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Abstract
In this paper, we formulate a novel trivariate biharmonic B-spline defined over bounded volumetric domain. The properties of
bi-Laplacian have been well investigated, but the straightforward generalization from bivariate case to trivariate one gives rise
to unsatisfactory discretization, due to the dramatically uneven distribution of neighbouring knots in 3D. To ameliorate, our
original idea is to extend the bivariate biharmonic B-spline to the trivariate one with novel formulations based on quadratic
programming, approximating the properties of localization and partition of unity. And we design a novel discrete biharmonic
operator which is optimized more robustly for a specific set of functions for unevenly sampled knots compared with previous
methods. Our experiments demonstrate that our 3D discrete biharmonic operators are robust for unevenly distributed knots and
illustrate that our algorithm is superior to previous algorithms.
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1. Introduction and Motivation

Data fitting/interpolation is a fundamental and enabling compu-
tational method in a wide variety of computer graphics subfields
including geometric modelling, image/shape/video processing, sci-
entific visualization, etc. It is also ubiquitous spanning across many
disciplines in science, engineering, medicine, etc. One of the most
powerful technical approaches is to interpolate/approximate discrete
observations using certain types of basis functions towards contin-
uous representations in the interest of accuracy and compactness.

B-spline is one such family of well-investigated basis functions
with many powerful and attractive properties that have warranted
their widespread penetration into the above-documented fields. In
the univariate case, divided differences are relevant to the construc-
tion of B-splines. Feng and Warren [FW12] generalized the di-
vided difference to 2D planar (Euclidean) domain and 2D manifold
based on discrete Laplacian, and then extended them to discrete
bi-Laplacian to define 2D biharmonic B-splines. However, the be-
haviours/properties of biharmonic B-splines and their construction
in 3D domain are far from trivial, still remaining as one of the
open research problems. Their direct generalization to 3D domain

may give rise to seriously distorted basis functions when the sam-
ple knots are uneven. The theoretical results and their subsequent
comparisons elaborated in this paper showcase the first attempt on
trivariate biharmonic B-splines. While defining irregular knots over
arbitrary volumetric grids, we systematically study the properties
of 3D biharmonic B-splines and devise a novel function-specific
discrete bi-Laplacian operator in a bounded 3D Euclidean domain.

Our key motivation is to generalize the bivariate biharmonic
B-spline to trivariate biharmonic B-spline to broaden its appli-
cation scopes. The conventional discrete bi-Laplacian is usually
evaluated by iterated discrete Laplacian. According to Feng
and Warren [FW12], it is unstable on irregular grid. They have
improved the iterated Laplacian and presented a cubic precision
discrete bi-Laplacian on unbounded 2D domain. Nevertheless,
the distribution of neighbouring knots in 3D is much more
complicated than its arrangement in any 2D setting, which may
lead to seriously distorted basis functions when the sample knots
are uneven. One originality of this paper is our newly designed
and well-thought method to compute the function-specific discrete
bi-Laplacian operator via an optimization formulation, which still
approximates the properties of localization and partition of unity
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simultaneously. The first step of our novel approach is to compute
the discrete Laplacian operator locally for each knot, followed
by the computation of the discrete bi-Laplacian operator for all
the knots simultaneously in the succeeding step. Both of them are
formulated as quadratic programming problems.

The salient contributions of our paper include:

(1) With mathematical rigor, we generalize the bivariate
biharmonic B-spline to trivariate biharmonic B-spline and
prove that they are localized and approximate a partition of
unity. To our best knowledge, it is the first attempt trying to
tackle the underlying technical challenges inherent in trivari-
ate biharmonic B-splines.

(2) We propose an improved formulation and design a novel dis-
crete trivariate Laplacian as well as bi-Laplacian operator op-
timized for a specific set of functions, which is more robust
than previous discrete operators for unevenly distributed sam-
ple knots.

(3) We analyse the stability and robustness of our new formu-
lation, and conduct comparison to the previous method to
account for the superiority of our algorithm.

2. Related Work

Basis Function and Function Fitting. Radial basis function is
one family of the most widely used basis functions consisting
of various categories of functions [Buh03], such as Gaussian
kernel, etc. In such cases, the basis functions at different knots
are independent of each other, so they would not form a partition
of unity. Spline functions, such as the thin-plate spline [Boo89],
T-spline [SZBN03], polycube splines [WHL*08] and Voronoi
splines [ME10], are a large and diverse family of basis functions.
Feng and Warren [FW12] make use of the connection between
divided difference and discrete Laplacian and present biharmonic
B-spline on 2D domains, which is localized and forms a partition
of unity. But the trivial generalization to 3D domain is insufficient,
since the complex neighbouring structure of knots leads to unstable
behaviours. Moreover, the behaviour of 3D biharmonic basis is still
unclear. In this paper, we investigate the properties of 3D biharmonic
basis on bounded domain and present a novel discrete operator to
evaluate the basis robustly, which does not rely on the Voronoi cells
either.

Harmonic and Biharmonic Basis. Harmonic and biharmonic
operators play a fundamental role in computer graphics and they
are widely used in different applications, such as heat kernel
signature [SOG09], biharmonic distance [LRF10] and spectral
graph [Chu97], etc. In geometry processing, the discrete Laplacian
operator has been deeply studied in previously published work.
Meyer et al. [MDSB03] proposed cotangent weight discrete
Laplacian operator for triangulated two-manifolds. Hildebrandt
and Polthier [HP11] constructed strongly consistent discrete
Laplacian–Beltrami operators on polyhedral surface. Wardetzky
et al. [WMKG07] reviewed the discrete Laplacian operators. Many
methods use iterated Laplacian for discrete bi-Laplacian [JTSZ10,
LRF10]. Feng and Warren [FW12] proposed to enhance the results
by making use of additional constraints to improve them to cubic
precision. But, we find that it is still inadequate for 3D uneven knots.

In sharp contrast to previous methods independent of the differen-
tial function, we present a function-specific discrete bi-Laplacian
operator which is optimized for the specified set of functions.

Interpolation. The interpolation problem has been widely
studied in different areas. Many methods have been proposed to
interpolate values from scattered points [Lev98, OBA*03, Wen05].
Ern and Guermond [EG04] introduced interpolation using finite
elements. Ju et al. [JSW05] proposed mean value coordinate
to interpolate the values smoothly on closed triangular meshes
and Li et al. [LJH13] proposed cubic mean value coordinate
to interpolate both boundary value and gradients over a 2D
polygonal domain. Weber et al. [WPG12] presented a new type
of barycentric coordinate named biharmonic coordinate which is
natural generalization of harmonic coordinate [JMD*07] and is
useful for various applications, such as data interpolation and image
deformation. Finch et al. [FSH11] interpolated data for vector
graphics using the thin-plate spline which is expanded by Green’s
functions. In this paper, we define the biharmonic B-spline basis as
a combination of Green’s functions to approximate the integral of δ
function.

3. Brief Review of Bivariate Unbounded Biharmonic B-Splines

According to [FW12], the bivariate harmonic B-spline is constructed
from Green’s functions which are the solution of the harmonic
equation

�φy(x) = δ(x − y), (1)

where � is the Laplacian operator and δ is the Dirac delta func-
tion. On a 2D plane, the solution of Equation (1) is a Green’s
function φy(x) = 1

2π log(‖x − y‖). Given a set of centres t0, . . . , tn
(points on the 2D plane), a B-spline function ψ(x) can be con-
structed as a linear combination of the translated Green’s functions
centred at each knot ti (i.e. values of different functions at a com-
mon point), ψ(x) = ∑

i niφti (x). Because of the symmetry of the
Green’s function, ψ(x) = ∑

i niφx(ti). Therefore, the ψ(x) can also
be regarded as a linear combination of a Green’s function evaluated
at different points ti (i.e. values of a function at different points),
which is capable of representing a discrete differential operator
of the Green’s function. If the mask ni approximates the discrete
Laplacian operator, ψ(x) approximates the behaviour of Dirac delta
function [FW12].

In a closed region �, the Green’s theorem states that

∫ ∫
x∈�

�φy(x)dA =
∮

x∈∂�

∂φy(x)

∂n
ds, (2)

where n is the outward unit normal vector on the boundary ∂� of
�. The left-hand side of Equation (2) equals to 1 if point y is in �,
and otherwise it equals to 0. Supported by Voronoi tessellation, the
discrete line integral of function φx(y) is formulated as

∑
ti∈Nj

‖vij‖
‖eij‖ (φx(ti) − φx(tj )) �

∮
y∈∂Cj

∂φx(y)

∂n
ds, (3)
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where tj is the j th knot and Nj is the one-ring neighbouring (adja-
cent) knot set of tj (excluding tj ). Cj is the Voronoi cell of knot tj . vij
is the edge between knots ti and tj and eij is the Voronoi edge perpen-
dicular to edge vij . The harmonic B-spline is defined by the discrete
integral in Equation (3), satisfying the form of ψ(x) = ∑

i niφti (x).
The harmonic B-spline is provably localized and forms a partition
of unity.

Analogously, the biharmonic equation is �2φy(x) = δ(x − y)
whose solution is φy(x) = 1

8π ‖x − y‖2 log(‖x − y‖) on 2D plane.
The biharmonic form of Green’s theorem is

∫ ∫
x∈�

�2φy(x)dA =
∮

x∈∂�

∂�φy(x)

∂n
ds. (4)

The discrete bi-Laplacian operator is generated by iterative discrete
Laplacian and can be refined to cubic precision using a Vander-
monde matrix based on pseudo-inverse optimization.

4. Trivariate Biharmonic B-Splines

4.1. Continuous formulation

In 3D Euclidean space, the divergence theorem states that

�
�

(∇ · F) dV =
�
∂�

F · n dS. (5)

We substitute the vector-valued function F by ∇φy(x), and get

�
x∈�

∇2φy(x) dV =
�

x∈∂�
∇φy(x) · n dS, (6)

and thus,

�
x∈�

�φy(x) dV =
�

x∈∂�

∂φy(x)

∂n
dS. (7)

Furthermore, if the function F of Equation (5) is substituted by
∇(�φy(x)), we get

�
x∈�

�2φy(x) dV =
�

x∈∂�

∂�φy(x)

∂n
dS. (8)

That is to say, the volume integral of the bi-Laplacian of φy(x) equals
to the surface integral of the directional derivative of �φy(x). The
integral on the right-hand side of Equation (8) with variable y is
called the characteristic function, which is a continuous form of the
trivariate biharmonic basis and we will approximate it in a discrete
fashion.

The solution, which is a Green’s function, of biharmonic equation
�2φy(x) = δ(x − y) in 3D Euclidean space is φy(x) = − 1

8π ‖x − y‖,
where the − 1

8π is the normalization factor to make the integral on a
unit sphere equal to 1 if y ∈ �, and otherwise it equals 0.

As the point y is moving far away from region �, the charac-
teristic function vanishes, so it is localized. Given a set of regions

Figure 1: 2D illustration of sample knots. The knots in set T are
drawn in orange bounded by blue region boundary. Their one-ring
neighbours are drawn in purple and two-ring neighbours are drawn
in green. T ′ is the union of orange knots and purple knots. The black
knots are discarded.

�1, . . . , �n, such that �i ∩�j = 	, i 	= j and � = ∪ni=1�i , the
sum of the characteristic functions equals to one for any fixed point
y ∈ �, and otherwise it equals to zero for any fixed point y /∈ �.
Thus the sum of the characteristic functions forms a partition of
unity.

4.2. Ghost Knots

Given a bounded 3D region� and 3D knots T = {t1, . . . , tn} ⊂ �,
we define their adjacent relationships according to their Voronoi
diagram. If the Voronoi cells Ci , Cj have faces in common, knots
ti and tj are adjacent. A knot ti is a boundary knot if its Voronoi
cell is intersecting with the region boundary. Many differential
operators always rely on neighbouring knots to discretize them. For
instance, the discrete Laplacian operator is evaluated in the one-ring
neighbourhood of the central knot. However, due to the lacking
of neighbours of boundary knots, the accuracy of the discrete
differential operator decreases dramatically on the region boundary.
To ameliorate, we introduce additional ghost knots to assist the
discretization.

We sample more ghost knots outside the region � and compute
the Voronoi diagram of all the knots using Voro++ [Ryc09]. Then
we compute the union T ′ of T and their one-ring neighbours. If
T ′ contains boundary knots, we sample more ghost knots and re-
compute their Voronoi cells and T ′ until no boundary knots are
contained in T ′. Figure 1 shows an 2D example where the knots
in T are drawn in orange and one-ring and two-ring neighbouring
knots are drawn in purple and green, respectively. The set T ′ is
the union of orange and purple knots. The black knots are located
neither in one-ring nor two-ring neighbours so they are discarded.
The purple and green knots are ghost knots. Our algorithm does
not rely on the Voronoi cells explicitly but only the neighbouring
relationships derived from the Voronoi diagram.

4.3. Discrete Laplacian Operator

Conventional Discrete Laplacian. With the help of ghost knots,
we can discretize the characteristic function. In the Euclidean space,
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given a function p(x), the conventional discrete Laplacian operator
is

(�p)(ti) =
∑

tj∈Ni
(p(tj ) − p(ti)). (9)

Alternately, we have

�p(x) = ∇ · ∇p(x) = lim
V→0

1

V

�
∂C

∇p · n dS

= lim
V→0

1

V

�
∂C

∂p

∂n
dS.

(10)

Thus, the Laplacian operator can be discretized into

(�p)(ti) = 1

Vi

∑
tj∈Ni

Sj
p(tj ) − p(ti)

‖tj − ti‖ , (11)

where Vi is the volume of Voronoi cell Ci and Sj is the area of the
common face of Voronoi cells Ci and Cj . The second discretization
is more accurate than the first one, but it relies on the Voronoi cell
areas and volumes, which are ambiguous in the boundary Voronoi
cells.

Our Discrete Laplacian. We present a new method to com-
pute the discrete Laplacian operator optimized for a specific set of
functions. The common properties of different discrete Laplacian
operators (e.g. Equations 9 and 11) are that the two coefficients of
the terms in the summation are opposite to each other. So all the
coefficients’ summation vanishes, and the coefficient of the central
knot is negative while others are positive, which we call the intrinsic
property of Laplacian operator. The Laplacian of function p(x) at
knot tj is discretized into the form of

hjp(tj ) +
∑

tk∈Nj
hkp(tk), (12)

where hj denotes the j th element of the to-be-determined coeffi-
cient vector h(j ). Equation (12) represents the sum of differences
between the central knot and all its neighbours. To evaluate the dis-
crete Laplacian operator for the function set P = {pi(x)} at knot tj ,
we solve the following quadratic programming problem subject to
constraints of the intrinsic properties of Laplacian operator

h(j ) = arg min
h(j )

∑
pi (x)∈P

(hjpi(tj ) +
∑

tk∈Nj
hkpi(tk) −�pi(tj ))2,

s.t. hj +
∑

tk∈Nj
hk = 0, hj < 0, hk ≥ 0,

(13)

where h(j ) is a sparse vector whose elements uninvolved in Equa-
tion (13) are all zero.

In the framework of trivariate biharmonic B-splines, the func-
tion set is an infinite set of Green’s functions P = {φti (x) | ti ∈ �}.
We sample a finite subset of functions {φti (x) | ti ∈ T ′} for op-
timization. In other words, we translate the Green’s function to

all the knots in T ′. From continuous differential, we know that
�φti (x) = −1/(4π‖x − ti‖). For the specific function set, we solve
the following quadratic programming problem:

h(j ) = arg min
h(j )

|T ′ |∑
i=1

⎛
⎝hjφti (tj ) +

∑
tk∈Nj

hkφti (tk)

− 1

|Nj |
∑

tk∈Nj
�φti

(
tk + tj

2

))2

,

s.t. hj +
∑

tk∈Nj
hk = 0, hj < 0, hk ≥ 0,

(14)

where |T ′| denotes the number of elements in set T ′. To avoid
degeneration when knot ti coincides with knot tj , we use the average
of Laplacians around knot tj (i.e. 1

|Nj |
∑

tk∈Nj �φti (
tk+tj

2 )) instead

of the Laplacian at tj (i.e. �φti (tj )). For every knot tj ∈ T ′, we
compute the discrete Laplacian operator h(j ) using Equation (14).
The functions set specific Laplacian operators minimize the error
of discrete Laplacian operators as well as holding the properties of
Laplacian operator.

4.4. Discrete Biharmonic B-splines

The discrete trivariate biharmonic B-spline basis is to mimic the
surface integral of the characteristic function. We develop a novel
method to discretize the biharmonic operator. Similar to the Lapla-
cian operator, it is also a surface integral but without being divided
by the volume. Except for the intrinsic property (coefficients’ sum-
mation vanishes), an important constraint is that the directional
derivatives on the common face of adjacent Voronoi cells are op-
posite to each other since only their directions are opposite. Feng
and Warren [FW12] improved the iterated discrete Laplacian and
presented a cubic precision bi-Laplacian operator on 2D plane. To
do so, however, they broke the intrinsic property. To evaluate the bi-
harmonic basis for function set P = {pi(x)}, we solve the following
quadratic programming:

H = arg min
H

∑
pi (x)∈P

|T |∑
j=1

⎛
⎝Hjj�pi(tj ) +

∑
tk∈Nj

Hkj�pi(tk)

−
�
∂Cj

∂�pi(x)

∂n
dS

⎞
⎠

2

,

s.t. Hjj +
∑

tk∈Nj
Hkj = 0, Hjj < 0, Hkj ≥ 0, 1 ≤ j ≤ |T |,

Hkj = Hjk, 1 ≤ j ≤ |T |, tk ∈ Nj , (15)

where H is a matrix whose j th column is the coefficient of the bihar-
monic basis in the region. Other uninvolved elements in Equation
(15) are all zero making H be sparse. The constraint Hkj = Hjk is
necessary to make the directional derivatives on the common face
of adjacent Voronoi cells be opposite to each other. Given a function
p(x), its bi-Laplacian basis in the region of knot tj is formulated as
Hjj�p(tj ) + ∑

tk∈Nj Hkj�p(tk).
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Figure 2: Illustration of localization and partition of unity by the
function values on a sample line. (a) Localization: the basis function
values decay to zero approximately. (b) Partition of unity: the sum
of basis values approximates one.

For the infinite Green’s function set of trivariate B-splines, we
sample a finite subset {φti (x) | ti ∈ T } and optimize

H= arg min
H

|T |∑
i=1

|T |∑
j=1

⎛
⎝Hjj�φti (tj )+

∑
tk∈Nj

Hkj�φti (tk)−δij
⎞
⎠

2

,

s.t. Hjj+
∑

tk∈Nj
Hkj =0, Hjj < 0, Hkj ≥ 0, 1 ≤ j ≤ |T |,

Hkj = Hjk, 1 ≤ j ≤ |T |, tk ∈ Nj ,

(16)

where δij = 1 if i = j and otherwise δij = 0. The Laplacian
�φti (tj ) and�φti (tk) are replaced by their discrete Laplacian oper-
ators computed in Equation (14).

We formulate the biharmonic B-spline basis function as a linear
combination of Green’s functions of biharmonic operator, which
is similar to the thin-plate spline in spirit. Instead of interpolating
control knots, we fit the values of the control knots subject to cer-
tain constraints in order to mimic the behaviour of bi-Laplacian
operator.

5. Properties of Trivariate B-splines

5.1. Localization

The discrete trivariate B-spline would not vanish exactly outside the
integral region, but it decays fast as the point is moving far away
from the central knot as shown in Figure 2(a).

Theorem 1. If the discrete biharmonic operator is precise to
degree d , given a point x0, when r → +∞, ψj (rx0), denoting
the characteristic function in cell Cj , decays to zero at a rate
of O( 1

rd
).

Proof.

ψj (rx0) =
∑
i

nijφti (rx0) = r
∑
i

nijφr−1ti (x0)

= r
∑
i

nijφx0 (r−1ti),

Figure 3: When summing the discrete bi-Laplacian operator, the
inner edges (black arrows) vanish leaving just the boundary sums
(blue arrows).

where nij is the coefficients of the biharmonic operator in cell Cj .
Since

∑
i nij = 0, it can be derived that

lim
r→+∞

r
∑
i

nijφx0 (r−1ti) = 0.

Therefore, if we expand
∑

i nijφx0 (r−1ti) with variable r−1 at point
0 by Taylor expansion, it converges to 0 at a rate of O( 1

rd+1 ) when
r → +∞. So ψj (rx0) converges to 0 at a rate of O( 1

rd
). �

The discrete biharmonic operator decays fast towards zero, ap-
proximating the characteristic function, which is localized.

5.2. Partition of Unity

The sum of all the basis functions approximates one and thus
approximates a partition of unity as shown in Figure 2(b). As
described in Section 4.1, the sum of all the characteristic functions
equals to one for any fixed point y ∈ �, and otherwise it equals
to zero for any fixed point y /∈ �. Our discrete biharmonic basis
functions approximate these characteristic functions. So the
sum of all the basis functions should approximate 1 and thus
approximate a partition of unity. Moreover, we give another
interpretation from another point of view as follows. Since ψj (x) =
Hjj�φtj (x) + ∑

tk∈Nj Hkj�φtk (x) and Hjj + ∑
tk∈Nj Hkj = 0,

ψj (x) = ∑
tk∈Nj (Hkj�φtk (x) − Hkj�φtj (x)). In other words, it

is the sum of differences between the central knot and all of
its neighbours. Though the term Hkj�φtk (x) − Hkj�φtj (x) is
derived from the global optimization of Equation (16), it should
also approximate the integral of the characteristic function on
the common Voronoi face of adjacent knots tk and tj . The term
Hjk�φtj (x) − Hjk�φtk (x) is opposite to Hkj�φtk (x) − Hkj�φtj (x)
since Hkj = Hjk . So when summing all of the bases, the differences
between inner adjacent knots (black arrows in Figure 3) vanish, such
that

∑
i ψi(x) = ∑

ekj∈(T ′−T ,T )(Hkj�φtk (x) − Hkj�φtj (x)), which
approximates the boundary integral of the region (blue arrows in
Figure 3). Since the boundary integral of Equation (8) equals to
one, the sum of basis functions approximates a partition of unity.

c© 2014 The Authors
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Figure 4: Illustration of the effect of the intrinsic constraint of
the Laplacian operator. (a) Without the constraint. (b) With the
constraint.

5.3. Constraints

The intrinsic property (i.e. the sum of coefficients of the Laplacian
operator vanishes) of Laplacian operator is necessary for the opti-
mization. We compare the results with and without the constraints
in Equations (14) and (16) to illustrate its effects. Figure 4 shows
the sum of bases computed by ignoring the constraints and the orig-
inal form. It is clear that the sum of bases is unsmooth without the
constraints compared to the original form due to overfitting to the
object functions with fewer constraints.

6. Qualitative and Quantitative Evaluation and Comparison
of Basis Functions

We evaluate and compare our method with respect to Feng’s
method [FW12] which can be generalized to 3D domain directly.
They compute the bi-Laplacian operator by iterated discrete Lapla-
cian followed by refining it to cubic precision under cubic con-
straints. In Section 6.1, we compare the overall precision of our
method to Feng’s method, and in Section 6.2, we compare the spe-
cific basis functions with different sampling knots.

6.1. Basis Function Precision

The error of the discrete operator centred at knot tj at point x is
e = ψtj (x) − δtj (x), where δtj (x) = 1 if x is in the Voronoi cell of
tj , and otherwise δtj (x) = 0. It is a rational assumption that the errors
have a Gaussian distributionN (0, σ 2) with mean 0 and variance σ 2.
Given a set of fitting errors {e1, . . . , en}, the joint probability density
function is

L(X1 =e1, . . . , Xn=en)=
n∏
i=1

fg(X = ei)= 1

σ
√

2π

n∏
i=1

e
− e2

i

2σ2 ,

lnL(X1 = e1, . . . , Xn = en) = − 1

σ 2

n∑
i=1

e2
i + ln

1

σ
√

2π
.

(17)

It is evident that a larger joint probability density L(X1 =
e1, . . . , Xn = en) is equivalent to be with a smaller sum of squared
errors

∑n

i=1 e
2
i . Thus, given two groups of fitting errors at different

Figure 5: Mean squared error comparison of our method and
Feng’s algorithm. The horizontal axis is the region index and the
vertical axis is the mean squared error.

Figure 6: Mean squared error comparison of our method and
Feng’s algorithm. The horizontal axis is the region index and the
vertical axis is the mean squared error.

samples, we use the mean squared error to measure and evaluate
their precisions. It also presents greater penalties to large errors
compared to mean absolute errors.

For comparisons, we formulate the fitting errors as the following
equation:

e = 1

|T | × |S|
∑
ti∈T

∑
xj∈S

(ψti (xj ) − δti (xj ))
2, (18)

where the sample point set S = {xj |xj = 1
|Nj |

∑
tk∈Nj (tj + tk)/2},

i.e. we sample one point in every Voronoi cell, which is the average
of the middle points of the centre and its neighbouring knots.

Given 72 regions, we construct biharmonic B-spline basis func-
tions independently in every region to compare the basis errors. In
this paper, all the regions are dilated by 3 voxels to satisfy the needs
for intensity fitting as explained in Section 7 as well as filling small
gaps near the boundaries. Figures 5–7 illustrate the comparisons to
Feng’s method, in which the horizontal axis denotes the 72 regions
(indices start at 0) and the vertical axis denotes the squared error
computed by Equation (18). First, we sample the knots evenly with
small random perturbations and the errors are shown in Figure 5(a)
with about 40–90 bases in every region. The averages of errors are
0.001094 and 0.000923 using Feng’s and our methods, respectively.
In Figure 5(b), we construct about 130–180 bases for every region
and the averages of errors are 0.000509 and 0.000461, respectively.
Secondly, we sample more knots near the original boundaries before
dilation and the errors are shown in Figure 6(a) with about 140–180
bases in every region. The averages are 0.002207 and 0.000892,
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Figure 7: Mean squared error comparison of our method and
Feng’s algorithm. The horizontal axis is the region index and the
vertical axis is the mean squared error.

respectively. In Figure 6(b), we construct about 210–280 bases for
every region and the averages are 0.00099 and 0.000501, respec-
tively. Thirdly, we sample some knots (five) randomly and then
sample other knots under (coordinate-wise) Gaussian distribution
centred at the five knots, respectively, and the errors are shown in
Figure 7(a) with about 20–80 bases in every region. The averages are
0.009882 and 0.003621, respectively. In Figure 7(b), we construct
about 60–160 bases for every region and the averages are 0.005563
and 0.001791, respectively. In the first case, the two methods pro-
duce similar results and ours is a little better than Feng’s. In the
second and third cases, Feng’s method becomes rather unstable as
the result is fluctuating significantly. In contrast, our method in such
cases is as good as the first case. It is obvious that our method
produces more precise results than Feng’s method, especially in the
case of unevenly sampled knots, and our method is more robust to
combat unevenly distributed knots.

6.2. Basis Functions Comparison

For a region with free boundary, Figures 8, 9 and 10 illustrate the
basis functions and sum of basis functions on some cross-section
planes in the region bounding box, under different sample knots,
computed by our algorithm and Feng’s algorithm, respectively. Sim-
ilar to the last subsection, in Figure 8, the knots are evenly distributed
with small random perturbation, we produce smoother basis func-
tions as shown in Figures 8(a) and (c) compared to (b) and (d), which
suffer from poles around the bases resulting from the uneven distri-
butions of neighbouring knots. Our sum of bases appears smoother
than Feng’s result as shown in Figures 8(e) and 8(f).

In Figure 9, after evenly sampling, we sample more knots near
the original boundary before dilation. In contrast to Figures 9(a)
and 9(c), the unevenly distributed neighbours result in poles with
extremely negative values using Feng’s method as shown in Fig-
ures 9(b) and 9(d), respectively, the reason for which will be dis-
cussed later. The sum of bases are shown in Figures 9(e) and 9(f)
respectively, where our result appears smoother than Feng’s result.

In Figure 10, some knots (five) are sampled randomly and then
other knots are sampled under (coordinate-wise) Gaussian distribu-
tion centred at the five knots, respectively, such that the knots dis-
tribute rather unevenly. We compute their basis functions as shown
in Figures 10(a) and 10(c), respectively. Nevertheless, the maximum

Figure 8: Basis functions and the sum of basis functions with evenly
distributed knots.

has exceeded 1.5 and the pole with extremely negative appears in
10(b) using Feng’s method and it also exceeds 1.4 in (d). Our sum of
bases (Figure 10e) appears much smoother than Feng’s result (Fig-
ure 10f) which has been nearly failing in case of extremely unevenly
sampled knots.

We observe that, when a neighbouring knot is relatively much
too close to the central knot compared to other neighbouring knots,
Feng’s method would suffer from dramatic distortions, failing to
construct the local basis. Hence, a pair of adjacent knots (that are
too close) results in a pair of seriously distorted basis functions
centred at the two knots. Figures 11(a) and 12(a) illustrate two basis
functions evaluated by Feng’s method centred at two very close
knots as an example. The discrete biharmonic operator at knot tj is
formulated as

ψj (x) = − 1

8π

∑
i

nij‖x − ti‖. (19)
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Figure 9: Basis functions and the sum of basis functions with a bit
more knots randomly sampled in the interior of the region.

The summation of coefficients
∑

i nij = 0. Ideally, the coefficient
of the central knot is a relatively large positive number and the
others are relatively small around 0. However, because the distance
between the two knots is the denominator of the coefficients (Equa-
tion 11), the unevenly distributed neighbouring knots result in biased
negative coefficient (with a larger absolute value) for the neighbour-
ing knot (that is too close) as well as very large positive coefficient
for the central knot. It means the summation − 1

8π

∑
i nij‖x − ti‖ is

dominated by the two terms, which gives rise to extremely negative
value (i.e. poles) around the neighbouring knots (that are too close)
and extremely large value (high peak) around the central knot. We
evaluate the values of the basis functions at these sample knots. In
the first basis, the values reach 3.61 at the central knot and −1.89 at
the neighbouring knots. Analogously, in the second basis function,

Figure 10: Basis function and the sum of basis functions with knots
randomly sampled around some centres.

Figure 11: (a) The extremely distorted basis by Feng’s method. (b)
The smooth basis by our method.
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Figure 12: (a) The extremely distorted basis by Feng’s method. (b)
The smooth basis by our method.

Figure 13: The values of the basis functions at the central knots.
Vertical axis is the function value and the horizontal axis is the
central knots’ indices. (a) Feng’s method. (b) Our method.

Figure 14: The value distribution of the basis functions at the neigh-
bouring knots in the region. Vertical axis is the function value and
the horizontal axis is the neighbouring knots’ indices. (a) Feng’s
method. (b) Our method.

the values are 2.90 at the central knot and −2.57 at the neighbour-
ing knot. The two figures illustrate the basis functions on a plane
crossing the central knots rather than in the entire 3D space, so
the extremal values are different from the above values (due to the
discrete sampling, the central knots may not happen to be sampled).

In contrast, our optimization method distributes the error more
evenly and produces much smoother basis functions with slight dis-
tortion as shown in Figures 11(b) and 12(b). The values of basis are
0.931 and 0.111 at the central and neighbouring knots, respectively,
in the first basis function. Meanwhile, they are 0.940 and −0.125,
respectively, in the second one.

Figures 13 and 14 illustrate the values of all the basis func-
tions at the central and neighbouring knots (excluding ghost knots),

respectively, where the horizontal axes denote the knot indices and
the vertical axes denote the values. The values at the centroid knots
should be around 1. The average difference to 1 is 0.0799 using
our method, but instead, it is 0.2481 using Feng’s method. On the
other hand, the values at the neighbouring knots should be around
0. The average difference to 0 is 0.01932 using our method, but it is
0.02167 using Feng’s method. Many of the values of Feng’s method
are moving out of the reasonable range. It clearly shows that our
method is more stable and generates much better results than Feng’s
method.

7. Application and Comparison

We use the biharmonic B-splines to fit 3D volume data to demon-
strate the usefulness of these basis functions, and then make com-
parison to Feng’s algorithm [FW12]. The functions represented by
the basis functions are continuous. In order to preserve the dis-
continuity of the volume intensities, we segment the volume into
supervoxels (regions) [ASS*12] and then fit the volume intensities
independently.

7.1. Supervoxel Intensity Fitting

After segmentation into supervoxels, the intensities of every su-
pervoxel are fitted independently. The intensity function of ev-
ery supervoxel Vi is formulated as 	i(x)Himi , where 	i(x) =
[φt1 (x), φt2 (x), . . . , φt|T ′ | (x)], mi is the coefficient vector of the ith
supervoxel and t1, t2 . . . , t|T ′ | are the |T ′| sample knots (including
ghost knots) of the superpixel Vi . Since each basis function is local-
ized, it is adequate to approximate the supervoxel intensities. For
each supervoxelVi , we fit its intensities by minimizing the following
energy function:

mi = arg min
mi

∑
xj∈Vi

(	i(xj )Himi − c(xj ))2, (20)

where c(xj ) is the intensity of the point xj .

7.2. Fitting Results

We use synthetic and real volume images to test and compare our
algorithm to Feng’s [FW12]. We use two synthetic volume images,
monochromatic and gradient volume images, for our experiments
at the beginning.

We synthesize a 128 × 128 × 80 monochromatic volume image
with intensity 200. The results are documented in Table 1, where four
different numbers of basis functions are sampled for comparison.
The number of basis functions divided by the number of voxels is
documented in the first row and the second and third rows document
the relative error of our method and Feng’s algorithm, respectively.
The relative error is defined as the average of all the fitted error
divided by the real intensity 200. It is formulated as ( 1

n

∑n

i |vi −
200|)/200, where n is the number of voxels and vi is the fitted value
of the ith voxel. It is apparent that our algorithm produces much
more precise results compared to Feng’s algorithm.
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Figure 15: Comparisons of some of the fitted slices using the bases constructed by our algorithm and Feng’s algorithm as well as piecewise
constant intensity, respectively. Every supervoxel is coloured randomly. The volume data are Knee (row 1), Heart (row 2), Tooth (row 3),
Lobster (row 4), and the data sets courtesy of http://www.stereofx.org/.

Table 1: Statistics of fitting of monochromatic volume image.

Case1 Case2 Case3 Case4

Bases/Voxels 4.79% 3.05% 1.88% 1.23%
Ours 0.367% 0.904% 1.34% 2.27%
Feng 0.524% 1.17% 1.85% 3.19%

Analogously, we synthesize a gradient volume image and the
results are documented in Table 2. The relative error is defined as
( 1
n

∑n

i |vi − v′
i |)/255, where the vi and v′

i denote the fitted intensity

Table 2: Statistics of fitting of gradient volume image.

Case1 Case2 Case3 Case4

Bases/Voxels 4.65% 3.06% 1.88% 1.21%
Ours 0.249% 0.461% 0.692% 1.25%
Feng 0.323% 0.589% 0.943% 1.67%

and original intensity of the ith voxel, respectively, and 255 is the
maximum intensity. Also, it is obvious that our algorithm produces
much more precise results compared to Feng’s algorithm.
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Table 3: Statistics of real volume data.

Bases Error Error Error
Model Resolution Supervoxels (Bases/Voxels) Knots (Ours) (Feng) (Constant)

Knee 512×512×87 2374 499 136 (2.19%) 2 042 723 4.56% 4.89% 6.00%
Heart 352×352×256 3057 464 679 (1.46%) 2 210 665 1.91% 2.23% 2.56%
Tooth 256×256×161 1008 228 279 (2.16%) 1 022 267 1.12% 1.52% 1.75%
Lobster 301×324×56 420 64 193 (1.18%) 330 513 0.844% 1.019% 1.747%

We also test four real volume data and make comprehensive com-
parisons. Some slices of the four real volume data and their fitted
slices are illustrated in Figure 15 (Please refer to the attached video
for more slices). The volumes are segmented into supervoxels as
shown in the second column and they are fitted independently to
preserve intensity boundaries (i.e. discontinuity). For comparison,
we show the results by assigning a constant intensity (i.e. the av-
erage intensity of the supervoxel) for every supervoxel. In every
supervoxel, we sample five points randomly and sample the knots
under (coordinate-wise) Gaussian distribution centred at the five
points randomly, giving rise to highly unevenly distributed knots.
In order to hold enough support for supervoxel’s boundary, we
extend the boundary outward for 3 voxels when sampling knots,
resulting in some basis centres outside the supervoxel’s bound-
aries within 3 voxels intentionally. The basis functions computed
by our method exhibit much better fitting results than Feng’s al-
gorithm especially on the supervoxels’ boundaries, as illustrated
in the third and fourth columns of Figure 15. The fifth column
shows the piecewise constant fitting slices (i.e. every supervoxel
is filled by its average intensity) to illustrate the contributions of
supervoxels. The statistics are documented in Table 3. The error is
evaluated similar to the case of the gradient volume image. It is ob-
vious that our basis functions produce much more precise fitted vol-
umes compared to Feng’s algorithm and piecewise constant fitting
method.

It may be noted that, the thin-plate spline is also formulated
as a linear combination of Green’s functions capable of interpo-
lating/fitting a data set for graphics applications. It interpolates the
function values (e.g. volume intensities) while minimizing the bend-
ing energy according to the values at the sparsely sampled knots,
but, it is inappropriate to fit the volume intensities without consider-
ing the values at other voxels. Instead, we fit the volume intensities
using basis functions constructed by Green’s functions according to
Equation (20).

Performance. We use Gurobi (http://www.gurobi.com) as the
quadratic programming solver. Our algorithm is implemented in
C++, which runs on an Intel i7-3770 CPU and partially on an
NVIDIA GTX 680 GPU to assemble matrices. The timing statis-
tics for different numbers of bases are documented in Figure 16.
Because of the global optimization in Equation (16), the running
time increases a bit faster than linear function as the numbers of
bases increase. It may be noted that, we have not yet made extensive
efforts to optimize the programme/code and these documented data
also include timing to perform several data swapping operations.
The Feng’s algorithm for comparison is implemented in Matlab and
uses Qhull (http://www.qhull.org) to compute the Voronoi diagram.

Figure 16: The time performance of our algorithm.

Limitation. There still remain some problems necessary for fur-
ther improvement. The quadratic programming in Equation (16) is
a global optimization involving a large number of variables, and
in principle it prevents the number of knots from increasing to a
large value. Another issue is that, the maximum of sum of basis
functions in our method may reach to 1.2 to 1.3, which essentially
is a compromise to the smoothness of the basis functions.

8. Conclusion and Future Work

In this paper, we have articulated a novel method to formulate the
discrete bi-Laplacian operator as a quadratic programming problem
optimized for a specific function set, which is more suitable for 3D
bi-Laplacian than the existing 2D methods. Our algorithm is espe-
cially robust and stable when the knots are sampled unevenly than
Feng’s algorithm [FW12], which has been demonstrated extensively
throughout this paper using various examples. We have also applied
our novel trivariate biharmonic B-splines to volume image fitting
and compared our method to Feng’s formulation based on our com-
prehensive experiments in both synthetic and real volume images,
which have demonstrated the superiority of our new formulation.
The unevenly sampled knots may be useful for adaptive fitting with
different accuracies on different parts of the volume. Except for
the intensity fitting, the biharmonic B-spline may also be used for
supervoxel shape fitting, volume data simplification, etc.

As for our ongoing and near-future research efforts, we are plan-
ning to implement our newly designed algorithms completely on
CUDA to continue to improve the computational efficiency to the
maximum extent. And we also plan to generalize the biharmonic
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B-splines to higher dimensional space and explore more applica-
tions using the biharmonic B-splines to extend their application
scopes.
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