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a b s t r a c t

Object tracking in video is vital for security surveillance, pattern and motion recognition, traffic control,
augmented reality, human-computer interaction, etc. Despite the rapid growth of various techniques in
recent years, certain technical challenges still exist in terms of efficiency, accuracy, and robustness. To
ameliorate, this paper suggests a novel video object tracking approach by first collecting both local and
global information from consecutive video observations (i.e., frames) and then exploring the low-rank
coherency in the accompanying feature space of targeting objects, which enables real-time and robust
object tracking in video while combating certain technical difficulties due to occlusion, deformation,
transient illumination, rapid movement, and scale change. Our central idea is to integrate local space-
distinctive candidate features and global time-continuous target coherency into a smart low-rank
analysis model. For local candidate representation, we propose a simple yet efficient patch-level feature
descriptor based on compressive sensing, which is directly derived from the frame color distribution
available from video frames. Building upon this powerful local representation, we further organize all the
candidates in the frame cache and the yet-to-be-processed new frame to form a space-time feature set,
we then employ the low-rank decomposition to enable global coherency voting. Since the low-rank
coherency implies the intrinsic co-occurring parts of different target observations, robust tracking can be
achieved by employing this principle as the matching criterion even for objects with drastically varying
appearance. Furthermore, we progressively incorporate the prior-frames' tracking results into the low-
rank approximation in the current frame, which can greatly reduce the most time-consuming
computation and guarantee real-time performance. We conduct extensive experiments on several
well-known yet challenging benchmarks, and make comprehensive and quantitative evaluations with
state-of-the-art methods. All the results demonstrate the superiority of our method in terms of accuracy,
efficiency, robustness, and versatility.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Visual tracking is still one of the most active research areas in
computer vision and pattern recognition, which is extremely
valuable in many applications, including surveillance [1], traffic
control [2], motion recognition [3], etc. Although visual tracking
research has gained great momentum and has achieved significant
successes in recent years, it still remains challenging when the
goal is to robustly track the target object with high-varying inter-
frame appearance and occasional/frequent occlusion in real-time
[4]. Generally speaking, current research methods of visual track-
ing can be roughly categorized into two groups: discriminative
tracking [5–9] and generative tracking [10–14].

Discriminative tracking customarily employs binary classification
to separate the target object from its background, wherein numerous
training samples from the tracking results of previous frames are
indispensable to the individual classifiers of current observation [6].
However, in order to achieve accurate and occlusion-invariant
tracking, most of the discriminative methods [15,16] avoid updating
their classifiers that are varying far away from the initial setting [17],
as a result, drift occurs unavoidably when the target object under-
goes heavy scale or rapid appearance change.

Unlike discriminative tracking methods, generative tracking
methods usually resort to certain appearance models to depict the
object-specific observation, and take the candidate having the best
compatibility with the appearance model as the tracked object
[14,18]. In theory, the generative tracking methods can accommodate
any complex appearance variation at the expense of extra computa-
tional burden by continuing to enhance the description capacity for
the partial appearance model. Hence, for appearance model with
limited capacity, the target's representation together with its
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similarity-matching criteria are the vital issues of generative tracking.
Inspired by this rationale, generative methods commonly adopt mid-
level patch-based solution (e.g., PCA or histogram) to locally repre-
sent the target object, and treat the entire reconstruction error [11] or
partial observation [18] of the appearance model as matching criteria,
which in some sense can make effective tradeoff between versatility
enhancement and drift suppression.

In sharp contrast, we explore the compressive sensing and low-
rank analysis theory to facilitate the video object tracking in feature
space. It should be noted that [8] suggests to represent the tracking
object with Haar-like feature formulation based on compressive
sensing. However, the Haar-like feature formulation imposes too
much emphasis on the global characteristics distribution to handle
the occlusion, which further limits its application scope for gen-
erative tracking. To respect object's local characteristics, we propose
to employ mid-level patch-based integral histogram to represent
the candidate target, which can be seen as a relaxed local version of
[8] at the expense of possibly compromising discriminative power.
Moreover, based on this novel representation, we have found that
the principal characteristics distribution of the target object will not
change much within the consecutive frames, even though the
appearance may have changed drastically. Therefore, it provides
enough rationale for us to leverage such coherency for robust object
tracking by resorting to low-rank analysis, and moreover, the low-
rank coherency extracted from the tracked instance of our appear-
ance model in previous frames will serve as the matching criteria of
current-frame candidate targets. Meanwhile, since the principal
low-rank information are redundant, it can be synchronously used
to govern the dynamic update of the appearance model with
limited capacity (e.g., 100 in our experiments). Benefiting from
the elegant integration of space-distinctive candidate features and
time-continuous coherency, our method can accommodate high-
varying appearance and occasional/frequent occlusion. In particular,
the salient contributions of our work documented in this paper can
be summarized as follows:

� We propose a versatile, real-time, and robust video object
tracking method, which can neatly accommodate the object's
varying appearances caused by local occlusion, large deformation,
transient illumination, rapid movement, drastic scale change, etc.

� We define an efficient yet discriminative patch-based appear-
ance model based on compressive sensing, which can compactly
represent the intrinsic characteristics distribution information of
the local object parts in a very low dimensional feature space.

� We propose a novel low-rank decomposition based cross-frame
coherency analysis model to robustly capture video object that may
undergo large appearance variation, and such method can also be
used to govern the dynamic update of our appearance model.

� We formulate a series of sparsity-measuring based criteria to
accelerate tracking performance, assist appearance model
update, and handle occlusion effectively.

2. Related work

Based upon the feature representation and the matching criteria,
we further classify the large variety of discriminative and generative
tracking methods into global-representation based tracking meth-
ods, local-representation based tracking methods, and hybrid
tracking methods. Now we briefly review them as follows.

Global-representation based tracking methods: Most of the global-
representation based tracking methods usually resort to certain
types of color or intensity based histogram for feature representa-
tion. Since the histogram implies discriminative color distribution
to distinguish the target object from its surroundings, the tracking
problem may be converted to a binary classification problem by

globally making a decision for boundary [19–21]. Meanwhile, global
tracking criteria derived from all previous frames are oftentimes
used to facilitate current-frame tracking [22,23]. Thus, such meth-
ods give rise to high tracking accuracy and low computational cost
[5,7]. Despite some special advantages of the global-representation
based tracking methods, several common problems remain to be
solved. First, because global representation is sensitive to occlusion,
such methods tend to mistakenly consider occlusion as reasonable
appearance variation when updating their basic classifiers, which
may easily result in tracking drift [6,16]. Second, because the global
feature representation is discontinuous in nature, learning based
global tracking solutions (or matching criteria) are usually hard to
accommodate fast appearance change [24].

Local-representation based tracking methods: Local-representation
based tracking methods commonly decompose the target object into
many discriminative patches/regions, and employ the patch-to-patch
or region-to-region matching strategy to conduct object tracking. For
example, Adam et al. [13] represented the target with multiple
regular image fragments, which locally describe its different compo-
nents. Wang et al. [10] represented the target object with the
irregular super-pixels based SLIC method [25], and employed cluster-
ing based matching criteria together with the special voting or
integrating strategy [26] to improve the robustness of object tracking.
Although local-representation based tracking methods canwell solve
the occlusion problem [27], the absence of global spatial-distribution
information may weaken the distinguishability of object representa-
tion. Therefore, it may at times lead to tracking drift, and the patch-
wise matching operation may further deteriorate the tracking result.
To combat such limitations, Erdem et al. [12] proposed to represent
the target object with higher-level object regions, wherein they
adopted the grid-based region representation and searched the
target object in a region-to-region manner. Most recently, He et al.
[28] used a locally sensitive histogram based region representation to
combat the illumination variation, and obtained rather amazing
results. Meanwhile, Yao et al. [9] leveraged latent variables based
online learning to facilitate the region-weighted representation of
target objects, which achieves more robust tracking results. Although
local-representation based tracking methods demonstrate their spe-
cial advantages in handling occlusion and fast partial appearance,
however, these methods are still hard to accommodate drastic
appearance variation, and the inevitable computational complexity
involved in such methods heavily limits their real-time tracking
capability (it may be noted that in such cases, FPS{15).

Sparse-representation based tracking methods: Based on the sparse
representation (SR) theory, Liu et al. [11] employed the image patches
based local representation and global reconstruction error based
matching criteria to locate the target object (i.e., local representation
with global tracking), wherein the basis functions used for reconstruc-
tion are learned from previous-frames' tracking results. Similarly,
Zhong et al. [29] introduced a sparsity-based generative model by
alternatively formulating sparsity based local feature, and further
integrated the global spatial information of each individual patch into
an occlusion handing scheme. Xu at el. [14] proposed a sparse coding
pool based hybrid representation and taken into account multiple
templates during target matching, which achieves improved tracking
results. And then, they [18] further proposed an occlusion-handling
method by coupling additional noise templates (which is local) with a
batch of PCA based individual phototypes (which is global) [15]. Zhang
et al. [30] also obtained comparable tracking performance by introdu-
cing the low-rank constraint into the formulation of SR basis functions.
Recently, Zhang et al. [31] concentrated on localized tracking solution,
wherein their SR basis functions are learned within multiple observa-
tion constraints. Meanwhile, following the diametrically opposed
rationality (global representation with local tracking) of sparse repre-
sentation, Zhang et al. proposed compressive sensing based global
tracking methods [8] via globally representing the target object and
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dynamically formulating a subgroup of weak classifiers from a
classifier pool, which enables discriminative representation, low
computational cost, and fast appearance variation. However, in spite
of the limited success and popularity of hybrid tracking methods, they
are easy to become unstable and cause drift when occlusion and
drastic appearance variation occur simultaneously, because such
methods are hard to distinguish the occlusion from the appearance
variation in sparse feature space. And we will conduct more compre-
hensive evaluation and discussion on this subject in Section 5.3.

Brief summary: In general, according to the recent comprehensive
evaluations performed by Wu et al. [32] and our own experiences,
local-representation based tracking methods are more efficient and
flexible than the global-representation based ones when handling
occlusion. Nevertheless, local-representation based methods are far
more likely to cause tracking drift, because the feature space spanned
by local representations has less discriminative power than that of
global-representation based ones. Strongly inspired by the afore-
mentioned methods, we propose to discriminatively formulate the
partial appearance model by collecting both local and global infor-
mation to form a localized compressive sensing representation, and
track the target object by globally exploring the low-rank coherency
of the partial appearance model. And the overview of our method is
described in the following section.

3. Method overview

As shown in Fig. 1, our method is mainly comprised of two com-
ponents: compressive sensing based appearance model (Fig. 1(b)),
and low-rank decomposition based coherency analysis (Fig. 1(c),
(f) and (h)).

Comparing with traditional representation methods, our appe-
arance model has several specific advantages: (1) it enables fast
visual tracking in an intrinsic low-dimensional feature space;

(2) benefiting from the distance-preserving property, it provides
sufficient discriminative power for accurate tracking; (3) it con-
centrates on the object's local structure representation, which
enables robust visual tracking; and (4) it enforces constraints that
all the candidates should have strong linear correlation, which
naturally gives rise to the subsequent low-rank analysis during
frame-wise object tracking and appearance model updating. Fig. 1
(a) shows the patch-based candidate targets randomly sampled
from the t-th video frame, which are represented by our proposed
appearance model and will be further organized in the format of
row vector to form a Patch Matrix. Then, we employ compressive
sensing based feature representation to transfer the Patch Matrix
into low-dimensional Feature Matrix (Fig. 1(b)). Meanwhile, we
conduct low-rank analysis (Fig. 1(c)) over the appearance model to
obtain the partial appearance model (Fig. 1(f) and (g), and see the
detailed discussion in Section 5.4), which will serve as a controller
to govern the object tracking (Fig. 1(d)).

Similar to the generic matching problem, the tracking proce-
dure aims to seek the target object with minimal feature distance
to the appearance model. Different from the traditional l1-norm
optimization based affinity matrix [33], which measures the
differences by element-independently performing unweighed
peer-to-peer comparison, our low-rank analysis regards the
matching procedure as a procedure of globally seeking the
common occurrences [34,35] via weighted region-to-region clus-
tering. The low-rank analysis in Fig. 1(f) aims to globally select a
subgroup of feature vectors that are mostly correlated to the
previous-frame tracking results. With the obtained partial appear-
ance model (Fig. 1(g)), we further conduct common-parts-biased
low-rank analysis to locate the target object (Fig. 1(c), and see the
detailed discussion in Section 5.1), and finally we conduct
unbiased low-rank analysis to globally determine which elements
in the appearance model should be dynamically updated (Fig. 1(h)
(i), and see the detailed discussion in Section 5.5).

Fig. 1. Architecture of our tracking framework.
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Towards the goal of better assisting the readers to fully under-
stand our mathematical formulations in the following sections,
Table (1) summarizes key symbols used in the following mathe-
matical derivations, wherein normal-case letters denote scalars,
bold lower-case letters denote finite dimensional vectors, and bold
upper-case letters denote matrices.

4. Appearance model and low-rank approximation

4.1. Appearance model based on localized compressive sensing

For real-time visual tracking, one of its typical bottlenecks is the
high computational cost of target representation. Despite the simpli-
city of 2D intensity distribution based object representation, it usually
adds great burden on the subsequent tracking procedure due to the
involved high dimensional feature space (103–105). However, as
shown in Fig. 2(a), from the perspective of compressive sensing, we
can project the high dimensional feature to a stable low dimensional
space via Eq. (1), wherein the embedded sparse representation can
well preserve the distance distribution of the original feature space:

V¼ RX; ð1Þ

where XARm, VARn, and n{m. Meanwhile, the original high-
dimensional X can also be recovered from the sparse signal V via
solving the optimization in Eq. (2) as long as the measurement matrix
R satisfies the Johnson–Lindenstrauss lemma [36]:

min
X

‖X‖1 s:t: ‖V�RX‖2rε; ð2Þ

where ε is the predefined error threshold. A typical choice of R is the
random Gaussian matrix ðRARd�m;Ri;j �N ð0;1ÞÞ [37,16,8].

To deal with the scale problem properly, each non-zero entity
in R should be convolved with a rectangle filter (Eq. (3)), and the
obtained representation of X naturally has Haar-like formulation.

hi;jðx; yÞ ¼
1; 1rxr i; 1ryr j

0 otherwise

�
: ð3Þ

Although the principal information distribution of X can be well
preserved in V, the large variation of V caused by occlusion will
inevitably reduce the tracking accuracy. For example, Fig. 2(a) shows
that almost 30% elements in V will be influenced even if only 11%
(which is about 1/9) elements of X are occluded (denoted by yellow
color). As shown in Fig. 2(b), increasing non-zero entities (d) in R
indeed contributes to the information preservation of X, however,
the variation percentage of the elements in V will also increase
sharply at the same time. In addition, the non-zero entities in R may

also perturb the cross correlations of individual samples due to the
convolution in Eq. (3), which will further deteriorate the situation.

To alleviate the above-documented problem, we propose to relax
Eq. (1) by introducing two constraints to localize the representation at
the expense of possibly losing little information. First, we impose
restrictions on the measurement matrix with ‖Ri‖0 ¼ 1; iAf1;2;…;ng,
where ‖ � ‖0 indicates the l0-norm. Then, we redefine the rectangular
filter with the constant convolution domain as

hi;jðx; yÞ ¼
1; irxr ðiþγWÞ; jryr ðjþγHÞ
0 otherwise

�
: ð4Þ

Here W and H denote the rectangle width and height respectively,
and γ is set to be 1/7, which will be further discussed in Section 6.1
in detail. Thus, the feature correlation is more neighbor-dependent
while the Haar-like representation remains globally random. From
the perspective of random projection, the aggressive measurement
number should be larger than log(m) [38] (e.g., there should be at
least 8 non-zero entities (1 or �1) in each row of R for a 50�50
candidate image window). Our method satisfies this condition,
because our R has W� H non-zero entities (either all equal to
1 or all equal to �1) after the convolution (Eq. (4)). And the final
feature representation V can be defined as

V¼ ½v1; v2;…; vn�T ¼
1
Z
ðR � hÞX: ð5Þ

Here � denotes the column-wise OR operation, Z is the normal-
ization factor, VAR1�n, RARn�m, XAR1�m, m¼W � H, and n{m.

As a metaphor of visual illustration and imagination, we could
summarize our ideas vividly as follows. Traditional compressive sen-
sing can be visualized as “recognizing a target object globally by wearing
many different glasses (n)”, while our method concentrates on “wearing
only 2 glasses to observe different parts of the target object locally”.
Besides, compared with other traditional representations, except for
high efficiency, our appearance model has another two salient advan-
tages: (1) tiny local appearance variation and affine illumination change
can be automatically handled via MINMAX normalization on Z, which
forces the subsequent tracking procedure to concentrate on global-
level matching. (2) Benefiting from the uniform formulation (Fig. 3(e)),
the low-rank decomposition (see the detailed discussion in Section 4.2)
can be easily approximated within a few iterations.

4.2. Rapid low-rank approximation

Given a n� m matrix X, the fast rank-r approximation L can be
obtained through bilateral random projections (BRP) [39],

L¼ Y1ðAT
2Y1Þ�1YT

2: ð6Þ

Table 1
List of the key mathematical symbols used in this paper.

m;n The dimension of original data, and the dimension of feature space
W ;H The width and height of candidate target rectangle, m¼W � H
k The number of candidate targets (also known as particle numbers)
K The update strength
q The power iteration times
M;N The capacity of appearance model and partial appearance model
v Observation vector
p;P The matching score of our tracking procedure, and the score matrix

A; ~A Appearance model, partial appearance model

W;D Voting prior
O Occlusion mask
S Sparse matrix obtained by the low-rank decomposition

L; ~L Low-rank matrix, and the low-rank matrix of partial appearance model

F Candidate pool
R;X;V Measurement matrix, original input matrix, and feature matrix
An Random projection matrix
Yn;Q n;Rn Projection matrix, and its QR decomposition: Yn ¼Q nRn
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Here A1, A2 are independent Gaussian/SRFT random matrices [40],
A1ARn�r and A2ARm�r , Y1 ¼XA1 and Y2 ¼XTA2. Since this low-
rank approximation method tends to become inaccurate when the
eigenvalues of X decay slowly, the power iteration modification
(also known as the power scheme [41]) ~X ¼ ðXXT ÞqX is introduced
to accelerate the low-rank approximation and improve the accu-
racy [42], wherein q is the power iteration strength and Y1 ¼ ~XA1,
Y2 ¼ ~XA2 is the BRP of ~X . Thus, the low-rank approximation of the
~X can be obtained by

~L ¼ Y1ðAT
2Y1Þ�1YT

2: ð7Þ
By respectively conducting QR decomposition over Y1 and Y2, the
rank-r approximation of X can be obtained as

L¼ ð ~LÞ1=ð2qþ1Þ ¼Q 1½R1ðAT
2
~XA1Þ�1RT

2�1=ð2qþ1ÞQ T
2 ¼ ðXQ 2ÞQ T

2 : ð8Þ
Therefore, the matrix X can be decomposed into a canonical “low-
rank þ sparse” formulation:

X¼ LþSþE; rankðLÞrr; cardðSÞrk; ð9Þ
where E denotes the approximation error.

In the visual tracking problem, the generative tracking methods
commonly adopt an appearance model A¼ fv1; v2;…; vNg to record
previous tracking results (the bottom row in Fig. 4(b)). To accom-
modate fast appearance variation, we propose to establish a partial
appearance model ~A ¼ GðAÞ ¼ fv1; v2;…; vMg (the top-right row in
Fig. 4(b)) for current object tracking, where Gð�Þ selects top-M vi

correlated to previous tracking results and M{N. Since the low-
rank component ~L in ~A (Eq. (10)) can capture the com-
mon occurrences of the target object globally, the robust tracking
result can be obtained by treating this low-rank coherency as the

matching criterion instead of matching current candidate targets
with all the individuals in ~A separately:

~L ¼ ð ~AQ ÞqQ T ; ð ~A ~A
T Þq ~A ~A2 ¼QR: ð10Þ

Based on Eq. (10), we can obtain the low-rank approximation of
the partial appearance model ~A , and then compute the feature
distance distð ~A ; f iÞ between ~L and candidate target pool F¼ ff1; f2;
…; fkg. Finally, we seek the candidate with minimal distance as the
true target object. It may be noted that, the above procedure is still
time-consuming in principle. We propose to incorporate the low-
rank approximation into an integrated coherency tracking proce-
dure via

S¼ F�ðFQ ÞQ T ; ð ~A ~A
T Þq ~A ~A2 ¼QR: ð11Þ

In Eq. (11), the explicit computation of ~L is completely avoided and
the sparse matrix S can directly serve as the indicator of the true
target object (Fig. 4(e)).

5. Tracking and appearance model updating based on low-
rank coherency analysis

5.1. Low-rank coherency tracking

In fact, the non-zero entities of S in Eq. (11) are sparsely and
independently residing in matrix S, and S column-wisely corre-
sponds to the candidate's partial violation. Thus, we can use S to
compute the matching score, for example, the t-th candidate target
will be taken as the true target object if

Pn
j ¼ 1 St;j ¼mini

Pn
j ¼ 1 Si;j.

However, because the appearance variation usually starts to occur

Fig. 2. Incapability analysis of global compressive sensing based representation when handling occlusion. The compressive sensing based feature representation [16,8] is
illustrated in (a), wherem¼9, n5m, and the yellow element in X indicates the occluded region. The feature variation level caused by partial occlusion is demonstrated in (b).
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 3. Illustration of our appearance model. The disk region highlighted in (a) denotes the search area centered at the previous-frame tracking result (see the yellow dot).
The red and black rectangles respectively denote two candidate targets, and (b) shows the corresponding zoom-in images, (c) is a toy demonstration of the constrained
random matrix, wherein the blue, grey, and red squares represent �1, 0 and 1 respectively, (d) demonstrates the convolution results based on the rectangle filter and
(e) shows the feature representations of the candidate targets. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this article.)
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around the object boundary, in practice we use weighted voting to
column-wisely compute the l1-norm of S and take it as the
matching score (Eq. (12)), wherein the entities near the center of
candidate target will be assigned larger weights:

Pi ¼ C �
Xn
j ¼ 1

e�di;j �j Si;j j =σ2
: ð12Þ

Here n is the feature dimension, iA ½1; k�, k is the number of
candidate targets, C is the constant normalization factor, di;j is the
Euclidean distance between the j-th sparse entity and the center of
the i-th candidate target. The value of Pi indicates the probability of
the i-th candidate target to be selected as the true target object.

Additionally, because of the low-rank coherency existing in the
consecutive video frames, columns of S with low sparsity value
(less variation) in previous tracking results are more trustworthy
than those with high sparsity value. Therefore, the sparse matrix S
corresponding to the previous tracking should also be regarded as
the initial voting result prior to being utilized to guide current
tracking. Eq. (13) formulates the candidate target's matching score,
which can be efficiently computed by matrix multiplication:

p¼ jSj � ðDT �WT Þ; ð13Þ
where pARk�1, SARk�n, WAR1�n, DAR1�n is the Gaussian-like
distance weighting matrix illustrated in Eq. (12), W¼ C � e� Sðu;�Þ is
the sparsity prior obtained from the previous tracking result, and
Sðu;�Þ is the sparse vector corresponding to the target object in the
t�1 video frame. Fig. 5(b) and (c) demonstrates a tracking
confidence map. It may be noted that the highest matching score
is located at the center of the true target object (Fig. 5(d)).

5.2. Coarse-to-Fine tracking strategy

Since the movements of the target object are typically non-
ballistic, object search can be limited within the nearby area of the
current target location. However, naively conducting exhaustive

search by matching the criterion p (Eq. (13)) is time-expensive.
Hence, we design a coarse-to-fine search strategy to alleviate the
computational burden. We record the Euclidean distances between
the tracked locations in the consecutive frames, and use rt to
represent the Euclidean distance between tracked positions in the
t frame and the t�1 frame. When the tþ1 frame arrives, we take
rtþ1 ¼ rtþ5 as the radius of current searching cycle, and randomly
sample k particles as the first-round candidate targets (Fig. 6(b)) via

k¼maxðρ � π � ðrtþ1Þ2;150Þ; ð14Þ

where ρ is a down-sampling parameter and we empirically set it to
be 0.7. Then, we compute the matching criteria pi; iA ½1; k� using Eq.
(13), and select the maximal p as the temporary anchor point.
Centering around this anchor point (marked with black cycle in
Fig. 6(b)), we further reduce the radius of the search region by half,
and continue the tracking procedure iteratively. In practice, we totally
iterate this course-to-fine tracking procedure 3 times to make tradeoff
between computation and accuracy. Meanwhile, it should also be
noted that matrix Q in Eq. (11) only needs to be computed in the first
iteration, which remains constant during the rest of iterations.

5.3. Occlusion handling

One critical issue of voting-based global matching criteria is how to
eliminate the untrustworthy occlusions. Since the sparsity values of
the occluded positions in S are on average larger than the normal
ones, the global matching score of an occluded target object may
become smaller than a false-alarm candidate target, which tends to
result in false tracking result. One commonly used solution is to regard
the entities with sparsity value larger than a pre-defined threshold as
occluded area. However, because this pre-defined threshold depends
on which candidate is the true target object, in fact its selection is a
chicken-and-egg problem. Fortunately, we can alleviate this dilemma
by additionally incorporating constraints into our low-rank tracking

Fig. 4. Illustration of the low-rank coherency approximation. (a) Previous-frame observation of the target object, (b) formulates the partial appearance model based on
previous tracking results, wherein the low-rank part of the appearance model (marked by yellow G) and the partial appearance model (marked by yellow L) are also
demonstrated, (c) shows two candidate targets during the current-frame tracking procedure and (d) demonstrates S matrix's sparse vector (Eq. (11)) corresponding to the
given candidate targets. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 5. Tracking based on low-rank coherency analysis. (a) Confidence map computed by Eq. (13), (b) zoom-in effect of the confidence map and (c) the 3D illustration of (b),
and (d) the tracking result.
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framework:

Oi;j ¼
1 if ðSi;j�αTÞo0
0 if ðSi;j�αTÞZ0

(
: ð15Þ

In Eq. (15), Oi;j indicates the binary occlusion mask of the i-th
candidate target, whose non-zero entities correspond to non-
occluded position. Here iA ½1; k�, jA ½1;n�, α¼1.5, and we set T to be
the absolute mean of S (Eq. (11)) obtained in the first tracking iteration
(see Section 5.2). By incorporating the occlusion mask O into each
candidate target, in the first tracking iteration, the matching score of
the i-th candidate target corresponding to the j-th occlusion mask can

be redefined as:

Pi;j ¼ ðOðj;�Þ � jSði;�Þ j Þ � ðD �WT Þþβ � T � ðn�‖Oðj;�Þ‖0Þ: ð16Þ

Here n is the feature dimension, � is element-wise Hadamard
product, ‖ � ‖0 denotes l0-norm, β¼1.5. And the second part of
Eq. (16) is a penalty term used to avoid occlusion bias. Thus, we can
obtain the P matrix as

P¼
Pð1;1Þ Pð1;2Þ ⋯ Pð1;kÞ

⋱
Pðk;1Þ Pðk;2Þ ⋯ Pðk;kÞ

2
64

3
75; ð17Þ

Fig. 6. Demonstration of the coarse-to-tine tracking strategy. (a) The tracking result corresponding to the 542 frame of the lemming sequence. (b) The first tracking iteration
in 543 frame with search radius r, blue points denote k sampled candidate targets, and the candidate targets with maximum score are marked by black cycle. (c) The second
tracking iteration in 543 frame with search radius r=2 centering around the black cycle. (d) The zoom-in effect of (c). (e) The final tracking result after 3 tracking iterations.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 7. Occlusion mask demonstration. (a) One of the approximated low-rank components for bird-2 sequence. (b)–(d) demonstrate the occlusion masks resulted from our
method.

Fig. 8. Parameter selection analysis. (a) The tracking performance with different parameters is illustrated. (b) The tracking performance (CLE and FPS) with different feature
dimensions. The color from blue to yellow indicates the performance from worse to better. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)
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Fig. 9. Center location error (CLE) comparisons with 8 state-of-the-art methods over 36 video sequences. In the interest of space, we only list 8 comparison results here,
and more results can be found in our supplementary material.
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Fig. 9. (continued)
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Table 2
The detailed characteristics of 36 challenging video sequences used in our experiments (Part A). The total number of evaluated video frames is 21065.

Video sequence 3D pose Illumination Occlusion Blur Fast motion Frames

Animal [47] � � √† √† √‡ 71

Basketball [47] √‡ √† √‡ � √† 725

Bird2 [10] √‡ � √† � � 103

David2 [15] √‡ √‡ √† √† √† 462

Coupon [6] √‡ � √† � � 327

OccludedFace [6] � � √‡ � √† 899

OccludedFace2 [6] √† � √‡ � � 815

Girl [6] √‡ √† √‡ � √† 502

Gym [47] √‡ � � � √† 767

Jumping [20] � √† � √‡ √‡ 313

Lemming [48] √‡ √† √‡ √‡ √‡ 1336

Shaking [47] √† √‡ √† √† √† 342

Skating [47] √‡ √‡ √‡ √‡ √‡ 400

Skating2 [47] √‡ √† √‡ √‡ √‡ 707

Sylvester [15] √‡ √‡ � √† √† 1345

Tiger1 [6] √‡ √‡ √‡ √‡ √‡ 345

Twining [6] √‡ � � � � 472

Woman [32] √† � √‡ � √‡ 597

√‡ indicates heavy variation and √† indicates mid-level variation.
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C. Chen et al. / Pattern Recognition 48 (2015) 2885–29052894



where PARk�k, k is the number of candidate targets. Since the true
target object should constantly have maximal P value for different
occlusion masks, matrix P in Eq. (17) should be further filtered to
obtain robust occlusion mask by using

~p i ¼
1 if diagðPði;�ÞÞ ¼min

j
ðPði;jÞÞ

0 otherwise

(
; ð18Þ

where ~p iARk�1 and diagð�Þ means the i-th diagonal element. Then,
we take Oðu;�Þ as the final occlusion mask ~O if

diagðpuÞ ¼minðdiagðPÞ � ~pÞ: ð19Þ
And the occlusion mask ~O remains constant for the second and the
third tracking iterations (see demonstrations in Fig. 7(b–d)). Therefore,
the final formulation of the matching criteria for the second and third
tracking iterations can be formulated as

p¼ jSj � ð ~O � DT �WT Þ: ð20Þ

5.4. Partial appearance model

When the target object has been located in the current frame,
we resort to the biased low-rank analysis to construct a partial
appearance model for next video frame using Eq. (21), which is
similar to the low-rank coherency tracking procedure (Eq. (11))
and can be defined as

S¼ A�ðAQ ÞQ T ; ðBBT ÞqBA2 ¼QR: ð21Þ
Here A denotes the appearance model, B¼ ½v1; v2;…; v5�T ,
viAR1�n indicates previous tracking results (five target observa-
tions neighboring the target location in the t�1 frame), and the
remaining configurations are all the same as those in Eq. (11).
Then, the partial appearance model can be established by selecting
M observations from A according to ‖S‖1 in an ascending order. A
large value of M means that the partial appearance model ~A
concentrates on a long-term stable structure of the target object,
thus, the low-rank coherency of this partial model may fail to

Table 4
Center location error (CLE) (in pixels), Part A. Bold fonts indicate the best performance while the italic fonts indicate the second-best ones, and the underlined values indicate
the third-best ones.

Method Ours COT14 PT13 HT13 OOT13 PLS12 CT12 L1T12 DFT12

Animal 10 10 10 14 212 136 38 215 78
Woman 11 13 7 8 115 153 110 125 20
David2 8 11 9 13 18 67 10 13 14
Girl 12 35 14 13 14 13 36 13 30
Tiger1 5 28 9 26 41 25 63 18 46
Sylvester 12 12 9 61 56 51 11 46 51
Skating1 6 7 60 116 219 66 148 33 168
Skating2 31 45 52 226 194 73 131 191 180
Occludedface1 16 58 16 11 16 14 28 20 21
Occludedface2 15 11 13 15 20 23 21 48 39
Bird2 12 18 21 102 55 19 19 26 81
Shaking 8 6 11 133 35 96 19 17 40
Coupon 16 4 20 5 5 19 19 62 6
Twining 10 7 8 16 6 34 17 9 11
Gym 11 13 9 105 67 301 28 119 89
Basketball 8 5 86 15 185 287 66 131 237
Jumping 10 13 13 23 21 48 24 32 94
Lemming 14 16 29 16 187 222 104 178 79

Table 3
The detailed characteristics of 36 challenging video sequences used in our experiments (Part B). The total number of evaluated video frames is 21065.

Video sequence 3D pose Illumination Occlusion Blur Fast motion Frames

Singer2 [47] � √‡ � √† � 366

Crossing [32] � √† � � √† 120

Mhyang [32] √† √† � � � 1490

Fleetface [32] √‡ � � � � 699

Subway [32] � � √† √† � 175

Car4 [15] � √‡ � � � 659

Walking [32] � � √‡ � � 412

Freeman1 [32] √‡ � √‡ √† √† 326

Cardark [15] � √† � √† √† 393

Carscale [32] � √† √‡ √‡ √† 252

Football1 [49] � √† √† √‡ √‡ 81

Freeman3 [32] √† � √† √† √† 474

Fish [32] � √‡ � √† √† 476

Dog1 [15] √† √† � � � 1350

Boy [32] √‡ � � √† √† 602

Bike [50] √‡ √† � � � 228

David [20] √‡ √† � � � 537

Tiger2 [6] √‡ √‡ √‡ √‡ √† 365

√‡ indicates heavy variation and √† indicates mid-level variation.
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obtain correct tracking results when the object's appearance is
changing drastically. Meanwhile, partial appearance model con-
structed with small value M is sensitive to current observation,
which gives rise to tracking drift. Therefore, we empirically assign
M¼15 (out of 100 observations of A) to balance with the above
tradeoff, which will be detailed in Section 6.1.

5.5. Appearance model updating

Since the appearance of the target object oftentimes changes in
consecutive frames, the dynamic updating is indispensable for any
good appearance model. To handle the fast appearance change, the
majority of generative tracking methods tend to only update the
elements that mostly correlate to current observation. However,
due to the low-rank coherency existing in consecutive video
frames, such updating strategies can easily fall into bootstrap
and cause tracking drift, wherein it will keep updating the
identical observation elements in the appearance model in
each frame.

In sharp contrast, we employ unbiased low-rank analysis to
update the appearance model globally toward the direction of
rank increase. Similar to the construction procedure of partial
appearance model, we use Eq. (22) to compute the sparse matrix S
of the appearance model:

S¼ A�ðAQ ÞQ T ; ðAAT ÞqAA2 ¼QR: ð22Þ
Because the smallest sparsity value in S implies the center of
feature distance based clustering, we directly use current tracking
observation to replace the top-K observations of A according to
‖S‖1 in an ascending order. And this aggressive updating strategy
has two specific advantages: (1) it greatly enhances the diversity of
the appearance model, and thus make our low-rank coherency
tracking more robust to the drift problem; and (2) it maintains a
group of observations that strongly correlate to current observa-
tion, which enables efficient appearance adaptation.

Besides, the adaptive choice of K should also facilitate the
robustness of the appearance updating. We associate the choices
of K with the current tracking result via

K ¼
1; ‖Sðt;�Þ‖1 rT1

2; ‖Sðt;�Þ‖1 4T1

0; 1�‖ ~O‖0=n4T2

8><
>: ; ð23Þ

where ‖Sðt;�Þ‖1 indicates the sparse vector of S corresponding to
current tracking result, T1 is a threshold to control the updating

strength, and we empirically set it to be 5. We set T2 ¼ 0:55, and it
means the updating procedure will be suspended when heavy
occlusion occurs. Here, ‖ ~O‖0 is the number of non-zero entities in
occlusion mask ~O (Eqs. (18) and (19)).

When occlusion happens, the partial updating strategy should
also be adopted to prevent the appearance model from leaning
towards the occlusion objects. Suppose Ft�1 is the observation to
be replaced by current tracking observation Ft , we reconstruct
Ft�1 by

Ft�1
i ¼

Fti if ~O i ¼ 0

ðFti þ2� ~F iÞ=3 if ~O i ¼ 1

(
: ð24Þ

Here ~FAR1�n is a partial observation with minimal ‖S‖1 in the
third tracking iteration (see Section 5.2), and ~O is the occlusion
mask obtained in the first tracking iteration. As a result, our
appearance model can be adaptive to the partial appearance
change when the target object is being occluded. To better convey
our entire technical solutions, all the main steps of our low-rank
coherency tracking are documented in Algorithm 1.

Algorithm 1. Low-rank coherency tracking.

Input: Tracking location It�1 in t�1 frame and appearance
model A.

Output: Tracking location It in t frame and the updated
appearance model A.

Initialization: C ¼ It�1.
1. Compute the feature representation (Eq. (5)) of previous

tracking result t to obtain ft�1.

2. Use ft�1 to formulate the partial appearance model ~A
via low-rank analysis (Section 5.4).

For i¼1:3
3. Sample candidate targets centering around C with search

radius r (Section 5.2).
4. Compute the feature representation (Eq. (5)) of candidate

targets.
5. Apply the low-rank analysis to obtain S (Eq. (11)).
6. Compute feature prior D and W (Eq. (13)).
7. Estimate the occlusion mask ~O and integrate it with matrix S

(Section 5.3).
8. Perform the low-rank coherency based tracking to obtain the

tracking result It (Section 5.1), and assign C ¼ It .
End For
9. Update the appearance model A via unbiased low-rank

analysis (Section 5.5), and output current tracking result It.

Table 5
Center location error (CLE) (in pixels), Part B. Bold fonts indicate the best performance while the italic fonts indicate the second-best ones, and the underlined values indicate
the third-best ones.

Method Ours COT14 PT13 HT13 OOT13 PLS12 CT12 L1T12 DFT12

Singer2 8 170 174 71 150 195 37 186 44
Crossing 2 4 2 50 7 4 5 53 22
Mhyang 3 4 3 3 3 3 24 9 6
Fleetface 29 38 51 25 19 74 55 51 41
Subway 4 158 2 4 140 158 11 148 4
Car4 4 9 4 4 78 4 79 84 17
Walking 4 6 8 12 8 4 5 5 5
Freeman1 11 179 13 177 164 26 155 149 133
Cardark 1 5 1 30 18 24 37 22 24
Carscale 31 35 35 138 66 93 73 45 119
Football1 12 23 18 18 12 21 20 53 17
Freeman3 7 7 46 46 46 10 71 42 30
Dog1 4 3 6 7 5 47 10 9 67
Boy 7 5 7 7 23 3 13 17 8
Bike 6 6 11 6 146 11 214 12 6
David 13 14 13 12 27 27 68 34 16
Tiger2 12 9 11 75 44 33 21 47 75
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6. Experimental results and evaluation

6.1. Parameter selection

In principle, there are four parameters that could influence the
efficiency and performance of our low-rank coherency tracking:
(1) the dimension of the feature representation n; (2) the iteration
times q for low-rank approximation; (3) the sampling rate of the
partial appearance model M=N; and (4) the rectangle filter size γ. As
the dimension of feature representation can simultaneously affect the
performance and efficiency, we shall first concentrate on the feature
dimension, and later, we analyze the remaining three parameters.

The dimension of feature representation: Since our feature repre-
sentation is based on compressive sensing, themore non-zero entities
in measurement matrix, the more accurate the distance distribution
can be preserved. As shown in Fig. 8(a), better tracking performance
(it may be noted that, the color turns from blue to yellow indicates
the performance varying from worse to better) can be obtained by
increasing the feature dimension. Consider the accuracy and effi-
ciency tradeoff, an optimal feature dimension can greatly improve the
overall performance. As we can see from Fig. 8(b), the FPS drops
rapidly when we increase the feature dimension from 20 to 100, and
then it has slight performance improvement when the dimension
continues to increase. Therefore, to balance the tradeoff, we assign
n¼150 as the optimal feature dimension (Fig. 9).

The iteration times q for low-rank approximation: In fact, the
accuracy of low-rank approximation can also be improved by
increasing the iteration times. However, an extremely precise low-
rank approximation is not the top priority of the real-time visual
tracking, because the principal low-rank pattern is strongly related
to the largest eigenvalue of the initial power iterations. Mean-
while, our localized compressive sensing based representation
constructs a feature space with constrained feature diversity,
which can guarantee accurate low-rank approximation without
numerous iterations. Hence, according to the Fig. 8(a), we assign
q¼20 to avoid unnecessary time consumption.

The sampling rate of partial appearance model: Obviously, a large
sampling number indicates the partial appearance model concen-
trates on the long-term stable coherency, while a small sampling
number corresponds to fast partial appearance variation (which in
turn easily results in possible drift problems). Hence, an extremely
large or small sampling number is not appropriate for robust
visual tracking, and a dynamically changed sampling rate is not
feasible either because of the unpredictable nature of incoming
video frames. From Fig. 8(a), we can find that the optimal choice of
the sampling rate is N¼15 (the capacity of the appearance model
is M¼100).

The rectangle filter size: From the perspective of patch-based
feature representation, a rectangle filter with small size γ can
improve the tracker's occlusion handling capability at the expense

Table 8
Success rate (SR) (%), Part A. Bold fonts indicate the Best performance while the italic fonts indicate the Second-best ones, and the underlined values indicate the
Third-best ones.

Method Ours COT14 PT13 HT13 OOT13 PLS12 CT12 L1T12 DFT12

Animal 100 100 90.1 91.5 4.22 5.63 35.2 4.22 8.48
Woman 92.1 68.3 95.1 82.0 18.9 10.7 17.5 15.5 62.8
David2 91.9 88.3 91.3 82.0 81.3 30.0 86.1 79.8 71.4
Girl 85.4 43.4 95.8 86.0 23.5 99.4 89.4 96.2 49.2
Tiger1 99.1 46.3 92.0 37.5 14.6 43.7 3.95 67.5 17.5
Sylvester 81.9 81.1 96.8 27.7 22.3 30.7 82.8 32.7 25.0
Skating1 95.5 96.7 74.0 15.5 9.25 73.7 12.5 36.2 10.7
Skating2 78.0 58.6 48.9 7.92 11.1 21.2 3.67 2.54 4.52
Occludedface1 100 84.8 98.8 98.3 100 97.1 57.2 99.2 60.9
Occludedface2 100 100 97.1 98.7 89.6 72.1 94.6 58.4 61.3
Bird2 94.9 88.8 57.5 7.07 56.5 60.6 61.6 50.5 15.1
Shaking 100 100 94.4 25.1 68.1 15.7 69.2 73.9 65.4
Coupon 79.1 99.0 69.7 98.7 98.7 87.1 88.0 39.7 97.5
Twining 83.8 94.2 94.9 60.8 96.3 40.8 59.5 92.3 77.1
Gym 96.3 87.2 95.3 4.82 24.9 1.82 36.7 3.38 19.6
Basketball 96.4 99.8 54.0 1.79 85.3 4.55 27.0 3.17 6.62
Jumping 100 91.6 90.1 47.6 53.9 28.7 42.1 24.9 15.9
Lemming 78.0 42.1 49.6 74.1 16.9 4.34 36.3 13.7 42.7

Table 7
Summary of total Best, Second-Best and Third-best times for each algorithm over 36 video sequences based on center location error (CLE). Bold fonts indicate the Best
performance while the italic fonts indicate the Second-best ones, and the underlined values indicate the Third-best ones.

Method Ours COT14 PT13 HT13 OOT13 PLS12 CT12 L1T12 DFT12

Best 21 10 8 5 4 4 0 0 1
Second-best 7 11 10 4 2 5 3 2 4
Third-best 6 4 8 6 2 2 4 4 5

Table 6
Average center location error (CLE) (in pixels). Bold fonts indicate the best performance while the italic fonts indicate the second-best ones, and the underlined values
indicate the third-best ones.

Method Ours COT14 PT13 HT13 OOT13 PLS12 CT12 L1T12 DFT12

Average CLE 10.6 27.6 22.9 49.9 62.9 66.8 50.1 63.3 53.6
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Fig. 10. Illustration of our method's limitation. The top row shows the tracking result of our method. The bottom row (a) demonstrates a part of the partial appearance model
used in 192 frame. (b) Its corresponding approximated low-rank part. (c) The target observation and the approximated low-rank part used in 196 frame.

Table 12
Frames per second (FPS) of each method. Bold fonts indicate the Best performance while the italic fonts indicate the Second-best ones, and the underlined values indicate the
Third-best ones. All of these methods run on a computer with Quad Core i7-3770 3.4 GHz, 8 GB RAM.

Method Ours COT14 PT13 HT13 OOT13 PLS12 CT12 L1T12 DFT12

Average FPS 70 94 5.6 0.7 2.9 10.5 42 12.3 6

Table 11
Summary of total Best and Second-Best times for each algorithm over 36 video sequences based on success rate (SR) (%). Bold fonts indicate the Best performance while the
italic fonts indicate the Second-best ones, and the underlined values indicate the Third-best ones.

Method Ours COT14 PT13 HT13 OOT13 PLS12 CT12 L1T12 DFT12

Best 23 13 5 4 4 6 1 1 2
Second-best 7 5 9 8 3 2 1 3 1
Third-best 2 5 10 1 5 0 5 4 4

Table 10
Average success rate (SR) (%). Bold fonts indicate the Best performance while the italic fonts indicate the Second-best ones, and the underlined values indicate the
Third-best ones.

Method Ours COT14 PT13 HT13 OOT13 PLS12 CT12 L1T12 DFT12

Average CLE 90.9 77.9 78.4 56.5 55.9 50.2 48.1 47.0 47.0

Table 9
Success rate (SR) (%), Part B. Bold fonts indicate the Best performance while the italic fonts indicate the Second-best ones, and the underlined values indicate the
Third-best ones.

Method Ours COT14 PT13 HT13 OOT13 PLS12 CT12 L1T12 DFT12

Singer2 100 3.55 3.55 62.2 3.55 3.27 29.2 3.27 51.3
Crossing 100 100 100 14.1 99.1 83.3 96.6 23.3 67.5
Mhyang 100 94.5 100 99.8 100 100 33.3 96.6 91.4
Fleetface 63.9 53.6 32.1 75.8 88.8 19.0 71.1 58.1 51.0
Subway 98.2 22.2 98.2 100 21.7 16.0 77.7 22.2 98.2
Car4 100 97.2 100 100 34.2 100 35.3 34.9 48.1
Walking 100 83.0 99.7 38.1 96.6 100 100 100 100
Freeman1 64.1 38.3 45.0 2.14 11.6 29.7 4.90 11.3 11.0
Cardark 100 90.0 100 58.0 70.7 64.8 44.2 66.4 63.1
Carscale 67.8 63.4 59.1 55.5 65.0 63.8 62.3 64.2 6.74
Football1 92.5 42.5 51.2 57.5 77.5 32.5 33.7 7.50 73.7
Freeman3 58.3 56.0 38.0 21.9 31.2 72.7 0.00 39.5 52.8
Fish 100 100 62.1 21.6 98.7 45.3 90.5 99.3 94.7
Dog1 98.8 99.9 87.1 79.4 91.3 73.7 79.7 80.8 31.6
Boy 96.8 100 94.0 98.0 65.9 100 62.6 62.4 92.6
Bike 100 100 87.1 100 39.8 88.4 17.2 80.5 100
David 100 100 99.8 100 0.18 53.0 38.1 93.2 75.0
Tiger2 85.2 94.5 81.3 3.56 21.0 35.8 56.4 20.5 3.28
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Fig. 11. Overlapping rate (OR) based comparisons with 8 state-of-the-art methods over 36 video sequences. In the interest of space, we only list 8 comparison results here,
and more results can be found in our supplementary material.
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Fig. 11. (continued)
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of being less robust. Therefore, we assign γ¼1/7 as the optimal
choice to have a good balance between robustness and efficiency.

6.2. Comparisons and evaluations

We shall now compare our tracking method with 8 state-of-the-
art tracking methods via comprehensive experiments over 36 public,
challenging video sequences (the details can be found in Tables 2 and
3). The 8 state-of-the-art tracking methods include the color tracking
method (COT) [7], part-based tracking method (PT) [9], locality
sensitive histograms based tracking method (HT) [28], online object
tracking method (OOT13) [43], partial least squares tracking method
(PLS12) [44], compressive sensing tracking (CT) [8], distribution field
based tracking method (DFT) [45], and l1 tracker (L1T) [46]. All the
quantitative comparison metrics in this paper are based on two
widely used comparison metrics, which are the Center Location Error
(CLE) and Overlapping Rate (OR). CLE is computed according to
manually labeled ground truth at the pixel level. For each dataset, the
CLE-based comparison results are detailed in our supplementary
material, and the CLE-based performance and statistics are docu-
mented in Tables 4 and 5, while the average CLE comparisons of 36

video sequences are shown in Table 6. The CLE-based overall perfor-
mance and statistics are provided in Table 7.

OR is be computed using

OR¼ areafROIT⋂ROIGg
areafROIT⋃ROIGg

; ð25Þ

where ROIT is the tracking rectangle of the given tracking method,
and ROIG is the ground truth. The OR-based comparison details can
be found in our supplementary material. For each dataset, OR/SR
(success rate, for the t-th video frame, if ORt450% then SRt¼1
else SRt¼0)) based performance and statistics are listed in
Tables 8 and 9, and the average OR (SR) comparisons of 36 video
sequences are documented in Table 10. The OR (SR) based overall
performance and statistics are documented in Table 11.

Experiments over pose-deformable datasets: The target objects
undergo lager-scale pose deformation in Girl, Bird-2, David, Tiger-1
and Lemming sequences (see details in Tables 2, 8 and Fig. 12). As we
can see from Tables 4 and 8, that both COT and CT methods fail to
update its basic classifier according to the dynamically changing target
appearance (see Fig. 12, and more details in our supplementary
material). Besides, the feature representation adopted by HT, L1T, and
DFTare all histogram-like, which tends to violate the intrinsic coherency
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Fig. 11. (continued)
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when pose deforms. Although PT method also adopts the histogram-
like feature representation, it can be regarded as searching the common
occurrences between consecutive frames in feature space (which is
slightly similar to our low-rank matching criteria), which separately
matches the target's different parts with the appearance model and
obtains favorable success rate (ranked as the second one in Table 10,
and ranked as the third one in Table 11). However, due to the lack of a
global constraint in PT, the drift problem still exists when 3D pose
changes drastically, which leads to large CLE in Table 6. Specifically, the
target object in Lemming sequence (961) undergoes 3601 3D pose

movement, except for our method, the other methods gradually drift to
background and produce unsatisfactory tracking results (Fig. 12(g)).

Experiments over illumination-varying and blur-varying datasets:
The target objects experience strong illumination variation and
blur in David, Tiger-1, Shaking, and Skating-1 datasets. Actually,
the commonly used solution to handle such problems is to
normalize the feature representation, which can globally maintain
a relatively stable feature distribution. As shown in Fig. 12(f), the
target object is undergoing heavy illumination change, and all the
tracking methods can obtain correct tracking results. However, as

Fig. 12. Comparisons of the video object tracking results from different methods, please refer to our supplementary material for more and detailed results. (a) Basketball,
(b) Singer2, (c) Skating1, (d) Tiger1, (e) OccludedFace1, (f) Shaking, (g) Lemming, (h) Coupon and (i) Woman.
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shown in Fig. 12(b) and (c), the illumination variation is usually
coupled with partial appearance variation, and only our method
and COT method can obtain correct tracking results. Actually, the
robustness of COT method heavily depends on the color informa-
tion, whose performance deteriorates rapidly when the tracking
sequence only has grey information (see tracking results in Tiger-1
and David sequence). In Tiger-1 sequence (Fig. 12(d)), 3D pose
change, illumination variation, and motion blur simultaneously
occur, other methods lose track of the target object in numerous
frames, however, our tracking method still performs well in terms
of all metrics with only 5 CLE and achieve 99.1% success rate.

Experiments over object-occluded datasets: The target object in
Occludedface-1, Occludedface-2, Woman and Skating-2 sequences
has partial or heavy occlusion. In Fig. 12(e), all tracking methods
except DFT and L1T can handle the occlusion well. Nevertheless, it
should be noted that the target objects in these two sequences are
both being “gradually” occluded, which span 50 frames for the target

object becoming fully occluded. Since this slow occlusion transition
provides abundant buffering time for discriminative tracking to update
their classifiers, the time span of the occlusion can be considered
equivalently as certain type of the appearance variation, and favorable
tracking result can also be obtained even when no occlusion handling
strategy is invoked. However, this adaptiveness for appearance varia-
tion (occlusion) easily results in the drift problem, and unsatisfactory
tracking results can found in Skating-2 (Tables 4 and 8). Specially,
observing the CLE and OR statistics in Tables 7 and 11, our tracking
method has obvious advantage when sudden occlusion occurs (fewer
than 10 frames), please refer to Fig. 12 and the supplementary material
for more robust object tracking results over Skating-1, Skating-2,
Basketball, Tiger-1, Tiger-2, and Woman sequences.

Experiments over rapid-motion datasets: The target objects in
Animal, Lemming, Football-1, Boy, Jumping, and Basketball
sequences undergo fast movement (over 40 pixels for two con-
secutive video frames). The precondition of correct tracking for

Fig. 12. (continued)
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fast movement is that the search area must cover the true target
object. However, large constant search area results in heavy
burden for the exhaustive matching procedure in CT, L1T, PT, HT,
and DFT, and their FPS drops rapidly (FPS is reduced by half) when
the target object is fast moving. Benefiting from the coarse-to-fine
tracking strategy, our low-rank coherency tracking can dynami-
cally increase the search area while keeping the entire matching
computation well under control (here, the upper-bound of the
number of candidate targets is 450), and we achieve favorable FPS
rate (slightly slower than COT, and see details in Table 12).

6.3. Limitation and discussion

Because our tracking method is based on the low-rank coher-
ency analysis of different target observations, unsatisfactory track-
ing results may be produced when such low-rank coherency is
broken due to drastic 3D shape change. As shown in the top row of
Fig. 10, the box is undergoing fast 3D rotation, whose corresponding
partial appearance model is demonstrated in the bottom row of
Fig. 10 (see Fig. 10(a)). Meanwhile, since the similar parts of different
observations have bias toward the middle-right position, the low-
rank approximation of this partial appearance model is constant
and similar to Fig. 10(b) until 192 frame arrives. However, a large
difference can be found in the observation of 196 frame (where the
low-rank coherency is broken), whose corresponding low-rank
approximation is demonstrated in Fig. 10(c), and it finally results
in drift (similar situation can also be found in Fig. 12(h)). The failure
of low-rank coherency analysis may be caused by the absence of
global spatial information in candidate representation, and thus it
deteriorates the discriminative power of our feature space. One
feasible way to combat this shortcoming is to introduce additional
high-level global constraints to improve the matching criteria,
which should be independent of the intrinsic feature space. Besides,
at present our intrinsic feature space is derived from localized gray
intensity only, so in order to achieve better tracking performance,
color clues should also be taken into consideration by tightly
coupling them with multi-level low-rank analysis. Both of these
two limitations deserve our future investigation (Fig. 11).

7. Conclusion and future work

In this paper, we have proposed a simple yet effective video
object tracking method based on rapid low-rank coherency analysis.
Our robust and real-time tracking approach comprises many novel
technical elements such as: (1) localized compressive sensing based
representation method, which is both computationally more effi-
cient and more sensitive than previously published methods; (2)
low-rank coherency analysis based matching and updating criteria,
which collectively enable robust visual tracking; and (3) natural
integration of low-rank approximation and the tracking procedure,
which enables real-time visual tracking. Comprehensive experi-
ments and extensive comparisons with current state-of-the-art
methods have demonstrated our method's salient advantages in
terms of accuracy, reliability, robustness, and versatility.

Meanwhile, our method also has some limitations when low-
rank coherency is broken due to the target's drastic and sudden
rotation. Our ongoing efforts are first geared towards formulating
high-level global constraints to further improve the matching
criteria. Moreover, extending our key ideas to conduct subspace
analysis based on low-rank coherency clustering for simultaneous
multi-target tracking, motion segmentation, and content-based
video retrieval also deserves our immediate research endeavors.
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