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Powerful global modal reduction techniques have received growing recognition towards 
significant performance gain in physical simulation, yet such numerical methods generally 
will fail when handling deformation of heterogeneous materials across multiple sub-
domains involving cutting simulation. This is because the corresponding topological 
changes (due to cutting across multiple sub-domains) and/or drastic local deformations 
tend to invalidate the global subspace techniques. To ameliorate, this paper systematically 
advocates a novel deformation and arbitrary cutting simulation approach by adaptively 
integrating FEM-based fully-physical simulation and local deformation’s modal reuse into 
a CUDA-enabled parallel computation framework. This paper’s originality hinges upon the 
maximal reuse of the space–time-varying local modes from prior fully-physical simulations 
and the adaptively coupling of sub-domain behaviors, which give rise to great improvement 
of computational complexity while guaranteeing high-fidelity simulation effects. Other 
key advantages include, being independent of underlying physical models (e.g., either 
FEM or meshless methods), being flexibly accommodating sub-domains’ heterogeneous 
material distributions, and being accurately responding to local user interactions. During 
the initialization stage, we partition the object into multiple sub-domains according to 
its material distributions and/or geometric structures, and respectively employ FEM for 
physics-based representation/simulation. During the dynamic stage, for each sub-domain, 
we leverage its local modal reduction in order to project complex deformations onto a low-
dimensional subspace. We dynamically determine the sub-domain-specific switch between 
deformation reconstruction based on modal reuse and FEM-based physical simulation 
according to the physically-consistent error estimates, and couple all the sub-domains’ 
physical behaviors together by imposing adjacent sub-domains’ geometric-continuity 
constraints. To validate our method, we conduct extensive and quantitative evaluations 
over comprehensive and well-designed experiments, and all the experimental results have 
confirmed the advantages of our method in terms of efficiency, accuracy, and unconditional 
stableness in practical graphics applications.
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1. Introduction and motivation

Real-time physically-realistic simulation has been one of the mainstreams that continues to attract a great deal of 
research efforts during the last two decades. So far, its widespread use has been enabling many downstream graphics ap-
plications such as computer games, virtual reality systems, computer animation, virtual surgery simulators, etc. To faithfully 
and efficiently simulate the object’s physical behaviors of deformation and arbitrary cutting, many fundamental method-
ologies, ranging from accurate finite element methods (FEM) together with their GPU acceleration (Dick et al., 2011a) to 
various types of flexible mesh-free methods, have been well devised to accommodate the application-specific requirements.

In principle, except for the mathematically-rigorous and high-precision modeling of the underlying application-specific 
physics, most state-of-the-art methods are trying to pursue certain effective and flexible numerical approaches to make 
tradeoffs between physical accuracy and interactive efficiency, wherein global modal reduction based techniques (Barbič 
and James, 2005; Kim and James, 2009; Krysl et al., 2001) have gained growing momentum in recent years because of their 
powerful capabilities in significant simplification of computation complexity and still preserving dominant, global physical 
behaviors. Despite the great success of global modal reduction, when encountering complex heterogeneous objects, the 
engineering rationale of global modal reduction towards numerical gains tends to fall short in tackling new challenges, 
which requires material-sensitive physically-accurate modeling, adaptive handling of flexible topological changes, efficient 
local modal analysis and reuse, and sophisticated computational schemes in a much more intelligent way. In particular, the 
key technical challenges are highlighted as follows.

First of all, from the perspective of underlying physical modeling and simulation, most of FEM-based global modal re-
duction methods commonly discretize the physical domain into homogeneous elements. However, when handling complex 
homogeneous objects, a naively-transplanted way requires a large number of carefully-divided elements to accurately rep-
resent all the involved physical states, which gives rise to expensive computation expenses in modal reduction, and what 
is even worse is that, the above-documented extra efforts may not facilitate the corresponding global modal analysis to-
wards physical realism due to massive elements from various sub-domains. Therefore, it naturally needs a divide-and-rule 
scheme (Barbič and Zhao, 2011; Kim and James, 2012) to independently model the involved heterogeneous physical domains 
in an approximated sense.

Second, from the perspective of the efficient utilization of modal analysis, even though global modal reduction methods 
have natural advantages in reducing computational expenses, its pre-computed modes may not have capabilities to repre-
sent any desirable motion outside the deformation subspace spanned by the global modes. Thus, global modal reduction is 
impossible to handle cutting and heterogeneous deformation because such behaviors naturally fall outside the space delin-
eated by global modal reduction. Moreover, the topological changes due to arbitrary cutting require to frequently recompute 
the global modes, otherwise it will lead to un-neglected artifacts, which will inevitably diminish the apparent advantages 
associated with global modal reduction. Therefore, an effective way to conduct local modal analysis and accommodate local 
modal reuse is urgently needed.

Third, from the perspective of the numerical-computation efficiency and stableness towards practical applications, explicit 
integration based solvers (Fierz et al., 2012) indeed offer efficiency at the cost of being only conditionally stable, while 
implicit integration schemes (Allard et al., 2011) provide the assurance of unconditional stability and support large time 
steps, however, it usually needs to solve large systems of equations. Therefore, to achieve stable and interactive simulation, 
CUDA-based domain-parallel implicit solvers are urgently needed. Meanwhile, considering that user’s interests in different 
sub-domains are distinct, in practical applications, it is required to simulate sub-domains of more interest with higher 
precision. And it is significant to effectively integrate spatially-varying FEM-based sub-domains with full-physical simulation 
capability and local deformation’s modal reuse and to guarantee its correctness in physical and geometrical meanings.

To tackle the aforementioned challenges, our central idea is to extend the powerful global modal reduction method to 
handle efficient deformation and cutting simulation of dynamic models with heterogeneous material distribution. Specifi-
cally, this paper resorts to domain-parallelized physical simulation, subspace-independent physical modes reuse, and cross-
domain adaptive behavior tight-coupling in a well-concerted CUDA-based parallel computational framework. The salient 
contributions of this paper include:

• We pioneer a space–time-varying local modal reuse method by introducing a divide-and-conquer scheme and coupling 
with the currently-available powerful global modal reduction, which enables spatially-varying deformation of different 
magnitude and arbitrary cutting simulation of heterogeneous object while guaranteeing high-fidelity simulation effects, 
and is independent of the underlying physical models (i.e., both FEM-based domain discretization and meshless method 
are supported).

• We propose to adaptively switch between integrating sub-domain-specific FEM-based simulation with full-physics capa-
bility and reconstructing deformation based on approximated, prior modal analysis according to the physics-geometry 
spatial-continuity error estimates. Such flexibility is dictated by sub-domain importance and sub-domain deformation 
amplitude, which can take full advantages of the accuracy of domain-specific physical simulation and the efficiency of 
local modal reduction methods.

• We design a CUDA-based parallel implicit integration framework, which supports material-aware and geometric-
structure-aware sub-domain partitioning, dynamic evolution of sub-domain-specific deformation subspace and smooth 
switch between physical simulation and modal deformation for sub-domains. From the perspective of numerical anal-
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ysis, the framework not only facilitates the local stiffness matrix pre-computation, dynamic topological updating and 
cutting surface reconstruction, but also guarantees the solvability of physically-correct local deformation modes, and 
satisfies the requirements of overall realtime efficiency and unconditional stableness simultaneously.

2. Related work

Closely relevant to the central theme of this paper, we now briefly review previous works in three aspects: FEM methods, 
coupling methods for physical simulation, and modal reduction methods.

FEM methods. FEM has proven to be a powerful approach to accurately model the physical and mechanical principles un-
derlying deformation and cutting. For instance, Dick et al. (2011b) proposed a hexahedron based FEM method by conducting 
a multi-grid solving on GPU. Misztal et al. (2010) presented a novel approach to fluid simulation with an optimization-
based, linear finite element method for solving the incompressible Euler equations. To enable large deformation, Müller et 
al. (2002) proposed a co-rotational formulation in the original space and employed a local coordinate frame to compute the 
linear force for each vertex. Similarly, Choi and Ko (2005) proposed a method based on node-wise rotation of the stiffness 
matrix and formulated in the modal space. Dick et al. (2011a) further introduced co-rotated strain formulation, which re-
duced nonlinear simulation to linear-time complexity. And Huang et al. (2006a) exploited domain decomposition method to 
handle large deformations using the linear elasticity model and a finite elements method. Based on the open-source frame-
work (SOFA) (Allard et al., 2007), Allard et al. (2011) proposed a series of numerical methods to implicitly solve FEM-based 
deformation systems on GPU. Barbič and Zhao (2011) used co-rotational finite element method to accommodate large-scale 
deformations. And B. Wang et al. (2015) proposed to capture and model the deformations of soft objects by integrating 
FEM-based simulation into a physics-based tracking framework. As for FEM-based cutting simulation, it remains challenging 
in the aspects of dynamic topological update and dynamic cutting surface reconstruction (Jerabkova et al., 2010). Although 
Wicke et al. (2007) improved traditional subdivision based topological update method by introducing arbitrarily-convex fi-
nite elements, it is even more involved in numerical integration. Meanwhile, Sifakis et al. (2007) proposed a virtual node 
algorithm to avoid element splitting by duplicating the cut elements and redistributing the material properties. However, 
since each fragment is required to contain at least one FEM node, arbitrary cutting is strictly limited. Most recently, adap-
tive regular hexahedron approximation is used for cutting simulations (Dick et al., 2011b), however, it can only handle 
homogeneous objects.

Coupling methods for physical simulation. Although most of the current physical simulation methods are competi-
tive, most of them are developed under different motivations. They are rather lonesome in some sense, and still require 
a trade-off among physical accuracy, material complexity, numerical stableness, and simulation efficiency. The domain de-
composition methods (Kim and James, 2012; Barbič and Zhao, 2011; Toselli and Widlund, 2005) open up a new venue. 
These methods mainly transform the solution of the initial global problem to the solution of local sub-problems via split-
ting a global domain into several sub-domains. Rabczuk et al. (2006) gave a general overview of the coupling of mesh-free 
methods with finite elements. Besides, multi-domain subspace techniques provide a flexible solution to reduce the physical 
model. Kim and James (2012) proposed to couple the domains using penalty forces for character skinning. Xu et al. (2014)
presented a semi-implicit integration method, which supports articulated structures. And Barbič and Zhao (2011) employed
shape matching and mass lumping to handle the multi-domain subspace deformation coupling at the boundary interfaces. 
Yang et al. (2014) achieved precise cutting reconstruction by modeling the physical system with the material-aware lo-
cal FEMs and modeling the domain-interlinking with meshless methods. Most recently, Yang et al. (2013b) proposed a 
boundary-aware modal construction method to characterize the deformation subspace of each domain, while Bosman et 
al. (2013) enabled cross-domain mechanical coupling and propagating of boundary conditions by representing the interface 
with 6-DOF mechanical points.

Modal reduction methods. Although fully physical-based methods are widely considered as reliable and accurate ways to 
simulate deformable objects, they are commonly computation-expensive. Modal reduction methods (also known as subspace 
methods) provide a novel perspective to reduce simulation complexity (Krysl et al., 2001), while guaranteeing dominant de-
formations. To solve slow convergence and numerical instability of iterative solver in nonlinear problem, Huang et al. (2006b)
developed a subspace technique that projects deformation energy and constraints onto a coarse control mesh around the 
original mesh. Commonly, MR methods are mainly concentrated on linear deformation of finite element simulation (Pauly 
et al., 2005; Hildebrandt et al., 2011; Wang et al., 2014), however, they are not suitable for objects with non-linear rela-
tionship between strains and displacements. To alleviate, Barbič (2007) presented an automatic modal derivatives approach 
to select a set of quality low-dimensional basis vectors, and Xia et al. (2015) adopted a similar strategy to perform mesh 
interpolation in subspace spanned by these basis vectors. A MR method supporting arbitrary non-linear material models is 
proposed in An et al. (2008). Kim and James (2009) presented an online modal reduction method, wherein fully-physical 
computation is adaptively skipped and replaced with prior simulation subspace based deformation reconstruction. Most 
recently, von Tycowicz et al. (2013) proposed a new technique to approximate the reduced forces and construct object’s 
deformation subspace. And Yang et al. (2013a) presented a novel physics-based volume segmentation by decomposing the 
tongue model into segments based on its deformation pattern with the computation of deformation subspaces and fit-
ting the target deformation locally at each segment. Li et al. (2014a) proposed a space–time constraints involved method 
for elastic animation editing, which achieves better efficiency and scalability by conducting all the computations in a re-
duced rotation-strain space. Hahn et al. (2014) presented a new approach for clothing simulation in low-dimension linear 
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Fig. 1. The functional framework of our novel method.

Fig. 2. Twisting comparison between homogeneous and heterogeneous bars. (a): original bar with homogeneous material; (b): twisted deformation of (a);
(c): original bar with heterogeneous materials; (d): twisted deformation of (c). (For interpretation of the colors in this figure, the reader is referred to the 
web version of this article.)

subspaces with temporally-adaptive bases. And Y. Wang et al. (2015) designed linear deformation subspaces for realtime 
deformation by unifying linear blend skinning and the generalized barycentric coordinates. Besides, Wicke et al. (2009)
partitioned fluids into multiple domains, and conducted modal reduction for each domain independently.

3. Method overview

As illustrated in Fig. 1, given an object to be simulated, we firstly overview the main functionalities of our method as 
follows.

Material-aware domain decomposition. We conduct material distribution analysis, decompose the already-labeled vol-
ume into independent homogeneous sub-domains (see Fig. 1 Input Model), and construct hierarchical octree-based FEM 
structure for each sub-domain (see Fig. 2(a), 2(c) Hexahedral Grid). Then we define the coupling constraints on the bound-
ary interface of the connecting sub-domains (here we assume that grid is compatible on shared interface between adjacent 
sub-domains), and apply interface constraints into system equations by Lagrangian multiplier method. For example, in 
Fig. 2(c), the sub-domains marked by blue, red and green lattices are modeled as three independent FEM systems forming a 
geometry-space cross-domain coupling model, where blue and green denote rigid material and red denotes flexible material. 
Here we leverage the geometric continuity of the boundary vertices as cross-domain coupling constraints.

Sub-domain-specific physical modeling. For each sub-domain, we compute local matrices (stiffness, mass, and damping 
matrix) for Lagrangian equations of motion according to the material-specific parameters in an element-wise fashion. Bene-
fiting from the structural regularity and uniformity of finite elements, we can pre-store the local stiffness matrices on GPU 
and access them according to the domain index in runtime. Please refer to Section 4.1 for details.

Sub-domain-specific deformation subspace generation. We dynamically generate and update sub-domain-specific de-
formation subspace by computing a set of time-varying vibrational modes based on the online modal reduction, which is 
expected to approximate the prior deformation space. The details are described in Section 4.2.

Cross-domain physical behavior coupling. Each sub-domain’s behavior is simulated by adaptively switching between 
FEM and modal reuse. And we conduct cross-domain coupling by imposing neighboring sub-domains’ geometric-continuity 
constraints to obtain the object’s overall physical behaviors. Please refer to Section 4.3 for details.

State update due to cutting. The updating operation arising from cutting involves three main aspects: geometry, physics, 
and inter-domain constraints. In particular, when cross-domain cutting occurs, we need to update the constraints defined 
on the boundary interfaces of the affected sub-domains. We will detail them together with our numerical implementation 
in Section 5.

4. Sub-domain coupling of time-varying modal analysis and FEM simulation

4.1. Sub-domain-specific physical modeling

For each partitioned sub-domain, its dynamic behavior can be described by the displacements derived from Lagrangian 
equation of motion. For FE method, displacements are computed from the original deformation space, while for modal 
reduction method, they are computed from the deformation subspace as follows:

Miüi(t) + Diu̇i(t) + Kiui(t) = f i
ext(t) + CiTλi(t), (1)
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Mi
r(t)üi

r(t) + Di
r(t)u̇i

r(t) + Ki
r(t)ui

r(t) = f i
r,ext(t) + CiT

r (t)λi(t), (2)

ui(t) = �i(t)ui
r(t), u̇i(t) = �i(t)u̇i

r(t), üi(t) = �i(t)üi
r(t),

Mi
r(t) = �i(t)T Mi�i(t),Di

r(t) = �i(t)T Di�i(t),Ki
r(t) = �i(t)T Ki�i(t),

f i
r,ext(t) = �i(t)T f i

ext(t),CiT
r (t) = �i(t)T CiT . (3)

Here Mi , Di and Ki respectively represent the mass, damping, and stiffness matrix of sub-domain i in original deformation 
space. Because we adopt linear elasticity models, each element has linear shape functions, which should stay constant during 
simulation. Mi

r , Di
r and Ki

r respectively denote the Galerkin projection matrix of the mass, damping, and stiffness matrix of 
sub-domain i at time t (see Equation (3)). ui represents the displacement vector of sub-domain i, and ui

r represents the 
amplitude of the deformation modes in sub-domain i. Here we respectively use u̇ and ü to indicate the first derivative and 
the second derivative with respect to time. Since we take a time-varying subspace constructing method, the basis matrix 
�i(t) of the reduced subspace of sub-domain i can be seen as a time-varying function, which makes projection matrix a 
time-varying function as well. And f i

ext(t) is the external force of sub-domain i at time t , likewise, f i
r,ext(t) is the reduced 

subspace projection of f i
ext(t). Ci is the boundary interface constraint matrix of sub-domain i, and Ci

r(t) is the reduced 
subspace projection of Ci . The boundary interface constraint matrix will be updated dynamically with cutting operations. 
λi(t) is the interface traction vector of sub-domain i at time t .

4.2. Sub-domain time-varying modal analysis

In this section, we mainly focus on the generation, the dynamic update of each sub-domain’s time-varying deforma-
tion subspace, and the adaptive alternation scheme between sub-domain-specific finite element simulation and subspace 
simulation.

Sub-domain-specific deformation subspace generation. In our method, we do not use the displacement vectors from 
continuous perpendicular physical simulation’s output to generate deformation subspace basis matrix. This is because that, 
such generating method for deformation subspace basis matrix usually requires the input data to be random samples from 
a stationary data source. However, in this paper, the generated data from physical simulation can be seen as data streams. 
Generally speaking, after the generation of deformation subspace basis matrix, the data output will be discarded and will 
not be embodied in deformation subspace. To solve this, we need to design a basis update strategy to dynamically embody 
the dominant deformation modes. The orthogonal vectors, generated from the aforementioned perpendicular basis matrix 
generation method, have no corresponding “dominant measurements” (e.g., eigenvalue or SVD’s singular value), so they can 
not serve as a dominant measurement guidance to facilitate subspace update. To overcome these drawbacks, we conduct 
incremental SVD over the generated data streams to obtain a set of orthogonal vectors to construct the current deformation 
subspace basis matrix (see Kerschen and Golinvalas, 2002). As for dynamic simulation, we update deformation subspace via 
continuous fast low-rank modification to make it include current dominant deformation modes.

There are two reasons that inspire us to construct deformation subspace based on SVD. The first reason is, for the han-
dling of sample data, SVD has been proved to approximate the data source with high quality (Frieze et al., 1998). The second 
reason is, according to De Moor et al. (1988), the resulted singular values can be defined as “oriented energy” to describe 
current system’s major characteristics, so that they can account for the basis matrix’s dominance during subspace update. 
More than that, because sub-domain deformation subspace basis matrix is constructed dynamically and is defined as a 
function of time, its deformation subspace’s Galerkin projection operation (see Equation (3)) will be recalculated with the 
update of basis matrix. The time complexity of Galerkin projection is O (N3r3), here N is the physical system’s dimension of 
sub-domain i, and r is the deformation subspace’s dimension of sub-domain i, it is still challenging for the adaptive and real-
time switch between sub-domain physical simulation and subspace simulation. Thus, we need to design a gradual subspace 
generation method to reduce the time cost of Galerkin projection. We assume Xi = [

u0
i , u1

i , · · · , un
i

]
is the physical sim-

ulation output set of sub-domain i, where column uj
i denotes an output displacement vector of sub-domain i and n is the 

size of the current set. The SVD operation is solved by Xi = UiSiVT
i , after which we can obtain the deformation basis vectors 

Ui and the corresponding oriented energy matrix Si (also known as singular values) of current sub-domain i. When a newly-
generated displacement vector un+1

i appends, the corresponding matrix operation is denoted as Equation (4). Then we trans-
form the new dataset 

[
Xi un+1

i

]
via Equation (5), however, the generated 

[
Ui un+1

i

]
cannot be taken as the updated de-

formation subspace’s basis matrix, because Ui and un+1
i are not orthogonal. Equation (6) further orthogonalizes Ui and un+1

i
using Schimidt orthogonalization, and thus we can obtain Equation (7), wherein both the left matrix 

[
Ui p

]
and the right 

one 
[

Vi en+1
]

are orthogonal matrices. However, we cannot call Equation (7) a SVD, because the middle matrix Sr+1
i is not 

a diagonal matrix. So we use the method proposed in Brand (2006), Gu and Eisenstat (1993) to make a fast diagonalization 
to matrix Sr+1

i in Equation (7), whose time complexity is O ((r + 1)2). And we generate two (r + 1) × (r + 1) orthogonal ma-

trices U′
i , V

′
i so that Sr+1

i = U′
iS

′V′T
i , where S′ is a diagonal matrix, as shown in Equation (8). So far, we have transformed Xi =

UiSiVT
i to the form of Equation (8). Here the benefit is that, its outermost matrix 

[
Ui p

]
is the augmentation of orthogonal 

matrix Ui from last time step. Furthermore, on the basis of Brand (2006) (see Equation (9)), we can leverage this character-
istic to decompose Galerkin projection into multiple time steps (

[
(U0)T , (U1)T , · · · , (Ur)T

]T
Ki

[
U0, U1, · · · , Ur

]
). 
i i i i i i
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And we defer the operation U
′(t)
i U

′(t+1)
i (called subspace rotations in numerical terms) in Equation (9) until switching phys-

ical simulation to subspace simulation, and this subspace rotation operation’s time complexity is O (r3).

Xi =
[

Xi u(n+1)
i

]
= [

Xi 0
] +

[
0 u(n+1)

i

]
⇔ UiSiV

T
i + u(n+1)

i eT
n+1,eT

n+1 = [
0, · · · , 0, 1

]
, (4)

UiSiV
T
i + u(n+1)

i eT
n+1 =

[
Ui u(n+1)

i

][
Si 0
0 1

][
Vi en+1

]T
, (5)

m = UT
i u(n+1)

i ,p = u(n+1)
i − Uim,p = ‖p‖−1 p, (6)[

Xi u(n+1)
i

]
= [

Ui p
][

Si m
0 ‖p‖

][
Vi en+1

]T
, (7)[

Xi u(n+1)
i

]
= [

Ui p
] × U′

i × S′ × V
′T
i × [

Vi en+1
]T

, (8)

U(t+1)
i U

′(t+1)
i =

[
U(t)

i p
]

U
′(t)
i U

′(t+1)
i . (9)

To verify the effectiveness of our subspace generation method, we have made linear model analyses (Shabana, 2012;
Barbič and James, 2005) on the sub-domains of the FE mesh to obtain each sub-domain’s LMA basis matrix (whether to 
cull rigid modes is not determined). Then we project our deformation basis matrix to the LMA basis matrix. As shown in 
Fig. 3, the low frequency modal vectors in LMA basis matrix can be well approximated by our basis matrix, meanwhile, 
the high frequency signals can also be well represented by our basis matrix. Due to the independence of the sub-domains, 
the assembled global system presents a block diagonal matrix fashion, wherein each matrix block denotes an independent 
sub-domain. As shown in Fig. 3(h), the matrix block’s constitution is dependent on current system’s status, either as a FE 
system (block matrix with larger size) or as a modal deformation system (block matrix with small size, and it reflects the 
user’s attention as well as sub-domain’s complexity).

Space–time-varying sub-domain modal updating. The update of sub-domain’s deformation subspace will be triggered 
when current sub-domain’s subspace cannot accurately depict the time-varying deformation status. We employ a strategy 
of maximally-reusing previous physical simulation results to make “rank 1 updating” for current deformation subspace. 
We add current physical simulation result into deformation subspace, according to subspace dimension’s requirement, we 
determine to increase the subspace’s dimension (see Equation (10)) or just maintain it (see Equation (11)). No matter the 
subspace’s dimension is increased or not, the basis matrix in the updated subspace is the most dominant one in the current 
deformation space.

U
′(t+1)
i =

[
U

′(t)
i 0

0 1

]
U

′(t+1)
i ,U(t+1)

i =
[

U(t)
i p

]
, (10)

U
′(t+1)
i = U

′(t)
i U

′(t+1)
i,(1:r,1:r),U(t+1)

i = U(t)
i . (11)

Adaptive alternation scheme between sub-domain physical simulation and modal reuse. In simulation, to guarantee 
the simulation precision of each sub-domain, and guarantee the deformation subspace spanned by time-varying modals can 
continuously represent the physical deformation space, we resort to an online quality estimate. As shown in Fig. 2(d), we 
show an example of multiple-sub-domain simulation case, wherein each sub-domain’s deformation degree and type are 
diverse, for example, blue and green sub-domains have significant elastic deformation, while the red one has a significant 
rigid displacement. So, to accurately depict the object’s deformation process, we introduce a local error estimate method to 
support multiple sub-domains.

For each sub-domain, we need to consider two kinds of problems: the first is the time to switch from physical simulation 
to deformation subspace simulation, that is, the error metric problem between currently-generated deformation subspace 
and physical simulation space; the second is the time to switch from deformation subspace based simulation to physical 
simulation, that is, the prediction problem of deformation subspace’s accumulative error. As mentioned in Rathinam and 
Petzold (2003), the total approximation error can be summarized as projection error e⊥ and integration error eI . In algebra, 
projection error is perpendicular to deformation subspace, i.e., Ui(t)UT

i (t)e⊥ = 0, while integration error is parallel to defor-
mation subspace, i.e., Ui(t)UT

i (t)eI = eI . For the first problem, we focus more on the computation of deformation subspace’s 
projection error. As for the second one, we focus on the incremental estimation of the integration error in deformation 
subspace.

The projection error is defined as Equation (12), where x is the output of physical simulation and Ui(t) is the currently-
generated deformation subspace basis matrix. The switch condition from physical simulation to subspace simulation is that 
current Ui(t) makes the L2 − norm of Errordisp less than threshold τerr , as shown in Equation (13). In practice, each time 
we update deformation subspace’s basis matrix Ui(t), we need to recompute Ui(t)UT

i (t) in order to compute Equation (12), 
and this will increase the global computation time. Our method adopts an optimized scheme, that is, we will not compute 
Equation (12) until the ratio (the singular values’ summation of Ui(t − 1) to that of new generated subspace basis vectors 
Ui(t)) is more than threshold τsvd (0.9 < τsvd < 1.0). This can avoid useless computation request so that it will not have 
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Fig. 3. Illustration of sub-domain-specific time-varying modal vibration frequencies. (a)–(f): the vibration frequencies corresponding to different sub-
domains; (g): the reconstructed deformations by reusing the sub-domain vibration frequencies in (a)–(f); (h): the pattern of global mode matrix.

significant influence on system’s efficiency. For the computation of Equation (13), we resort to “small-sample statistical 
condition estimates” technique (Kenney and Laub, 1994). We do not solve Equation (13) directly, but leverage statistical 
methods to solve the expected value of the L2 − norm of Errordisp . As shown in Equation (14), uj

i is the column vector 
of current subspace basis matrix Ui(t), and W N , Wr are called Wallis factors (Homescu et al., 2005). When the expected 
value of L2 − norm of Errordisp is less than threshold τerr , suggesting that the approximation of physical space using current 
subspace basis matrix Ui(t − 1) can satisfy system’s requirement, it triggers the switch to subspace simulation. In another 
word, the significance of deformation subspace’s basis matrix is controlled by threshold τerr (0.0 < τerr < 0.05 ‖x‖2). As for 
the second problem, considering we employ linear discretization to model physical system, we assume the system’s error 
accumulation is also linear. Enlightened by Kim and James (2009), we project the physical simulation result to subspace 
basis matrix Ui(t) while switching from physical simulation to subspace simulation to obtain projection error, on that basis, 
the subspace system’s error accumulation within s steps (s = ⌊

τacc/
∥∥Errordisp

∥∥⌋
) will not exceed system’s requirement τacc

(0.0 < τacc < 0.15 ‖x‖2).

Errordisp = x − Ui(t)UT
i (t)x, (12)∥∥Errordisp

∥∥
2 =

∥∥∥x − Ui(t)UT
i (t)x

∥∥∥ < τerr, (13)

2
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Fig. 4. Illustration of the independent selection of sub-domain-wise simulation schemes and their cross-domain tight-coupling.

E

⎛
⎝

√√√√ r∑
j=0

(u j
i · Errordisp)

2

⎞
⎠ = W N

Wr

∥∥Errordisp

∥∥ , Wn =
{ 1·3···(n−2)

2·4···(n−1)
,n ∈ odd

2
π

2·4···(n−2)
1·3···(n−1)

,n ∈ even
. (14)

4.3. Cross-domain coupling among spatially-varying physical simulation and modal reuse

To accurately model the physics-geometry consistency among multiple sub-domains’ interfaces, we employ Lagrangian 
multiplier method to depict the consistency of material points’ displacements and traction among interfaces, and add these 
constraints into the system equations. For the convenience of depiction, we explain the interface constraints problem with 
two adjacent domains (α, β). The displacement vectors on the interface are denoted as ui

α , ui
β respectively, and the equi-

librium condition of forces is tα = −tβ . We define interface traction as λ, so tα = λ, tβ = −λ. Here, the model’s system 
equations, including interface constraints, are defined as Equation (15), where Nα , Nβ are displacement discretized shape 
function matrices on sub-domains’ interfaces, and Nλ is the discretized shape function matrix of the interface’s traction. 
When we have multiple sub-domains, we only need to assemble these interfaces’ constraints into a constraint equation sys-
tem and include it into our system equations. Over-constraining and locking problems may arise when applying constraints 
on interfaces, to solve this problem, we decrease the number of boundary constraint points according to Yang et al. (2010). 
After including interface consistency constraints into original system equations, the system equations become a so-called 
saddle point system. And the emergence of saddle point system brings new challenges for system solving, especially for 
a computation framework employing Krylov subspace methods (Dollar et al., 2006b), because the joint of constraints will 
transform the original symmetric positive definite system into an indefinite system while Krylov subspace method is not 
applicable to solve indefinite systems (for more details, see Subsection 5.2). Moreover, when the deformation subspace of 
sub-domain i satisfies accuracy requirements and triggers the switch operation for the sub-domain-wise simulation scheme, 
the system equations’ size will change, for instance, Nα + Nβ → Nα + rβ . In practice, the system equations will continuously 
evolve independent of sub-domains (as shown in Fig. 4), which will give rise to severe challenges for any iterative solving 
method (see more details in Subsection 5.2).⎡

⎣Kα 0 CT
α

0 Kβ CT
β

Cα Cβ 0

⎤
⎦

⎡
⎣uα

uβ

λ

⎤
⎦ =

⎡
⎣ fα

fβ
0

⎤
⎦

Cα =
∫
�I

NT
αNλd�,Cβ =

∫
�I

NT
βNλd�. (15)

5. CUDA-based numerical implementation

5.1. Large deformation handling

For the FE modeling of each sub-domain, we adopt widely-used Cauchy strain tensor. Although the generation of sub-
domain’s deformation subspace takes linear strain resulted deformations as input, the accuracy of Cauchy strain tensor is 
only applicable to moderate small deformation, because it tends to diverge from the correct solution under large defor-
mation. In addition, in the deformation subspace’s approximation, modal superposition can not represent the intermediate 
rotational displacement (Yang et al., 2013b; Guo and Qin, 2005). To solve the rotational deformation problems, we em-
ploy modal warp technique proposed in Müller et al. (2002), Choi and Ko (2005) to uniformly solve rotational deformation 
problems encountered in physical simulation and modal reduction.

ũ(t) =
{

R̃(t)u(t) ,using FE Method
R̃(t)�(t)ur(t) ,using MR Method

, (16)

R̃i(t) =
[

I + (ŵi(t)×)
1−cos‖wi(t)‖

‖wi(t)‖ + (ŵi(t)×)2
(

1 − sin‖wi(t)‖
‖wi(t)‖

)]
, ŵi(t) = wi(t)

. (17)
‖wi(t)‖
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Fig. 5. Illustration of the trajectory due to cutting together with the specifically-designed data structure for efficient matrix operation. (a): initial volumetric 
grid; (b): volumetric grid after cutting; (c): incompletely-assembling sparse matrix data structure based on CUDA. (For interpretation of the colors in this 
figure, the reader is referred to the web version of this article.)

As shown in Equations (16), we extract vertices’ rotation vectors in local coordinate system from the obtained resulting 
displacement field, and separate the rotation part from displacement field. Here t denotes current time step, R̃(t) is rotat-
ing separation operator, and R̃(t) is a block diagonal matrix, whose sub-matrix block is a 3 × 3 matrix (R̃(t) = [

δijR̃i(t)
]
) 

denoting a vertex’s rotating separation operator. Equation (17) is the computation formula of vertex’s rotating separation 
operator, where wi is the local rotation vector derived from displacement curl of vertex i. ŵi(t)× denotes the standard skew 
symmetric matrix of ŵi(t). In our method, wi is the average of all the rotation vectors of the finite elements sharing one 
vertex i.

5.2. Cutting simulation

For cutting operation, we represent the cutting tool with a triangle mesh, and use the triangle mesh to track cutting 
trajectory. When cutting operation occurs, by making collision detection between hierarchical hexahedral mesh and triangle 
patches, we can obtain the hexahedral elements interacting with the cutting tool. For coarse elements, we need to refine 
them for simulation accuracy and clone the cut elements to satisfy the topology change (see Fig. 5). In Fig. 5(b), the range 
denoted by blue dashed line circle is the grid region related to cutting, and yellow curve represents the cutting trajectory. 
The blue dashed line box at the top right corner shows the topology change diagram of volume mesh. And in the diagram, 
pink means the element that is not involved in cutting; blue and green mean the refined elements (its predecessor is a 
coarse element), and the difference between them is that the green one is cloned further; yellow means the element only 
involves in cloning operation, because the yellow element is already in fine scale before cutting.

After handling the grid’s geometry and topology update, for physical simulation system, we need to further redistribute 
physical attributes (such as velocity field, acceleration field, and gravity field) of the original grid onto new grid to guaran-
tee a smooth transition of motion state. This process is achieved by assigning clone elements’ nodes with nodes’ physical 
attributes of source elements. When conducting cross-domain cutting operation, cutting will cause boundary interface con-
straints to change, and we assign the cloned nodes’ constraint attributes (if any) to new generated nodes just as that 
in handling physical attributes. Benefited from the regularity of hexahedral elements, element-wise shape function ma-
trix, element-wise mass matrix, element-wise damping matrix, and element-wise interface constraint matrix are consistent, 
and can be pre-computed, so new generated elements can be directly obtained without additional complex computation. 
For deformation subspace, cutting makes previous deformation subspace no longer well approximate current sub-domains’ 
physical behavior, so we need recompute deformation subspace. This paper employs a strategy of maximally-reusing previ-
ous physical simulation results, and here we need to make augmentation adjustment on recorded prior physical simulation 
output Xi as follows: first enlarge the size of column vectors to meet current sub-domain’s freedom; similar to the op-
eration of redistributing physical attributes, copy source nodes’ previous displacements onto clone nodes. The augmented 
displacement field can serve as the input for deformation subspace generation method. To accelerate the generation of new 
deformation subspace, we cut down original displacement field and only remain the nearest r/2 augmented displacements 
resulted from current time step, where r is the dimension of current deformation subspace.

5.3. Preconditioned conjugate gradient method for indefinite systems

According to the above description, the simulation method adopted by each sub-domain may change dynamically (see 
Subsection 4.2), and when cutting happens, system’s size will enlarge further as well (see Subsection 5.2). With regard to 
global system equations, in each simulation loop, numerical solver may encounter a “brand new” system equation. When 
all sub-domains employ FE physical simulation method, system equations become a large sparse diagonal matrix. However, 
when all sub-domains employ deformation subspace simulation method, system equations become a small dense diago-
nal matrix. What’s more, because of the constraints among sub-domains, system equations tend to become an indefinite 
system from a symmetric positive definite one. The frequent changes of sub-domains’ systems put forward performance 
requirements for the assembly of global system matrix, and the difference in matrices and/or matrices’ sizes also brings 
performance requirement for solver’s preconditioning process. Because we may face a large sparse matrix, we choose it-
erative solver (conjugate gradient method) for this problem. Unfortunately, CG method is not able to solve an indefinite 
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system, so we need to employ pre-conditioner technique to strengthen the ability of CG method. Because the problem has 
high performance demand for solver’s preconditioning process, we urgently need a pre-conditioner that can be constructed 
fast and can effectively solve an indefinite system. We will detail our solution for this problem below.

We assume the target system matrix S(t) and the pre-conditioner P(t) are like Equation (18), considering they change 
with simulation time step, which are functions of time t . Here A(t) is a block diagonal matrix consisting of each sub-domain 
(see Subsection 4.2). G(t) is a diagonal matrix and its values on the principal diagonal are the same as those of A(t), i.e., 
G(t) = diag(A(t)). When solving indefinite systems using CG method, we need to solve the orthogonal projection onto the 
constraint term’s null space brought by constraint C(t) (Rees and Scott, 2014). For constraint C(t) at each time step, the 
solution for its null space’s projection operator is disastrous for solving system equations, we employ a close approximation 
of the orthogonal projection operator introduced in Dollar et al. (2006a) (also see Equation (15)). Thus, it avoids solving 
the projection onto the null space at each time step but introducing round-off error in iterative solving. In iterative solving, 
we need to introduce a modification to solution to offset the influence of round-off error, see Algorithm 2. By observing 
Equation (18), we can know that the pre-conditioner P(t) is an indefinite system as well. In order to solve pre-conditioner, 
we adapt P(t) to Equation (19), where G11(t), C1(t) and CT

1(t) are m × m matrices and m is the row number of constraint 
matrix C(t). We employ Schilder’s factorization technique (Dollar et al., 2006a) to decompose Equation (19), and we set 
G11(t) as a zero matrix so that we can use Algorithm 3 to efficiently solve the pre-conditioner.

Besides, Algorithm 1 describes the process of solving global indefinite system equations at each time step. In practical 
applications, Algorithm 3 requires CT

1(t) to be invertible. However, when handling complex problems, CT
1(t) will be not 

invertible, in this case, we employ LU decomposition on constraint matrix C(t) to get its left permutation matrix H(t), 
and take it as a permutation operation to Equation (18) (also see Equation (20)). And because the pre-conditioner P(t) is 
obtained from Equation (18), we need to reconstruct pre-conditioner using Equation (20).

S(t) =
[

A(t) CT(t)
C(t) 0

]
,P(t) =

[
G(t) CT(t)
C(t) 0

]
, (18)

P(t) =
⎡
⎣G11(t) 0 CT

1(t)

0 G22(t) CT
2(t)

C1(t) C2(t) 0

⎤
⎦ , (19)

Ŝ (t) =
[

HT (t)A(t)H(t) HT(t)CT(t)
C(t)H(t) 0

]
=

[
Â(t) ĈT(t)
Ĉ(t) 0

]
. (20)

Algorithm 1 PCG method for indefinite systems.

Input: A(t), C(t), C1(t), C2(t), G22(t), fext(t);
Output: global displacement field at current time t;

Initialization: n is the row number of A(t), m is the row number of C(t);
construct vectors: x(n), x̂(n), r(n), g(n), p(n), q(n)

ŷ(m), w(m), v(m), a(m), t(m), h(m), l(m)

w = −C(t)x
solve_preconditioner(G22(t),C1(t),C2(t),n,m, x̂, ŷ, r,w)
x = x + x̂
r = A(t)x + CT(t)ŷ − fext(t)
solve_preconditioner(G22(t),C1(t),C2(t),n,m,g,v, r,w)
residual_update(a,g, r,v,w,C(t),G22(t),C1(t),C2(t))
t = v + a, p = −g, h = −t
q = A(t)p
sigma = r · g + w · t, gamma = p · q + h · l, r_nrm2 = r · g
LOOP: termination condition r_nrm2 < (1e − 6) · ‖fext(t)‖

alpha = sigma/gamma
x = x + alpha × p, r = r + alpha × q
a = a + alpha × h, w = w + alpha × l
solve_preconditioner(G22(t),C1(t),C2(t),n,m,g,v, r,w)
residual_update(a,g, r,v,w,C(t),G22(t),C1(t),C2(t))
t = a + v
old_sigma = sigma, sigma = r · g + w · t, beta = sigma/old_sigma
p = −g + beta × p, h = −t + beta × h
q = A(t)p
gamma = p · q + h · l, r_nrm2 = r · g
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Algorithm 2 Method for solving the pre-conditioner.

Input: G22(t), C1(t), C2(t), n, m, g, v, r, w;
Output: solve preconditioner to obtain the result of displacement g and traction v

Initialization:
construct vectors: g1(m), g2(n − m), r1(m), r2(n − m)

Implementation:[
r1 r2

] = r, v = C−1
1 (t)T r1

g2 = G22(t)−1(r2 − C2(t)T v), g1 = C−1
1 (t)(w − C2(t)g2)v

g = [
g1 g2

]

Algorithm 3 Residual update.

Input: a, g, r, v, w, C(t), G22(t), C1(t), C2(t);
Output: the update of vectors a, g, r, v, w;

Implementation:
r = r − C(t)T v
a = a + v, w = 0
solve_preconditioner(G22(t),C1(t),C2(t),n,m,g,v, r,w)

5.4. Sparse matrix data structure design for incomplete assembling

As described above, the frequent update of global system equations and the requirement to permute matrix’s row and 
column in constructing process bring new demands for the fast assembly and permutation between matrix rows and 
columns. Therefore, we develop an incompletely-assembling Sparse Matrix Data Structure based on CUDA (Fig. 5(c)). First, 
for fast assembly, we only assemble matrix’s rows while not assembling columns explicitly. The advantages of this design 
lie in that, it is more effective than matrix-free structure without total assembling because there involves no row locating in 
numeric indexing, and it is also more effective than matrix structure with total assembling because of no atomic accumu-
lating for the same location and less bandwidth occupation (see Fig. 5(c), the red, green, blue, yellow elements are stored 
independently without summation operation). Second, as shown in Fig. 5(c), the matrix’s row and column adopt bi-level 
indexing structure, so that permutation between rows and columns only needs to modify the index of rows and columns 
without moving data actually.

6. Experimental results

We have implemented a prototype system using C++ and CUDA. All the experiments are run on a desktop PC with 
NVIDIA GeForce GTX 770 GPU, Intel Core i7 3.60 GHz CPU and 4G RAM.

To verify the accuracy of our method, we simulate a Cactus model. First, we decompose the triangle mesh into 4 domains 
according to its structure as an input model (as shown in Fig. 6(a)). For the input model with multi-domain information, 
we construct a hierarchical hexahedral octree grid for every sub-domain respectively and construct a FE model for each 
sub-domain respectively. In order to explore our method in the performance of different resolution on the octree grid, 
we construct FE model for high-resolution (Fig. 6(b)) and low-resolution (Fig. 6(c)) grid respectively, and simulate high-
resolution grid model with FE method as reference, as shown in Fig. 6(d), 6(g), 6(j). In the initial simulation phase, every 
sub-domain is simulated with FE method, and current system equations’ size is shown in the sub-column “Max” of the 
Table 1’s column “Before cutting”. At the same time with physical simulation, subspace is constructed dynamically for 
every sub-domain respectively, and while the constructed subspace can satisfy the requirement of error precision (here, 
error precision is 95%), related sub-domain switches to subspace method to simulate (as Fig. 6(e), current system equa-
tions’ size is 13 855 × 13 855, red: 26, yellow: 25, white: 31, green: 13 773, and Fig. 6(f), current system equations’ size is 
2867 × 2867, red: 10, yellow: 10, white: 16, green: 2831). After the occurrence of cutting operation, influenced sub-domains 
are simulated with FE method and other unaffected sub-domains still employ current simulation method and current sys-
tem equations’ size is shown in the sub-column “Max” of the Table 1’s column “After cutting”. As mentioned above, when 
our new constructed subspace can satisfy the requirement of error precision again, related sub-domain should switch to 
subspace method to simulate, as shown in Fig. 6(h), 6(i), 6(k), 6(l).

And to verify the effectiveness of processing with cutting operation, we process a steak model with complex material and 
corresponding domain partition. First, we conduct material-aware voxelization over the input model (as Fig. 7(a)) to generate 
a hierarchical hexahedral grid and implement FE modeling for every domain respectively (as shown in Fig. 7(b)). Note 
that, every independent sub-domain is assigned different material parameters due to different material information (bone: 
Young’s Modulus 9.0E+9, muscle: Young’s Modulus 3.0E+9, fat: Young’s Modulus 1.0E+9). Zigzag-shaped and J-shaped 
cutting operation occurred in red, yellow and blue sub-domains. The grid generated after incision’s elements’ splitting and 
cloning as response to cutting is shown as Fig. 7(d), 7(f) and the final result of cutting is shown as Fig. 7(c), 7(e). Detailed 
Performance statistics can be found in Table 1.
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Fig. 6. Cutting simulation over the 4-domain Cactus model. (a): the input model with already-labeled multiple domains; (b): high-resolution octree-based 
representation; (c): low-resolution octree-based representation; (d): the simulation result based on the FEM model; (e): the simulation result based on 
high-resolution grid using different simulation methods (red, yellow, and white regions with the subspace method and green region with the FE method);
(f): the simulation result based on low-resolution grid using different simulation methods (red, yellow, and white regions with the subspace method and 
green region with the FEM method); (g): the simulation result of the FEM model after cross-domain cutting (i.e., cut across white and green sub-domains);
(h): the simulation result based on high-resolution grid using different simulation methods after cutting (red, yellow, and white regions with the subspace 
method and green region with the FE method); (i): the simulation result based on low-resolution grid using different simulation methods after cutting (red, 
yellow, and white regions with the subspace method and green region with the FE method); (j): the simulation result of the FEM model after cross-domain 
cutting; (k): the simulation result on high-resolution grid using different simulation method after cutting (red, yellow, and white regions with the subspace 
method and green region with FE method); (l): the simulation result based on low-resolution grid using different simulation methods after cutting (red, 
yellow, and white regions with the subspace method and green region with the FE method). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Table 1
Performance statistics.

Model Elements Domains Before cutting After cutting FPS

Max Min Max Min (Ours/FEM)

Cactus (low-res) 1246 4 6015 × 6015 54 × 54 6471 × 6471 58 × 58 41 / 25
Cactus (hi-res) 7401 4 29 349 × 29 349 115 × 115 30 711 × 30 711 136 × 136 35 / 16
Steak (“J” cuts) 2976 5 12 510 × 12 510 112 × 112 13 317 × 13 317 122 × 122 38 / 20
Steak (“Z” cuts) 2976 5 12 510 × 12 510 112 × 112 13 425 × 13 425 123 × 123 38 / 20
Cube 10 648 2 38 088 × 38 088 – 64 170 × 64 170 69 × 69 28 / 15
Armadillo 3657 7 16 083 × 16 083 161 × 161 18 675 × 18 675 163 × 163 29 / 19

Fig. 7. Cutting simulation over the multi-material Steak model. (a): the input Steak model with multiple materials; (b): domain partition and voxelization 
according to the material attributes; (c): J-shaped cutting simulation result; (d): the updated grid after J-shaped cutting operation; (e): Zigzag-shaped 
cutting simulation result; (f): the updated grid after Zigzag-shaped cutting operation. (For interpretation of the colors in this figure, the reader is referred 
to the web version of this article.)

To verify our method’s effectiveness of handling more complex cutting operation, we simulate a Cube model, as shown 
in Fig. 8. Fig. 8(a) shows the initial state of model, it is composed of two sub-domains (blue: Young’s Modulus 6.0E+9 and 
yellow: Young’s Modulus 1.0E+9). Because of the cross-domain cutting operation, the DOF of model increases to 64 170 
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Fig. 8. Conducting complicated cutting over a cube model. (a): original model with two sub-domains; (b): the simulation output of all sub-domains with 
full FE method; (c): the output of simulation using FE method in yellow region and using subspace method in blue region; (d): the simulation output of 
all sub-domains with full subspace method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 9. Cutting simulation over multi-domain Armadillo model. (a): original input model; (b): hierarchical octree-based structure for each sub-domain; (c): 
the simulation output of all sub-domains with full FE method; (d): the simulation output with subspace method in head, right and left hand region;
(e): output with full FE method after cutting; (f): the simulation output with subspace method in head, right and left hand region after cutting. (For 
interpretation of the colors in this figure, the reader is referred to the web version of this article.)

(yellow: 36 432, blue: 27 738) from 38 088 (yellow: 19 044, blue: 19 044), as shown in Fig. 8(b), and now both the two 
sub-domains are simulated with FE method (system equations’ size is 64 170 × 64 170). And during physical simulation, 
subspace is constructed dynamically for every sub-domain and simulation switches to subspace method if the subspace 
satisfies the requirement of error precision, as shown in Fig. 8(c), where blue region employs subspace method to simulate, 
while yellow region still maintains FE method (system equations’ size is 27 772 ×27 772). And as soon as the yellow region’s 
subspace could satisfy error precision, simulation of the region switches to subspace method, as shown in Fig. 8(d), and 
current system equations’ size is 69 × 69.

Finally, Fig. 9 shows a comprehensive experiment, wherein the Armadillo model is decomposed into 7 sub-domains 
(represented by different colors, as Fig. 9(a), 9(b)). Let us suppose the head and the upper body are the regions of interest, 
and we assign higher error precision (95%) to yellow, green and red regions (ROIs), while assign lower error precision (87%) 
to purple, pink, white and blue regions. Cutting operation occurs in the regions of interest. We refine, clone, and split the 
elements influenced by cutting, and simulate the influenced regions using FE method (as shown in Fig. 9(e)). In the same 
way, we construct subspace dynamically during physical simulation and we switch to subspace method when error precision 
is satisfied by constructed subspace, as shown in Fig. 9(f). Detailed Performance statistics can be found in Table 1.

7. Conclusion and discussion

In this paper, we have systematically presented a novel and versatile method to address a suite of research challenges 
encountered in modal reduction based real-time deformation and arbitrary cutting simulation of heterogeneous objects 
(with multiple sub-domains and large variations of material distribution). The most critical idea of our novel approach is to 
conduct a dynamic interchange between adaptively integrating material-aware and/or geometry-structure-aware simulation 
with full-physics capability and performing deformation reconstruction based on sub-domain-specific local modal’ reuse, 
and all of the above numerical procedures have been implemented in a CUDA-centric parallel computation framework. 
The novel technical components within our new framework include: the space–time-varying local modal generation from 
previous-cycles’ fully-physical simulation, the adaptive alternation scheme between sub-domain physical simulation and 
modal reuse, the cross-domain coupling of spatially-varying numerous deformations (i.e., some sub-domains’ deformation 
is from physical simulation, and others are from modal-subspace reconstruction), and the sub-domain-level parallel implicit 
integration solvers supporting CUDA-enabled numerical computation, which collectively equip our method with remarkable 
advantages in terms of realtime efficiency, high-accuracy simulation, unconditional stableness, and practical versatility.

Currently, our prototype system is still a proof-of-concept only at the experimental stage, hence, it is not yet of practical 
use due to certain limitations. For example, we should introduce some collision detection function (Li et al., 2014b) into our 
current system to make it possible to support more complex interactions far beyond the simple cutting operations. And we 
should also incorporate certain mature techniques (Barbič and James, 2010; Teng et al., 2014) to accommodate self-collision 
caused by elastic deformation. In addition, our ongoing research efforts are concentrated on seeking an efficient optimization 
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method to guarantee the physical accuracy in an absolute sense. Meanwhile, it also deserves our efforts to extend our 
method to handle more sophisticated fluid-elasticity coupling phenomena. In terms of limitations, it should be noted that, 
our domain coupling method’s requirement for construction consistency of sub-domain interface may not be appropriate 
in practical applications and our current method is lack of flexibility in supporting more comprehensive adaptivity when 
handling much more complex boundary interfaces.
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