so/ D c.sa/C .1 � ˛.sa//c.sb/,

r.so/ D min.r.sa/, r.sb//,

r.so/ D max.r.sa/, r.sb//

The color channel of each segment is premultiplied by the
˛ channel. Originally, the over operator only handles the
color and ˛ channels. In our work, the compositing result
also includes the lowest and highest ranks of contributing
segments. The over operator does not specify the data flow
direction when performing compositing. So p.so/, the node
hosting the composting result, so, is undefined. It can be
either p.sa/ or p.sb/.

3.3. Directional Image Compositing
Operator

In a heterogeneous networking environment, the direction
of data flow will in fact have a significant impact on the
overall compositing efficiency. However, the conventional
over operator puts no restrictions on the direction of data
flow when performing image compositing. When using the
over operator, it is possible that either the node in the front
sends data to the node in the back or the node in the back
sends data to the node in the front. This uncertainty makes
it difficult to use over operator to formalize the composit-
ing process in a heterogeneous networking environment.
To address this problem, we introduce a directional image
compositing operator denoted asB that takes the direction
of data flow into account. Given two segments, sa and sb, to
compute so D sa B sb, p.sa/ must send data to p.sb/, but
not vice versa. More precisely, so D sa B sb is defined as

so D

�
sa ˝ sb if sa < sb
sb ˝ sa if sb < sa

,

p.so/ D p.sb/

Note that we use the over operator ˝ as the building
block and modify p.so/ afterwards to ensure the directional
property of theB operator.

TheB operator has the following properties: Firstly, the
B operator is not commutative,

sa B sb 6D sb B sa. (3)

Secondly, theB operator is not associative,

..sa B sb/ B sc/ 6D .sa B .sb B sc// (4)

Thirdly, given a chain of B operators with m segments,
these B operators are evaluated in a left-to-right order,
that is,

s�1 B s�2 B � � � B s�m�1 B s�m (5)

is a shorthand for

...s�1 B s�2/ B � � � B s�m�1/ B s�m/ (6)

3.4. Compositing Pipelines

3.4.1. Pipeline Definition.

Given a set of n nodes, P D fp1, p2, � � � , png. Initially,
pi holds a segment si and r.si/ D r.si/ D i. As men-
tioned before, si < sj if i < j. A compositing pipeline is an
ordered sequence of n nodes. It could be characterized by
a permutation � on set f1, 2, � � � , ng, that is,

P.�/ D p�1 p�2 � � � p�n (7)

where �i is the ith element of permutation � . A pipeline
specifies the data flow direction among the nodes. The
data will flow from the upstream of the pipeline to
the downstream.

3.4.2. Pipeline Cost.

Once the data flow direction is determined, the cost of a
pipeline P.�/ is computed as

t.P.�// D max
1�k<n

�
L.p�k , p�kC1/C

I

nB.p�k , p�kC1/
C

I

nC.p�kC1/

�

where L.pa, pb/ and B.pa, pb/ are the link latency and
bandwidth between pa and pb, respectively, C.pa/ is the
computing power of pa, I is the size of the whole image
space, and n is the number of participating nodes. Before
compositing begins, each node holds a partial image, which
has the same size as the whole image space. The partial
images are then evenly partitioned into n segments, and
each segment is of size I=n. These segments will flow in the
pipeline and be blended together to form the final result.
The total cost between two connecting nodes pa and pb in
the pipeline consists of three parts:

Comp. Anim. Virtual Worlds 2016; 27:385–393 © 2016 John Wiley & Sons, Ltd. 387
DOI: 10.1002/cav



Pipelining image compositing in heterogeneous environments N. Liu et al.

� the inherent latency cost, which is determined by the
physics law and independent of the segment size;

� the transmission cost, which is equal to the segment
size I=n divided by the link bandwidth B.pa, pb/; and

� the computing cost, which is equal to the segment size
I=n divided by the computing power C.pb/.

3.4.3. Pipeline Compositing Result.

The compositing result QP.�/ of pipeline P.�/ can be
expressed by theB operator, that is,

QP.�/ D s�1 B s�2 B � � � B s�n (8)

where s�i is the segment held by the node p�i .
To simplify the notations, P.�/, QP.�/, and t.P.�// will

be written as P, QP, and t.P/, respectively. Also, note that P ,
P, QP, and t.P/ support slicing. For example,

Pi:j D
˚
pi, piC1, � � � , pj

�
(9)

and

Pi:j D p�i p�iC1 � � � p�j (10)

3.5. Valid Pipelines

As described in Section 3.1, an order-sensitive image com-
positing operator like B can only operate on comparable
segments; that is, there must be a relative ordering among
the involved segments. Given n nodes, there are nŠ possible
pipelines in total, but not all of them are valid. A pipeline P
is said to be valid if the B operator only operates on com-
parable segments during the compositing process. This fact
is highlighted in Lemma 1:

Lemma 1. Given a valid pipeline P D p�1 p�2 � � � p�n , for
8k 2 Œ1, n/, QP1:k is comparable with s�kC1 .

3.5.1. Valid Pipelines Construction.

Having Lemma 1, we can determine the rank of the kth
node �k in the pipeline recursively. Consider the rank of
the last node �n. Because QP1:n�1 is comparable with s�n ,
we have

�n < r. QP1:n�1/ D minf�1,�2, � � � ,�n�1g

or

�n > r. QP1:n�1/ D maxf�1,�2, � � � ,�n�1g

which implies

�n D minf�1,�2, � � � ,�ng D 1 (11)

or

�n D maxf�1,�2, � � � ,�ng D n (12)

When �n is determined, the same reasoning process can
be applied to pipeline P1:n�1. Using this method, we can
compute all the valid pipelines.

3.5.2. Searching Space Size.

Let f .n/ denote the total number of valid pipelines for
n participating nodes. From Equations (11) and (12), we
could immediately determine �n because it must be either 1
or n. Once �n is determined, the number of valid pipelines
of the remaining nodes is f .n � 1/. As a result,

f .n/ D 2f .n � 1/ (13)

Considering the base case f .1/ D 1, we have

f .n/ D 2n�1 (14)

Figure 1 lists all valid pipelines for nodes p1, p2, p3, and
p4. Figure 2 illustrates the compositing processes of sev-
eral different pipelines out of all valid ones. It can be seen
that all these pipelines yield the same correct final result. In
a heterogeneous networking environment, the compositing
order among the nodes plays an important role to determine
the compositing cost. One nice feature of pipeline-based
image compositing methods is that they support progres-
sive display of the final compositing result, as shown in
Figure 3. The upper part of the image space completes
its compositing process before the lower part. This feature
may improve user experiences if the compositing takes a
long time to finish.

3.6. Objective Function

Suppose V stands for the set of all valid pipelines of nodes
P . The goal of our algorithm is to find the optimal pipeline
Q.P / with minimal compositing cost from V , that is,

Q.P / D arg min
P2V

t.P/ (15)

4. OUR METHOD

In this section, we present our pipelining image composit-
ing algorithm in heterogeneous networking environments.
As seen in Equation (14), the number of all valid pipelines
is exponentially large. In order to quickly find the optimal
pipeline, we propose a dynamic programming algorithm
with O.n3/ time complexity. The main idea is that the last
node has only two possible ranks: the smallest one or the
largest one. Once the rank of the last node is determined,
the problem could be reduced to a smaller size. By adopt-
ing this strategy recursively, we could find the optimal
pipeline in polynomial time.

4.1. A Dynamic Programming Solution

Given a node set P D fp1, p2, � � � , png. For Pi:j, accord-
ing to Equations (11) and (12), the last node of a valid
pipeline can be either pj or pi. We use Q.Pi:j/ to denote the
optimal pipeline with pj being the last node and Q.Pi:j/ to
denote the optimal pipeline with pi being the last node. The
optimal pipeline can then be computed by

388 Comp. Anim. Virtual Worlds 2016; 27:385–393 © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



N. Liu et al. Pipelining image compositing in heterogeneous environments

Figure 1. All valid pipelines for four nodes.

Figure 2. The compositing processes of different valid pipelines.

Comp. Anim. Virtual Worlds 2016; 27:385–393 © 2016 John Wiley & Sons, Ltd. 389
DOI: 10.1002/cav



Pipelining image compositing in heterogeneous environments N. Liu et al.

Figure 3. Progressive display of the final compositing result.

Q.Pi:j/ D min.Q.Pi:j/, Q.Pi:j//

where min./ returns the pipeline with lower cost.
Suppose we have processed Pi:j and now move on to

Pi:jC1. Firstly, let us consider the case for Q.Pi:jC1/ when
pjC1 is the last node. There are two ways for Pi:j to be con-
nected to pjC1, either from Q.Pi:j/ to pjC1 or from Q.Pi:j/

to pjC1. Therefore,

Q.Pi:jC1/ D min.Q.Pi:j/pjC1, Q.Pi:j/pjC1/

where Q.Pi:j/pjC1 means concatenating the pipeline
Q.Pi:j/ with node pjC1.

Secondly, let us consider the case for Q.Pi:jC1/ when
pi is the last node. In this case, we could enumerate the
position of pjC1 in the target pipeline P. Suppose pjC1 is at
the kth position in P, that is, �k D jC 1. For any node with
position k0 > k, its rank can be determined directly:

�k0 D minf�i,�iC1, � � � ,�k0g D iC j � k0

This is because �k0 cannot take the largest rank in Pi:k0

because pjC1 has taken position k. Consequently, it has
to take the smallest rank instead. The ranks of the nodes
before pjC1 (i.e., Pj�kC2:j) can be computed recursively.
Combining these two facts, we have

Q.Pi:jC1/ D min.

Q.Pj�kC2:j/pjC1pj�kC1 � � � pi,

Q.Pj�kC2:j/pjC1pj�kC1 � � � pi/

Finally, as we know, Q.P1:n/ is the optimal pipeline for
P . By storing related information in the history matrix, we
could reconstruct the optimal pipeline.

4.2. Time Complexity Analysis

Suppose the number of participating nodes is n. We first
compute the time cost when moving from Pi:j to Pi:jC1. In
the case of Q.Pi:jC1/, it just takes O.1/ time. In the case
of Q.Pi:jC1/, there are O.n/ possible positions for pjC1.
At any position k, it requires O.1/ time to compute the
pipeline cost if we use some kind of caching mechanism.
Therefore, the time cost of this single step is O.n/. After
taking into account the O.n2/ iterations in the outer loop
(for i and j to vary from 1 to n, respectively), we can see
that the algorithm’s time complexity is O.n3/.

5. RESULTS

5.1. Experiment Setup

Our experiment environment is built on ns-3, with the num-
ber of participating nodes ranging from 8 to 64. Given
the participating nodes, each pair of nodes is directly
connected through a point-to-point link. The latency and
bandwidth of each link are randomly picked from given
ranges. The computing power of each node is randomly
picked from a given range. The main parameters used in
the experiments are listed in Table II.

For each given parameter setting, we may carry out
many rounds of image compositing simulations to reduce
the impact of randomness. For R rounds of simulations, the
average speedup is

1

R

RX
iD1

ti.other/

ti.our/
(16)

where ti.other/ is the compositing time of the algorithm to
be compared with and ti.our/ is the compositing time of
our algorithm in round i, respectively.

We will also study the load-balancing problem among
the nodes in a specific compositing stage. For m participat-
ing nodes, the imbalance level is defined as

1 �

Pm
iD1 ti

m maxm
iD1 ti

(17)

where ti is the compositing cost of the node with rank i. The
imbalance level is within range 0 and 1, where 0 implies the
load among the nodes is perfectly balanced and 1 means
the load is extremely imbalanced.

5.2. Comparison with Binary Swap and
Radix-k

Binary swap and radix-k are group-based image composit-
ing algorithms, whose compositing schemes are different

Table II. Experiment-controlling parameters.

Parameter Meaning

N Number of nodes
I Image space size
CR Computing power range
LR Link latency range
BR Link bandwidth range

390 Comp. Anim. Virtual Worlds 2016; 27:385–393 © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



N. Liu et al. Pipelining image compositing in heterogeneous environments

Figure 4. Final image display time of binary swap, radix-k, and
our algorithm. N D 32, computing power range = .1, 103/,
link bandwidth range =.1, 102/, and link latency range =

.10�5, 10�3/. Radix-k uses the configuration Œ4, 4, 2�.

from that of pipeline-based compositing algorithms. As
stated in [6], their proposed algorithm has advantage
over binary swap with respect to the final image dis-
play time. Here, we will also compare these algorithms
from this aspect. We will also study the load-balancing
problem for conventional algorithms in heterogeneous
networking environments.

5.2.1. Final Image Display Time.

The comparison results on final image display time
of binary swap, radix-k, and our algorithm are shown
in Figure 4. Radix-k usually outperforms binary swap
because it is able to overlap data transmission and com-
putation. However, in heterogeneous networking envi-
ronments, it is possible that the cost of radix-k is
larger than that of binary swap because they use differ-
ent communication patterns, which can lead to different
transmission costs.

The final image display time of our algorithm is lower
than that of binary swap and radix-k. It is remarkable that
the shape of our algorithm’s results is much smoother than
its competitors. This is because our algorithm can avoid

the slow links if possible while binary swap and radix-k
cannot. As a result, our algorithm can often find a good
compositing scheme in the changing environments.

5.2.2. Load Balancing.

We study the load-balancing problem of binary swap,
radix-k, and our algorithm, and the results are shown in
Figure 5. The load of each node is the overall compositing
cost in a stage, which is the sum of network communica-
tion cost and the pixel blending cost. For binary swap and
radix-k, we pick the node costs from the first stage. For our
algorithm, because not all nodes participate in every stage,
we choose the first stage when the pipeline is fully set up.

Binary swap and radix-k are not aware of underly-
ing heterogeneity. They are vulnerable to the slow links
in the heterogeneous networking environments. Conse-
quently, the imbalance levels of these two methods are
higher than that of our algorithm.

5.3. Comparison with Wu’s Algorithm

Wu [6] propose the conventional pipelining image com-
positing algorithm in homogeneous networking environ-
ments. Given N ordered nodes, the adopted pipeline is just
the node sequence arranged in the natural front-to-back
order:

p1p2 � � � pN (18)

As for a pipeline, the overall compositing cost is bounded
by the slowest link. There are at most N � 1 links in
the pipeline for N participating nodes, so it is easy to
be affected by slow links in heterogeneous networking
environments.

5.3.1. Image Compositing Cost.

The results on image compositing cost of Wu’s algo-
rithm and our algorithm are shown in Figure 6. It can be
seen that our algorithm gains lower compositing cost than
that of Wu’s algorithm. Besides, the variance of the costs
of our algorithm is lower than that of Wu’s algorithm.
Our algorithm manages to compute the optimal pipeline
under the given environment and is able to avoid slow links

Figure 5. Load-balancing results of binary swap, radix-k, and our algorithm. N D 32, computing power range D .1, 103/, link
bandwidth range D .1, 102/, and link latency range D .10�5, 10�3/.

Comp. Anim. Virtual Worlds 2016; 27:385–393 © 2016 John Wiley & Sons, Ltd. 391
DOI: 10.1002/cav



Pipelining image compositing in heterogeneous environments N. Liu et al.

Figure 6. Image compositing costs of Wu’s algorithm and our
algorithm. N D 64, computing power range = .1, 103/, link band-
width range = .1, 102/, and link latency range = .10�5, 10�3/.

whenever possible. So it is more robust under the changing
environments.

5.3.2. Different Types of Bandwidth.

In this section, we study the results of different types of
link bandwidths. The computing power of each node is set
to a large value, and the latency of each link is set to a
small value, so that their impacts on the compositing cost
are negligible. The results are shown in Figure 7.

It can be seen that as the bandwidth range increases,
the speed gap between Wu’s algorithm and our algorithm
becomes larger. This is because when the bandwidth range
is larger, the variance of the link bandwidths tends to grow.
As a result, the networking environment will become more
heterogeneous. When the environments become more het-
erogeneous, Wu’s algorithm will be more likely to be
affected by slow links , while our algorithm has more
room to do optimizations and achieve lower compositing
cost. So the speedup of our algorithm compared with Wu’s
algorithm tends to increase.

6. CONCLUSION AND
FUTURE WORK

In this paper, we propose a pipelining image composit-
ing algorithm for heterogeneous networking environments.
The goal is to avoid slow links while satisfying the order-
ing constraint among the nodes. To achieve this goal,
we introduce a novel directional image compositing opera-
tor. It specifies the direction of data flow during composit-
ing, which is different from the conventional over operator.
We develop an algorithm to find the optimal pipeline with
O.n3/ time complexity. To demonstrate the efficacy of
our solution, we conducted a comprehensive evaluation
on ns-3, with the number of participating nodes vary-
ing from 8 to 64, and provided a thorough discussion of
the results.

Here, we mainly focus on pipeline-based image com-
positing methods. In the future, we will study the potential
of incorporating the ideas of other image compositing algo-
rithms, such as the group-based ones, in heterogenous
networking environments to further enhance the efficiency
of our method. Because of stability issues, we only car-
ried out experiments on a software simulator rather than
on physical machines. It will be beneficial to test our
algorithm in real-world environments if possible.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for
their valuable suggestions. This work is funded by the
National Natural Science Foundation of China (Grant
Nos. 61173067, 61379085, 61532002) and the National
High Technology R&D Program of China (Grant No.
2015AA016401).

REFERENCES

1. Bentes C, Labronici BB, Drummond LM, Farias R.
Towards an efficient parallel raycasting of unstructured

Figure 7. The results of different types of link bandwidths. N D 32, computing power range = .109, 109/, and link latency range =
.10�9, 10�9/.

392 Comp. Anim. Virtual Worlds 2016; 27:385–393 © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/cav



N. Liu et al. Pipelining image compositing in heterogeneous environments

volumetric data on distributed environments. Cluster
Computing 2014; 17(2): 423–439.

2. Neumann U. Parallel volume-rendering algorithm
performance on mesh-connected multicomputers. In
Proceedings of the 1993 Symposium on Parallel Ren-
dering, New York, NY, USA, 1993; 97–104.

3. Ma KL, Painter J, Hansen C, Krogh M. Parallel vol-
ume rendering using binary-swap compositing. IEEE
Computer Graphics and Applications 1994; 14(4):
59–68.

4. Yu H, Wang C, Ma KL. Massively parallel vol-
ume rendering using 2-3 swap image compositing.
In Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, Piscataway, NJ, USA, 2008;
48:1–48:11.

5. Peterka T, Goodell D, Ross R, Shen HW, Thakur R. A
configurable algorithm for parallel image-compositing
applications. In Proceedings of the Conference on
High Performance Computing Networking, Storage
and Analysis. ACM, New York, NY, USA, 2009;
4:1–4:10.

6. Wu Q, Gao J, Chen Z, Zhu M. Pipelining parallel
image compositing and delivery for efficient remote
visualization. Journal of Parallel and Distributed Com-
puting 2009; 69(3): 230–238.

7. Porter T, Duff T. Compositing digital images. 11th
Annual Conference on Computer graphics and Inter-
active Techniques (SIGGRAPH ’84) 1984 January; 18:
253–259.

8. Molnar S, Cox M, Ellsworth D, Fuchs H. A sort-
ing classification of parallel rendering. IEEE Computer
Graphics and Applications. 1994 July; 14: 23–32.

9. Peterka T, Ross R. Versatile communication algo-
rithms for data analysis. In Proceedings of the 19th
European Conference on Recent Advances in the
Message Passing Interface. Springer-Verlag, Berlin,
Heidelberg, 2012; 275–284.

10. Kendall W, Peterka T, Huang J, Shen HW, Ross R.
Accelerating and benchmarking radix-k image com-
positing at large scale. In Proceedings of the 10th
Eurographics Conference on Parallel Graphics And
Visualization. Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 2010; 101–110.

11. Moreland K, Kendall W, Peterka T, Huang J. An image
compositing solution at scale. In Proceedings of 2011
International Conference for High Performance Com-
puting, Networking, Storage and Analysis. ACM, New
York, NY, USA, 2011; 25:1–25:10.

AUTHORS’ BIOGRAPHIES

Ning Liu is a PhD student at the
Institute of Computing Technology,
Chinese Academy of Sciences. He
received his BS degree from Shandong
University in 2009. His research inter-
ests include scientific visualization and
volume rendering.

Dengming Zhu is an associate
researcher at the Institute of Comput-
ing Technology, Chinese Academy of
Sciences. He received his PhD degree
from the Chinese Academy of Sci-
ences in 2009. His research interests
include fluid simulation, scientific
visualization, and volume rendering.

Zhaoqi Wang is a researcher and
doctoral supervisor at the Institute
of Computing Technology, Chinese
Academy of Sciences. He received
his PhD degree from Beihang Uni-
versity in 1999. His research interests
include virtual reality and intelligent
human-computer interaction.

Hong Qin is a professor at the Com-
puter Science Department at Stony
Brook University. He received his
PhD degree from the University of
Toronto in 1995. His research interests
include computer graphics, geometric
and physics-based modeling and data
mining.

Jianfeng Zhan is a researcher at
the Institute of Computing Technol-
ogy, Chinese Academy of Sciences.
He received his PhD degree from
the Chinese Academy of Sciences in
2002. His research interests include
distributed and parallel systems.

Jinzhu Gao is an associate professor
at the Computer Science Department
at the University of the Pacific. She
received her PhD degree from the Ohio
State University in 2004. Her research
interests include big data analysis and
visualization.

Comp. Anim. Virtual Worlds 2016; 27:385–393 © 2016 John Wiley & Sons, Ltd. 393
DOI: 10.1002/cav


	Pipelining image compositing in heterogeneous networking environments
	Abstract
	Introduction
	Related Work
	Problem Formulation
	Segments
	over Operator
	Directional Image Compositing Operator
	Compositing Pipelines
	Pipeline Definition
	Pipeline Cost
	Pipeline Compositing Result

	Valid Pipelines
	Valid Pipelines Construction
	Searching Space Size

	Objective Function

	Our Method
	A Dynamic Programming Solution
	Time Complexity Analysis

	Results
	Experiment Setup
	Comparison with Binary Swap and Radix-k
	Final Image Display Time
	Load Balancing

	Comparison with Wu's Algorithm
	Image Compositing Cost
	Different Types of Bandwidth


	Conclusion and Future Work
	Acknowledgements
	References
	AUTHORS' BIOGRAPHIES


