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Highlights

e An approach to extract focal features on 3D surface via regression learning.
e Incorporation of local properties and geodesics into random forest framework.
e A voting scheme gives rise to precise and robust extraction of focal features.
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Abstract

Flexible definition and automatic extraction of generic features on 3D shapes is important
for feature-centric geometric analysis, however, existing techniques fall short in measuring
and locating semantic features from users’ psychological standpoints. This paper makes
an initial attempt to propose an learning based generic modeling approach for user-
central definition and automatic extraction of features on arbitrary shapes. Instead of
purely resorting to certain local geometric extremes to simply formulate feature metrics,
it enables the users to arbitrarily specify application-specific features on training shapes,
so that similar features can be automatically extracted from other same-category shapes
with isometric or near-isometric deformations. Our key originality is built upon an
observation: the geodesic distance from one point to desired feature point on testing
shape should be similar to those points on training shapes. To this end, we propose
a novel regression model to bridge the massive random-sampled local properties and
the desired feature points via incorporating their corresponding geodesic distances into
the powerful random forest framework. On that basis, an effective voting strategy is
proposed to estimate the locations of the user-specified features on new shapes. Our
extensive experiments and comprehensive evaluations have demonstrated many attractive
advantages of our method, including being fully-automatic, robust to noise and partial
holes, invariant under isometric and near-isometric deformation, and also scale-invariant,
which can well facilitate to many downstream geometry-processing applications such as
semantic mesh segmentation, mesh skeleton extraction, etc.

Keywords: Generic Focal Features, Automatic Extraction, Random Forest Regression,
3D Shapes, Isometric Deformation Invariance

1. Introduction and Motivation

Automatic feature extraction on 3D shapes is an important and fundamental tech-
nique in computer graphics, which is significant for many downstream feature-centric
geometric applications, such as registration among different shapes [1, 2], coarse or dense
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correspondence [3, 4], shape retrieval [5, 6], etc. Conventional feature extraction methods
mainly exploit certain differential attributes to characterize prominent features [7, 8, 9]
based on local geometric measurements. However, these features are inevitably biased to-
wards high-saliency shape extremities/protrusions in some senses, while tending to ignore
non-salient but semantically meaningful regions. Meanwhile, because these approaches
only rely on objective properties relevant to shape geometry, the user-central semantic
definition is extremely hard to be accommodated.

Motivated by the urgent demands of high-level shape understanding applications,
more and more attentions have been paid on the flexible definition and automatic extrac-
tion of user-specified features. Chen et al. firstly proposed a Schelling Points method [10]
by employing decision trees [11] to combine multiple geometry properties into an analyt-
ical model, which can be used to predict the points specified by users (Schelling Points)
on new shapes. However, although this method provides us a feasible way to map some
kinds of user-specified features to certain geometric signals, it requires tedious labeling in
a crowd-sourcing way, and the landmark detecting process heavily relies on curvature like
local geometric properties, which is hard to be flexibly used for universal focal feature
definition and extraction.

In this paper, we advocates a totally different vision for the application-specific flexible
definition and automatic extraction of user-specified features on 3D shapes, which we
name as focal features. The underlying observation supporting our novel idea is that, for
a random-sampled point on the testing shape, its geodesic distance to the desired focal
features should be similar to those points with similar properties on the training shapes
of same category. Therefore, with massively random-sampled points on training shapes,
we can use their local properties and their corresponding geodesic distances to the focal
features to construct a random forest. Given testing shape, we randomly sample many
points again, and use the random forest to estimate the corresponding geodesic distances
of each point. Finally, we design an effective voting scheme to locate the focal feature
points on testing shape with the estimated geodesic distances of the randoy-sampled
points serving as vote sources. In particular, the primary contributions of this paper can
be summarized as follows:

e We propose a novel generic modeling approach based on regression learning to
flexibly define and automatically extract focal features on arbitrary 3D surface,
which facilitates to bridge the large gap between objective geometric measurements
and subjective application-specific feature recognition.

e We make the first attempt to incorporate the random-sampled local properties
and their geodesic distances to the desired focal features into the powerful random
forest regression framework, which enables semantic focal features for high-level
shape understanding applications.

e We propose a novel consensus voting scheme by fully leveraging the mutual inter-
actions of the spatially-different properties in a global-to-local sense, which gives
rise to more precise and robust extraction of focal features even for noise-stained
shapes with scattered votes’ distribution.

e We deeply exploit the scale-invariant heat kernel signatures [12] and geodesics-in-
heat [13] to respectively serve as the replaceable descriptor and distance metric of
2
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Figure 1: The full pipeline of our method. The training shapes are listed in the left most column with
yellow color and one focal feature point is indicated as red sphere on each teddy’s belly. We firstly
compute many randomly sampled points’ descriptors and geodesic distances to the feature point, and
then construct a randomized regression forest shown in the middle. When given a new shape colored
blue, we also compute many descriptors as before and use the forest to predict their geodesic distances
to the feature point. Finally, we use a voting scheme to compute the probability of each point to be the
focal feature, where red indicates high probability.

sampled points, which facilitates the construction of intrinsic links between testing
shape and training samples.

2. Related Work

Closely relevant to the central theme, we now briefly review previous approaches and
their related applications in two categories: feature extraction and random forest.

2.1. Feature Extraction

Feature detection/extraction on 3D shapes is a classical problem in geometric mod-
eling and computer graphics, which is also a fundamental problem for many down-
stream geometry processing tasks, such as shape correspondence [3, 4], shape registra-
tion [1, 2], shape retrieval [5, 6], etc. The main goal of feature detection is to locate
stable points or regions on a shape that carry discriminative significant /salient /semantic
information, which maybe repeatedly occur on other similar shapes. Since such signif-
icance/saliency /semantics on shape is very subjective in definition, many approaches
have been proposed with different application requirements. Researchers early tended
to focus on the extremities or protrusions of the 3D shape. And these regions are com-
monly characterized by some local geometric properties or functions defined over the
shape, including the local Gaussian curvature [4, 14], differences of Gaussians (DoG) at
multiple scales [15, 16], differences of diffusions (DoD) [17], ridge and valley lines [8],
prominent tip points [7], the Heat Kernel Signatures [18], etc. In addition, many re-
searchers also resorted to extracting feature points in some special embedding domains,
such as the multidimensional scaling (MDS) embedding [19] and the spectral embed-
ding of the Laplace-Beltrami Operator [20, 21]. Moreover, inspired by the success of 2D
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image feature detection, some techniques were also extended to handle 3D shapes. For
example, 3D-Harris method [22] was extended from 2D corner detection, and mesh-SIFT
method [23] was derived from the famous scale invariant feature transform (SIFT) algo-
rithm [24]. However, most of the aforementioned methods simply rely on the local/global
geometric properties or the structures of the shape. It means the significance/saliency is
fully defined by the shape itself while lacking of users’ intention, and thus is not suitable
for semantic tasks. Recently, Schelling points method [10] successfully integrated the
geometric properties with users’ intention to predict landmark points on new shapes.
Nevertheless, it heavily relies on curvature like local geometric properties, and their fea-
ture points are usually at the tips of protrusions or conspicuous saddles, which is hard
to be flexibly used for universal focal feature definition and extraction.

2.2. Random Forest

Random forest belongs to ensemble learning method, which constructs a multitude of
decision trees at training time and outputs the mode of the classes (classification) or mean
prediction (regression) of the individual trees. Breiman et al. [25] firstly introduced the
term “random forest” and further polarized its practical applications. In recent years, an
explosion of random forest based methods have been proposed in various machine learning
and computer vision applications, such as image classification [26], anatomy detection and
localization in CT slices [27], head pose estimation [28], object detection [29], semantic
segmentation of CT images [30], etc. Specially, Criminisi et al. [27] used regression forest
to predict the offsets between the target anatomy and sampled points in the tomography
scans for the locating of the anatomy’s position, and in [31], they used the same idea to
automatically detect landmarks in cephalometric X-Ray images. In this paper, we will
extend this strategy to user-specified focal feature detection on 3D shapes. However,
for 3D shape surfaces, it does not allow us to naively leverage the axis-aligned offsets to
locate a point due to the potential non-rigid transformations and spatial scales across
shapes. Meanwhile, such principle will become much more complicated than that used in
images, because few feature descriptors on 3D shapes can keep invariant under different
kinds of shape variations.

3. Method Overview

As shown in Fig. 1, the pipeline of our ensemble learning based method consists of
two main stages: one is for training, and the other is for testing.

In the training stage, a few shapes with focal feature points marked by users serve as
training shapes, of which, the involved steps are briefly summarized as follows:

e Random samples description. For each training shapes, we randomly sample
many points and compute shape descriptors, denoted as {p1, p2, ...}, to distinguish
them against other points by depicting their local neighborhood.

e Geodesic distance metric. For each sampled point, we compute its geodesic
distance to the focal feature point, denoted as {dy, dso, ...}. This distance is used to
vote the feature point’s location in the final step.
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Figure 2: Comparison of SI-HKS [12], Spin Images [32] and Unique Shape Context (USC) [33]. The
descriptors are all rearranged into 1D vectors. The top row shows the 3 kinds of descriptors for the red
point on the 3D shape, the middle row shows the descriptors when the shape is perturbed by Gaussian
noise, and the bottom row shows the descriptors when the shape has many small holes. It is obvious
that, SI-HKS is much more robust than the other two descriptors, both of which have large changes
under perturbations while SI-HKS keeps nearly-invariant.

e Random forest construction. With these descriptors and geodesic distances,
we construct a random forest, which acts as a regression function v that maps the
point descriptor to its geodesic distance to desired feature point as v : p; — d;.
Here the random forest consists of an ensemble of decision trees, whose leaf nodes
contain a few points sharing similar properties. It gives rise to meaningful geodesic
distance prediction for the point on new testing shape.

In the testing stage, we try to extract the focal feature point on a new shape, and
the involved steps are briefly outlined as follows:

e Random samples description. For the given testing shape, we randomly sample
many points and compute their descriptors {P;} by the same way as that in the
training stage.

e Geodesic distance prediction. With these new descriptors, we feed them to the
regression forest constructed in the training stage to predict their corresponding
geodesic distances {d;} to the desired feature point.

e Feature point localization. With these predicted geodesic distances, we can
estimate the probability of each location to be the desired feature point via a
consensus voting strategy, and finally locate the feature point on the new shape.

In summary, according to the whole technological processes of our method, there are
4 main challenges we should address in our framework: 1) how to intrinsically describe
the local properties of each random-sampled point, which will be detailed in Section 4.1;
2) how to efficiently and robustly calculate the geodesic distances (whose robustness has
direct influence on the subsequent steps), which will be detailed in Section 4.2; 3) how
to predict the geodesic distances to the unknown focal feature points based on the local
properties of the sampled points on testing shapes, which is the core of our method and
will be detailed in Section 4.3; 4) how to jointly estimate the location of desired feature
points on testing shape with the obtained distances, which will be detailed in Section 4.4.
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Figure 3: Illustration of the symmetry-aware local descriptors. (a) From left to right, 4 points on a human
shape; the descriptors of the points on symmetric arms; the descriptors of the points on symmetric legs.
The descriptors in the first row are original SI-HKS, and the ones in the bottom are our symmetry-aware
descriptors, wherein the SI-HKS representations are inverted for the points on the right side (colored in
blue, likewise, red corresponds to left side). (b) The estimated symmetric planes of different kinds of
shapes.

4. Automatic Extraction of Focal Feature

As aforementioned, the main purpose of our method is to define and extract focal
features on 3D shapes by bridging the random-sampled points’ local properties with their
geodesic distances to the desired feature points, and the testing shape’s focal feature to
be extracted is collectively voted by the predicted geodesic distances of many random-
sampled points. In this section, we will show the details of each step in our framework
addressing the problems mentioned in last section.

User-Specified Focal Feature Definition. The focal features in this paper are intuitively
and flexibly defined via simple labeling of users. Similar to the way used in [10], given a
few shapes belonging to the same category, user can mark the interested feature points
on each shape, which are expected to be automatically extracted on new shapes. For
example, as shown in the left most column of Fig. 1, if the user wants to extract all the
similar points on the belly of a series of teddy shapes, he should mark one exemplar point
on the belly of each training shape. These marked points serve as defined focal features,
which naturally convey the user-central interests/significance/saliency /semantics and can
be located anywhere on the shape. Thus, they are very useful for application-specific
tasks in shape understanding.

4.1. Symmetry-Aware Intrinsic Description for Random-sampled Points

Traditional point descriptors are usually defined as statistics of certain geometric
properties within a small neighborhood around the point, such as Spin Images [32] and
3D Shape Context [34, 33]. However, even though these descriptors are widely-used,
they still have drawbacks when facing perturbations as noise, as shown in Fig. 2. In this
paper, we resort to the scale-invariant heat kernel signature(SI-HKS) [12] to character
the random-sampled points, which is an enhanced version of HKS [18], resolving the
limitations of HKS by rewriting the signature in the Fourier domain. These built-in
properties, such as isometry-invariance, robust to topological changes and noise [35],
facilitate adaptability of our focal feature extraction on diverse shape perturbations.
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Symmetry Invariance. However, SI-HKS cannot well distinguish the symmetry, that
points on different symmetric parts of the shape will have the same descriptors. As
shown in Fig. 3(a), the descriptors of the points on the left and right arms/legs are very
similar to each other, which is also suffered by almost all the existing isometric feature
descriptors. Nevertheless, most of the shapes in real world are symmetric (especially
plane-symmetric), which cannot be avoided in practical applications. Therefore, in this
paper, we propose a simple but effective strategy to solve such plane-symmetric problems.
As shown in Fig. 3(b), we firstly employ the method in [36] to estimate the approximated
symmetry plane of each shape. Then, when computing the descriptor for each point, we
firstly judge the relative location of this point with respect to the symmetry plane. As
shown in the bottom row of Fig. 3(a), if this point lies on the side in which the plane’s
normal points to, we directly employ original SI-HKS as the descriptor. Otherwise, all the
components of the descriptor should be transformed in an inverse order. This strategy
makes the symmetric descriptors on different sides become very different from each other.

4.2. Analysis on 3D Shape Distance Metrics under Our Framework

In this paper we employ the Geodesics in Heat proposed by Crane et al. [13] to calcu-
late the geodesic distances. Comparing to existing distance metrics on 3D shapes, such
as Biharmonic Distance [38] and Commute-time Distance [39], it is better for approxima-
tion of true geodesic distances. As shown in Fig. 4, Geodesics in Heat is almost the same
with exact geodesics, while the other two distances’s isolines are uneven spaced. And
this uneven sapcing of ioslines means a small difference in distance may correspond to a
large space on the shape surface, which will result in a much more scattered and mussy
votes distribution in the final localization stage, as shown in the bottom row of Fig. 4. In
fact, since Geodesics in Heat is a type of approximated geodesic distances based on the
heat equation, it owns both advantages of geodesic and spectral distances, such as being
robust, insensitive to noise and partial holes, and invariant to isometric deformations.
Considering the geodesics may be heavily influenced by the size of the shape, to make
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Figure 5: Four regressed geodesic distances from random-sample points to the known desired feature
points in Fig. 1. The red line indicates the ground truth distances to the target points, and the blue line
indicates the predicted distances. Y axis stands for the normalized distances, and X axis stands for the
order of the sorted random-sampled points.

the distances invariant to the spatial scales, we need further to normalize the distance to
[0, 1] for each point.

4.8. Learning Based Distance Regressor Construction

Here, we leverage regression forest to define a function that maps the point descriptor
to its geodesic distance to desired focal feature. Regression forest is an ensemble of T
binary decision trees. In each decision tree, the descriptor set is iteratively split into
many small clusters containing similar descriptors, and the predictions are obtained via
regression within these clusters.

Forest Training. The training process constructs each regression tree and decides
how to reasonably split the incoming descriptors at each node. For each sample descriptor
p, starting at the root of each tree, it is sent down along the tree structure. The j-
th split node applies a binary test h(p,6;) to determine whether the current sample
point should be assigned to the left or right child node. Randomness is embedded via
randomly choosing parameter 6; at each node to maximize the information gain G [40],
which encourages decreasing the uncertainty of the prediction in each node. And this will
result in many small clusters of descriptors at the leaf nodes, wherein they are similar to
each other and have similar corresponding geodesic distances.

Forest Testing. During testing, a new sample point’s descriptor q traverses the tree
until it reaches to a leaf, and such testing descriptor is likely to end up in a leaf that
is closely related to the most similar training descriptors. Thus, it is reasonable to use
the statistics gathered in that leaf to predict the distance associated with the testing
descriptor.

4.4. Joint Voting Based Focal Feature Localization

In the next, we use these predicted distances to locate the feature point on the new
shape. Locating an object is a common problem in our daily life, and the Global Position-
ing System (GPS) is proposed to solve this problem. A GPS receiver uses trilateration to
determine its position on the surface of the earth by timing signals from three satellites in
the Global Positioning System. As shown in Fig. 6(a), three satellites locate at vi,va, vs.
From each satellite, we can draw circles with radius 71, 7o, r3 respectively (the radius is
measured by the time of signal transmission), and the receiver lies in the intersecting
region of these three circles. This is similar to our purpose, here our random-sampled
points correspond to the satellites and geodesic distances correspond to the timings of
signals.
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Figure 6: Illustration of our joint voting strategy for locating the focal feature points. (a) An example
of trilateration in 2D. (b) Our voting strategy on a 3D shape. (c) The voting result. (d) The average
votes on each vertex, equal to its probability to be a feature point, red corresponds to high probability
and blue corresponds to low probability.

In the positioning system, if the timings of signals are precise enough, commonly 3
satellites are able to locate the receiver. However, in our case, the geodesic distances
predicted by the forest are not accurate. As shown in Fig. 5, most predicted distances
are not exactly equal to the ground-truth, whose values are oscillating around the ground
truth, it means the predicted positions may fall into a neighborhood of the target feature
point. Thus, we design a joint voting strategy to determine the location of the feature
points, which is similar to that in [41], where they use many pairs of points with sim-
ilar descriptors to vote their Voronoi boundary as partial symmetry axis. As shown in
Fig. 6(b), for each randomly sampled point, together with its corresponding predicted
geodesic distance, we analogously compute a geodesic circle with the sample point as
center as that in the GPS example. On the circle, all points’ geodesic distance to the
center are the same, equaling to the predicted geodesic distance. And then, the sampled
point will give one vote to the two endpoints of the edges that this geodesic circle goes
through (colored in orange). Besides, we weight the vote of this sampled point according
to its geodesic distance as w = e #*%*? because we think points closer to feature points
should have more influences on the final localization. Here p controls the influence range.
Finally, we count the votes on each points, as shown in Fig. 6(c), the average votes in
a small neighborhood can be described as the probability to be the feature point. As
shown in Fig. 6(d), the desired focal feature point is the point with the highest average
votes. Since the voting process of each sampled point is independent on each other, it
can be implemented efficiently in CUDA.

5. Experimental Results and Evaluations

We have implemented our automatic focal feature extraction framework using C/C++
and CUDA on a PC with Intel Core i7-3370 CPU @ 3.40 GHz and Nvidia GeForce
GTX 780 GPU. To verify the effectiveness and versatility, we have designed different
kinds of experiments, including the focal feature extraction over isometric shapes and
near-isometric shapes together with their comparisons to Schelling Points, verification
tests on the insensitivities to noise/partial holes and spatial scales, and other exemplar
downstream applications. And the time statistics of all experiments are detailed in
Table 1, the errors are shown in Table 2.
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Table 1: Performance statistics (in seconds)

Training Testing

Model #V #S STy trq trg try STe ted teg ter tey
Human | 12.5K | 10 | 0.5 | 9.56 | 8.31 66.12 | 0.1 | 3.82 | 3.09 | 0.03 | 1.33
Lion 5K 10 1 0.5 | 3.70 | 0.85 13.45 | 0.1 | 1.51 | 0.34 | 0.03 | 0.48
Teddy | 12.5K | 10 | 0.5 | 9.49 | 10.63 | 68.10 | 0.1 | 3.81 | 4.34 | 0.03 | 1.19
Ant 7.5K 10 | 0.5 | 6.42 | 3.32 26.63 | 0.1 | 2.52 | 1.27 | 0.02 | 0.74
Hand 87K |8 0.6 | 6.71 | 3.69 | 21.59 | 0.1 | 2.64 | 1.49 | 0.02 | 0.86

From left to right, #V: number of shape vertices, #S: number of shapes, sr,.: random-
sampling rate on each training shape, t,.4: time cost for the descriptors’ computation on
each training shape, t,,: time cost for geodesics computation on each training shape, ¢,.,.:
time cost for forest training, sr.: random-sampling rate on testing shape, t.4: time cost
for descriptors computation on testing shape, t.,: time cost for geodesics computation
on testing shape, t.,: time cost for forest testing, t.,: time cost for joint voting.

Table 2: Errors

Model 7 ®Err0r1 2 ®Error2 #F3 @Error3 Average
Human | 5 246 | 6 257 | 2 214 | 2.46
Lion |6 285 |1 300 |1 116 | 3.04
Teddy | 4 379 |2 167 |2 121 | 412
Ant 10 | 401 |0 N/A |4 192 | 427
Hand |12 | 3.24 | 8 182 |0 N/A | 3.87

From left to right, #F1: number of points marked with (), Errorl: error of points marked
with @), #F2: number of points marked with @), Error2: error of points marked with 2),
#F3: number of points marked with @), Error3: error of points marked with @), average
error of all feature points.

Parameters Setting. In all our experiments, the parameters involved in our method
keep fixed unless otherwise stated. The HKS is computed with the same way as that
in [12], all the shapes are normalized to approximately have the same scale as the Shape-
Google database used in Schelling Points. We use the cotangent weight approximation
for the Laplace-Beltrami operator, and set k& = 200 as the number of the selected lead-
ing eigenfunctions. The time ¢ is sampled logarithmically with base 2, whose exponent
ranges from 1 to 25 with increments of 0.1. To obtain the SI-HKS, we use the first
20 lowest discrete frequencies, and then extend the dimension to 96 using cubic spline
interpolation. The symmetric plane and geodesics are computed using the source code
provided by the authors with default parameter settings. We implement the random
forest regressor based on the Sherwood Library provided in [40], 30 decision trees are
used for each regression, the tree construction stops when the leaf node contains less than
10 descriptors or the information gain is no longer increased, and only 5 components of

10
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Figure 7: Accuracy evaluations under different sampling rates on each training shape (a) and different
numbers of training shapes (b), and the change of the votes’ distribution under different sampling rates
on testing shape (c). In (a), (b) and (c), the quantitative evaluations of 3 feature points located at
chest, stomach and head (see Fig. 8) are shown on the top, which are colored in red, green and blue
respectively. And the average time costs are correspondingly shown on the bottom.

each descriptor are randomly sampled during the split node optimization. In the final
voting stage, the weight factor is set to be y = 5, and the neighborhood of each point is
defined by the points whose geodesic distances are less than d = 0.02.

Random sampling related analysis. Fig. 7(a) and Fig. 7(b) evaluate the accuracy
and computation time cost of the regression when using different numbers of training
shapes and different sampling rates on each training shape. The accuracy is computed
by the mean square error of the predicted geodesic distances for each feature point.
From Fig. 7(a), we can see that, the more points are sampled, the less error is produced.
However, there is no significant decline in error when the sampling rate is larger than
50%, and the training time is increasing exponentially with the growth of sampling rate.
Therefore, in all of our experiments, the sampling rate on training shape is setting around
50%, which may vary with the number of training shapes. Fig. 7(b) indicates the fact
that, the more shapes used for training, the more accurate the regression is. Because
more training shapes can cover more variances on shapes. When testing on a new shape,
there is higher probability to find a more similar shape in the database, that is, the
testing descriptor will end at a leaf node with more similar training descriptors, which
gives rise to more accurate regression. The two figures on the bottom of (a) and (b) are
both the plots of the training time with respect to sample numbers. It should be noted
that, an exact complexity analysis on random forest training is nontrivial. However,
we can obtain an approximated time complexity. Actually, the training process is to
build a random forest with a few decision trees. Assume we have n training samples,
ideally each tree’s depth is log(n). On each level of the tree, for all n samples, it should
determine which child the sample will go to. Thus, the approximated time complexity
of building a random forest is O(nlog(n)), and the plots also reveal the same complexity
trend. Moreover, Fig. 7(c) evaluate the change of the normalized votes’ distribution and
the time cost of voting process when using different sampling rates on testing shape.
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Figure 8: Two examples of the automatic focal feature extraction on isometric shapes. The shapes on
the left are training shapes with user-specified focal features, indicated by red sphere, and the shapes
on the right are the automatic extraction results of our method. The space-varying colors represent the
probability to be the desired focal feature. Here (D indicates salient points at shape extremities or tips,
@ indicates non-salient but semantically-meaningful points at flat regions, and ) indicates the points
locating somewhere in between the above two kinds of regions.

The change is computed by the norm of the difference of two votes’ distributions. We
can see from the figure that, when the sampling rate is larger than 10%, the difference
of votes’ distributions under two successive rates is very close to 0, that means the
votes’ distribution are nearly unchanged when sampling rate is larger than 10%. The
voting time only very slightly increases for larger sampling rate because of our parallel
implementation. However, we should also consider the computation efficiency of SI-HKS
and geodesic distances, so we only sample 10% points on the testing shape in all our
experiments, which is enough to accurately extract the focal feature points. Besides,
since the location of our focal feature is independent on the definition of feature type
but depending on many other random-sampled points over the shape, the choices (like
sampling rate) are universal for different shapes and different types of feature points, so
long as the shapes belong to the same shape category.

Invariance to isometric and near-isometric shapes. As mentioned above, SI-
HKS and geodesics are both invariant under isometric deformations. Fig. 8 shows two
examples of our automatic focal feature extraction on isometric shapes. From the results,
we can see that, our method can precisely predict the focal feature points on a new shape
that undergoes isometric deformations. Fig. 9 shows three examples of our automatic
focal feature extraction on near-isometric shapes. Even though these shapes seems similar
to each other, there still exist small non-isometric deformations among them. However,
our method can still produce satisfactory feature extraction results on these shapes.
Comparing to the Schelling Points [10], our method requires much less manually-labeled
points on each training shape than those in [10]. For example, our method only need 8
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Figure 9: Three examples of automatic focal feature extraction on near-isometric shapes with comparison
to Schelling Points [10]. The results of our method are listed on the left side marked by a red rectangle,
and the results of Schelling Points are listed in the right side. The results of Shelling Points are obtained
from their project website, and our results use a similar color style as they do for visual inspection. The
intensity of the red color indicates the probability to be a feature point. Here (D) indicates salient points
at shape extremities or tips, @ indicates non-salient but semantically-meaningful points at flat regions,
and @ indicates the points locating somewhere in between the above two kinds of regions.

user labeled points to exact 8 focal feature points on the teddy shape (one labeled point
for one feature point). In sharp contrast, as shown in the left and right most columns of
Fig 9, to produce result with similar number of feature points, Schelling Points method
requires several tens or even hundreds of manually-labeled points. Besides, the method
in [10] highly relies on curvature-like local properties, and their feature points are usually
at the tips of protrusions or conspicuous saddles. In sharp contrast, our method leverages
random forest to predict the geodesic distances from many random-sampled points to the
desired focal points, and these feature points are independent on the geometric properties
of themselves, but related to the properties of other sampled points. Thus, the locations
of our feature points can be arbitrary. As shown in the 3rd row of Fig 9, our method
successfully extracts the points at 2), however, [10]] ignores these points, even though
there are points specified at this region in their training shapes (see the fingers in the
right most column). Therefore, our method is more flexible for defining different kinds
of focal features. It should be noted that, when we visualize the voting result of multiple
feature points, we have squared the votes on each point and set the normalized votes
less than 0.2 to be 0, and it makes the vote bumps smaller and not be interfered by each
other for clearer illustration.

Robustness to noise, holes and scales. Fig. 10 shows the experiment results
over the shapes with noise, holes and different spatial scales. The noise is produced
by mesh perturbation using a Gaussian with 0.3 of the mesh’s mean edge length as
mean value. The holes are produced by randomly removing a few points and their
adjacent triangles, and the scales are indicate by the size of each shape visualized in
Fig. 10. From the extraction results, we can observe that, even with excessive noise,
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Figure 10: The automatic feature extraction results of our method over different shape groups with
noise, holes and spatial scales. (a) Extraction results using SI-HKS, Spin Images and Unique Shape
Context as local point descriptors in each column. (b) Extraction results of our method under different
scales. The isolines on each shape indicate the geodesic distance distribution with certain surface points
as anchors.

many holes and different spatial scales, our approach can still precisely recognize the
focal feature points. However, noise and holes indeed may influence the SI-HKS, and
consequently reduce the precision of geodesic distances prediction, of which, the only
difference between these results is that, the resulted votes’ distribution on perturbed
shape is more scattered than that on the original shape (see the second column of Fig. 10
(a)). Because the affected predicted distances will be a little longer or shorter than the
original ones. Thus, it means the predicted location will lie inside a larger neighborhood
around the desired focal feature point. However, benefiting from our random sampling
scheme and ensemble learning enabled random forest regressor, in addition that our
geodesic distances distribution are hardly changed under noise and holes, our method can
still correctly locate the focal feature point even with a more scattered votes’ distribution,
which exactly proves the robustness of our method.

Influence of different descriptors and distance metrics. Fig. 10 (a) shows
the feature extraction results of our method when respectively using SI-HKS [12], Spin
Images [32] and Unique Shape Context (USC) [33] as local point descriptors. As we
know, both Spin Images and Shape Context are sensitive to non-rigid deformations.
When using them to compute descriptors in our framework, we only consider the points
in certain neighborhood, that is, the descriptors are locally constructed. We can see that,
the results based on SI-HKS is much better than those using the other two descriptors for
all the three shape groups. On one hand, even though the Spin Image and Shape Context
are locally constructed, many descriptors may still be influenced by the deformations,
wherein some bad predictions would make the voting sources more scattered. On the
other hand, these two descriptors are relatively sensitive to noise and holes, while SI-HKS
is both nearly-invariant and robust under isometric deformations and noise or holes. As
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Figure 11: The focal feature extraction results over different-resolution shapes. The shapes are produced
by re-sampling the shape in Fig. 8 with 12.5K, 62.5K, 125K, 500K vertices. The detailed triangulation
of the region marked by a red rectangle on each shape is shown in the upper right.

shown in Fig. 4, the result based on Geodesics-in-Heat is nearly the same with that
based on Exact geodesics (which serves as ground truth). In contrast, the results based
on other distance metrics are much more scattered because of their produced uneven
distance iso-lines. Of which, a small difference in distance may give rise to large space
on the surface, especially for the points that are far from the focal feature point, and
thus it will make the final voting sources fall in a much more large region even with
definitely-accurate distance prediction.

Robustness to shape resolution. Our focal feature extraction is also robust when
the testing shape has different resolutions. We re-sampled the human shape in Fig. 8
with 12.5K, 62.5K, 125K, 500K vertices. As we know, 10%x12.5K=1.25K points can
cover the entirely human surface and produce precise voting result (in Fig. 8), so we
randomly sample 1.25K points on all these 4 shapes and compute their descriptors, and
then invoke the forest constructed for Fig. 8 to predict distances, the final voting results
are shown in Fig. 11. We can see that, the focal feature extraction results on different-
resolution shapes are almost the same with each other, wherein the feature points are all
successfully extracted despite the point density on each shape. Because of the simplicity
and effectiveness of our method, we are able to deal with 3D shape with up to 500K
points within acceptable time and memory storage.

Applications of our method. Fig. 12 shows an example of semantic segmentation
based on our feature extraction. Firstly, we extract 8 feature points just the same as
those in Fig 8, and then we conduct k-means clustering for each points on the shape by
using the 8 feature points as the initial center of each cluster. Although the clustering
only considers the coordinates and the SI-HKS properties of each point, it gives rise
to high quality semantic segmentation. If we assign the feature points with different
semantic labels during training, such as head, legs and tail, the segmented region on
the testing shapes can share the same label with the corresponding feature point in
this region. Besides, as shown in Fig. 13, our extracted feature points naturally have
1-to-1 correspondence among different shapes, and thus can be used to produce coarse
correspondences among shapes, which can also serve as the input to the coarse-to-fine
correspondence method [14] to extended dense correspondences. Moreover, as shown in
Fig. 13, our extracted feature points are also consistent across different shapes. Therefore,

15



395

400

405

410

Tail Front body Back body Right back leg Left back leg Right front leg Left front leg Head
-

| —o?

Figure 12: Semantic segmentation based on our focal feature extraction. The first and third segmenta-
tions, marked with red rectangles, are the results using our feature points as initial centers for k-means
clustering. And the second and fourth ones are the results using random initial centers. The color indi-
cates the semantic labels of each segments, which is same with the label of the feature point. However,
randomly initialized clustering centers give rise to bad segmentations without semantic meaning.

Coarse correspondence Skeleton extraction

Figure 13: Coarse correspondence and skeleton extraction applications based on our automatic focal
feature extraction method.

if we define a coarse skeleton on the training shape using such feature points, we can
also directly extract a similar skeleton on the testing shapes, which can be used as
the initialization of strictly skeleton extraction algorithm or directly used for simple
animation generation.

Performance and accuracy analysis. Table 1 shows the performance statistics
of all our experiments. We can see that, given a new shape, it only takes a few seconds
to predict the location of the desired focal feature points, which makes our method very
suitable for practice use. The errors are shown in Table 2. To better illustrate the
capacity of our method, we divide the feature points into 3 kinds. The first kind is the
feature point that lies on the shape extremities or tips (salient points, marked with @
in each figure). The second kind is the point that lies on a large smoothed or flat region
(non-salient but semantically-meaningful points, marked with @) in each figure). The
third kind is the point that lies somewhere in between the above two regions (marked
with @) in each figure). Each error is measured by the Euclidian distance between the
predicted feature point and its desired location divided by the average mean edge length
of the testing shape. We can see that the predicted feature points always lie in the
3-ring or 4-ring neighborhood of the ground truth points. And the errors of points at
different regions have no obvious distinctions, because the final location of our focal
feature is jointly decided by many other sampled points rather than itself, thus the error
is irrelevant to where the desired point lies. Specially, of which, some errors are caused
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Figure 14: The extraction results for the user-specified feature point on stomach in Figure 8. Here the
testing shapes are respectively perturbed as: missing head, missing arms, and non-isometric deforma-
tions. Our method works for the first case but fails for the last two ones.

by the users’ inaccuracy selection, because the strict correspondence can not be well
guaranteed among the feature points on training shapes.

6. Conclusion

In this paper we have detailed a novel generic model to flexibly definite and automat-
ically extract psychology involved focal features on 3D mesh surface. The key idea is to
bridge the random-sampled local properties of the global shape with the location of the
desired focal features via ensemble learning. Our feature extraction methodology and its
system framework involve several novel technical components, including: scale-invariant
and symmetry-sensitive random samples’ representation, robust measurement of relative
displacement on 3D shape, well-designed random forest regressor to map the random
samples’ descriptors to the corresponding geodesic distances, and a joint voting strategy
for locating the focal feature points. Moreover, we have also designed diverse types of
experiments over different kinds of shapes, which all demonstrate the advantages and
great potentials of our method.

Limitations. Despite the attractive methodology properties of our method, it still
has some limitations. The first one is that, the performance is still inefficient for interac-
tive applications. Even though we have implemented the voting process in parallel based
on GPU, the computations of geodesics and descriptors are still conducted on CPU, and
they are a little expensive (especially when the shape has massive vertices). Moreover,
as shown in Figure 14, when we remove the head of the human model in Figure 8, our
method still works and successfully extracts the point on the stomach. Because many
points are distant from this hole, their SI-HKS are not affected, and the geodesic dis-
tance distribution is not changed (the longest distance is still from left hand to right leg
or right hand to left leg). However, if we remove the arms, it will change the geodesic
distance distribution, and thus our method fails in this case. Furthermore, our method
is mainly based upon an assumption that, the geodesic distances between points with
similar properties should be similar across shapes. Meanwhile, we use geodesic distances
as metric to locate target feature point, and use SI-HKS as point description (which is
only invariant under isometry). Thus, currently our method can only accommodate the
shapes with isometric or near-isometric deformations. As shown in the last sub-figure of
Figure 14, when testing a man with non-isometric deformation, our method fails.
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Future works. In our upcoming work, we will endeavor our efforts to improve the
efficiency by also computing descriptors and geodesic distances on GPU in a parallel way,
so that our method can be used for interactive applications. Moreover, since our technical
foci is to automatically extract user-specified feature points on the training shapes, it
conceptually has some relations with the techniques like [42, 43] in terms of constructing
maps between shapes. Maybe we can extend our idea to conduct regional maps across
shapes. A simple way to achieve this is to encode the region with a center point and
a radius, so that the problem can be casted to extract the center. Besides, to make
our method be applicable for shapes with non-isometric deformation, we should further
develop a flexible descriptor that only depicts the relative locations of points, so that
the invariance of descriptors can be achieved from the nature of similar shapes’ intrinsic
structures. Furthermore, if region based and non-isometric detection are achieved, we
will also exploit the practical application potentials of our method in medical fields, such
as automatic detection of different parts of a human body (head, hand and foot), or
identification of the i-th column of a human spine, which are significant for computer-aid
diagnosis, etc.
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