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Current popular anomaly detection algorithms are capable of detecting global anomalies but often fail
to distinguish local anomalies from normal instances. Inspired by contemporary physics theory (i.e., heat
diffusion and quantum mechanics), we propose two unsupervised anomaly detection algorithms. Building
on the embedding manifold derived from heat diffusion, we devise Local Anomaly Descriptor (LAD), which
faithfully reveals the intrinsic neighborhood density. It uses a scale-dependent umbrella operator to bridge
global and local properties, which makes LAD more informative within an adaptive scope of neighborhood.
To offer more stability of local density measurement on scaling parameter tuning, we formulate Fermi
Density Descriptor (FDD), which measures the probability of a fermion particle being at a specific location.
By choosing the stable energy distribution function, FDD steadily distinguishes anomalies from normal
instances with any scaling parameter setting. To further enhance the efficacy of our proposed algorithms,
we explore the utility of anisotropic Gaussian kernel (AGK), which offers better manifold-aware affinity
information. We also quantify and examine the effect of different Laplacian normalizations for anomaly
detection. Comprehensive experiments on both synthetic and benchmark datasets verify that our proposed
algorithms outperform the existing anomaly detection algorithms.
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1. INTRODUCTION

Anomaly detection, or outlier detection, is of great significance to many real-world
applications [Zhu et al. 2009; Pogorelc and Gams 2010], such as cancer diagnostics
and virus detection. Its primary goal is to distinguish normal instances from a small
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Fig. 1. (a) Synthetic dataset with normal instances (blue), global anomalies (yellow), and local anomalies
(red and green). (b) LOF score with k = 10. (c) IForest score. The anomalous score are visualized as a height
bar over all instances. For each algorithm output, the anomalous score are normalized in the range of [0, 1]
to have an easy comparison. We can see that both LOF and IForest fail to totally distinguish local anomalies
from normal instances.

portion of new or abnormal instances (anomalies) [Chandola et al. 2009; Liu et al.
2008; Liu et al. 2011]. In many applications, anomalies are sparse and quite diverse,
and learning with the known anomalies [Gao et al. 2006; Wu and Ye 2009; Blanchard
et al. 2010] may not be necessarily useful in detecting the unknown ones in previously
unseen data [Syed and Rubinfeld 2010]. On the other hand, manually labeling known
datasets can be extremely time consuming for real-life applications and sometimes
even unpractical to detect new types of rare events. Therefore, the key challenge of
anomaly detection still lies in its ability to quantitatively characterize the intrinsic
and informative density distribution around every instance in a unsupervised fashion.

In this article, we propose two different unsupervised anomaly detection algorithms:
Local Anomaly Descriptor (LAD) and Fermi Density Descriptor (FDD). They measure
instance anomalous score based on different physics theory—that is, heat diffusion
and quantum mechanic theory, respectively. Compared with the existing algorithms
[Breunig et al. 2000; Papadimitriou et al. 2003; Liu et al. 2008; Ting et al. 2010; Agovic
et al. 2007], our methods are capable of measuring local density more effectively for
the following reasons:

—Our methods have solid physics theory background.
—Our methods are based on manifold space, where the distance between anomalies

and normal instances would be magnified. It makes anomalies more salient than in
the input space.

—Our methods provide a more adaptive scope of neighborhood, which is of great impor-
tance to distinguish not only global but also local anomalies from normal instances.

—Our methods are highly desirable to combat scaling parameter tuning sensitivity.

These properties make our algorithms more informative and intrinsic to detect
anomaly.

1.1. Related Work

According to the most classical definition by Hawkins [1980], an anomaly is “an obser-
vation which deviates so much from the other observations as to arouse suspicion that
it was generated by a different mechanism.” However, it is far from trivial to define the
quantitative sense of “deviates so much from the other observations.” As Figure 1(a)
illustrates, global anomalies (in yellow) are those data points with low density in the
entire data space. We can also say that these points are with globally low neighborhood
density. On the other hand, local anomalies (in red and green) are data points with
low local density in a constrained region. We call that these points are with locally
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low neighborhood density. Profoundly speaking, local anomalies can be thought of as
a generalization of global anomalies, as global anomalies will typically also be local
anomalies, but not vice versa [De Vires et al. 2010].

In implementation, k-th nearest neighbor (kNN)-based algorithms such as LOF
[Breunig et al. 2000], LDOF [Zhang et al. 2009], and LOCI [Papadimitriou et al. 2003]
are defined on Euclidean distance. LOF [Breunig et al. 2000], one of the earliest works
using kNN distance for anomaly detection, defines anomaly if its distance to its kNN is
greatly larger than the distances of its neighbors to their own kNNs. Recent research
[De Vires et al. 2010] extended LOF to a high-dimensional dataset by using random
projection to reduce dimensions. Two major drawbacks of these approaches are as
follows. First, they tend to miss local anomalies (Figure 1(b)) since it is not peculiar
that kNN distances of local anomalies are similar to those of their normal instance
neighbors. Second, it is of extreme importance to determine the value of k to faithfully
reveal the instance anomalous score. On the one hand, k cannot be too small to avoid
statistical error. Specifically, we need to ensure that for each instance, especially those
forming a microcluster of anomalies, it covers a large enough neighborhood that in-
cludes more normal instances than anomalies. On the other hand, too large of a k will
lead to overlooking some genuine anomalies. In Section 9.2, we will show that LOF is
unpractical to detect anomalies in benchmark datasets by analyzing its sensitivity of k.

Instead of detecting anomalies based on average neighborhood distance, recent ap-
proaches such as IForest [Liu et al. 2008, 2011] and Mass [Ting et al. 2010] are to
separate the anomalies from normal instances with their noteworthy attribute distri-
bution. A representative anomaly definition [Liu et al. 2008] in these papers states that
anomalies should have “attribute-values that are very different from those of normal
instances” and at the same time should be “minority consisting of fewer instances.”
Therefore, these approaches have the capacity to handle anomalies with different at-
tribute distribution compared with normal instances. Nonetheless, they may fail to
detect local anomalies when their attributes have not-so-different distribution with
some normal instances. From Figure 1(c), we can see that even though IForest does
a good job on global anomaly detection, it fails to distinguish local anomalies (green
and red instances in Figure 1(a)) from the “boundary” instances in the cluster of nor-
mal instances (blue instances in Figure 1(a)). This is because these anomaly detectors
partition instances mainly based on observable attributes or, more precisely, the at-
tribute distribution in input data space. Therefore, it will fail miserably when the
anomaly distribution becomes far less discriminative if they share similar attribute
range/distribution pattern with parts of the normal instances. In Figure 2, we can see
that some anomalies have overlapping distribution with normal instances on the first
four eigenvectors in ionosphere dataset (a popularly used dataset for anomaly detec-
tion [Liu et al. 2008; Hempstalk et al. 2008; Noto et al. 2010]). Such overlapping also
appears at nonclassical multidimensional scaling (MDS) as well. This case, to a cer-
tain degree, shows that the aforementioned problem indeed exists in some real-world
applications.

Since the neighborhood density is not as straightforward as pairwise distance or
attribute distribution in the input space, many researches turned to manifold space.
In an ideal manifold projection with enlarged distance between anomalous and nor-
mal instances, anomaly detection is no longer as hard as that in the input space. A
few techniques [Agovic et al. 2007] tried to find an approximation of the data using
a combination of attributes that capture the bulk of the variability in the data and
then detect anomalies on the projected space. This kind of approach is to approxi-
mate the manifold subspaces in which the anomalous instances can be easily identified
[Chandola et al. 2009]. However, the existing algorithms are based on suboptimal tech-
niques such as isometric feature mapping (ISM) and locally linear embeddings (LLEs)
[Agovic et al. 2007], which are highly sensitive to density-varying and complex data
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Fig. 2. Histogram of anomalies (red) and normal instances (blue) on the first four eigenvectors (*) of the
ionosphere dataset (a popular benchmark dataset for anomaly detection [Liu et al. 2008; Hempstalk et al.
2008; Noto et al. 2010]). Some anomalies have overlapped distribution with parts of normal instances, and
therefore it is nontrivial to separate them simply by difference between attribute distributions. The asterisk
(*) designates that since the dataset is high dimensional, dimension reduction is imperative to provide a
concise illustration. Although eigenvectors do not necessarily show full distribution of the input data, they
tend to show certain patterns of original dimensions in the input space.

distribution [Lafon et al. 2006; Van der Maaten et al. 2009]. Therefore, anomaly detec-
tion algorithms based on such manifold reconstruction mechanism may fail miserably.

1.2. Motivation

Motivated by the aforementioned problems, we refine the definition of anomaly as
follows.

Definition 1.1. Anomalies are those instances with (1) locally low neighborhood
density and (2) small quantity of similar instances compared with normal instances.

To capture anomalies under such definition, we consider the Laplace operator in
physics theory, which has solid foundation and intrinsic relationship with manifold re-
construction. The reason we resort to manifold space is that normal instances usually
lie on low-dimensional embedding structures with high density. But the anomalies pro-
jected in manifold space tend to deviate from the normal instances, which makes them
more discriminative. On the other aspect, measurement of anomalous score is highly
related to similarity function in that the anomalous score of an instance is high if it
has few similar neighbors. The Laplace operator is a differential operator given by the
gradient divergence of a function on Euclidean space. Therefore, the Laplace operator,
if it is performed on a similarity matrix, is capable of representing the flux density
of the gradient flow of the neighborhood similarity. Consequently, it offers a natural
mechanism to express intrinsic neighborhood density information. Furthermore, the
Laplace operator occurs in differential equations that describe many physical phenom-
ena, such as the diffusion equation for heat and quantum mechanics. These properties
deliver inspiration and a solid theoretical foundation to our research in this work.
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1.3. Contributions

This article articulates two physics-based unsupervised anomaly detection algorithms
with the following contributions:

(1) We are the first to quantitatively characterize local density information based on
heat diffusion theory (Section 3) and develop LAD (Section 5.1). This method has a
locally adaptive scope of manifold-aware neighborhood and therefore can very well
satisfy the first property of our proposed anomaly definition in Section 1.2.

(2) In favor of taking the amount of similar instances into account (the second property
of the definition in Section 1.2), we integrate a scale-dependent umbrella operator
(Section 5.1) into LAD that can bridge the gap between local and global information.

(3) We are the first to explore the use of quantum mechanics theory (Section 6) in
anomaly detection and propose FDD (Section 7), which supplies rigorous probabilis-
tic explanation for detecting anomalies and supreme stability to scaling parameter
tuning.

(4) We first analyze different Laplacian normalization effects (Section 7.2) with the
goal of anomaly detection. Both theoretical proof and quantitative experiments
demonstrate that unnormalized Laplacian Lnn is the most responsive to local neigh-
borhood density.

(5) We explore the use of anisotropic Gaussian kernel (AGK, Section 4), which more
faithfully approximates the similarity between instances in the ideal manifold
space and therefore can best help in manifold reconstruction with the goal of
anomaly detection.

(6) We systematically evaluate the proposed algorithms with several closely related
baseline algorithms on a number of benchmark datasets (Section 9). Our algo-
rithms show not only better average performance but also more stable results than
the other popular algorithms. Moreover, experiments confirm that FDD affords
robustness for scaling parameter selection.

2. BACKGROUND OF GRAPH LAPLACIAN AND SPECTRAL ANALYSIS

The Laplace operator, when applied on spectral analysis methodology, is called graph
Laplacian. In this section, we want to introduce the unnormalized and normalized
graph Laplacians on finite weighted graphs.

In this work, we denote X, which is an n×mmatrix, as a dataset with n instances, and
each instance has mfeatures. Its global similarity matrix W , an n×nmatrix, represents
the pairwise likeness of instances considering the whole feature space. Gaussian kernel
(GAU) is one of the most generally used options for constructing W :

W (GAU )(i, j) = exp
(− ‖ x(i) − x( j) ‖2

2σ 2

)
, i, j = 1, . . . , n, (1)

where σ controls the width of the neighborhood [Luxburg 2007]. The degree matrix D
is defined by D(i, j) = ∑n

p=1 W(i, p) if i = j, and 0 otherwise. Then, the unnormalized
Laplacian matrix Lnn can be defined as

Lnn = D − W, (2)

which is the difference between the degree matrix D and the similarity matrix W of
the graph. The nice properties of Lnn have been discussed in Luxburg [2007]. One of the
most important ones is that Lnn has as many eigenvalues 0 as there are connected com-
ponents, and the corresponding eigenvectors are the indicator vectors of the connected
components.

There are two common ways of normalizing Lnn to correct its bias of different density
[Luxburg 2007; Coifman and Lafon 2006]: one is the symmetric normalized Laplacian
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matrix Lsym, and the other is random walk normalized Laplacian matrix Lrw:

Lsym = D−1/2Lnn D−1/2. (3)

Lrw = D−1Lnn. (4)

The matrix Lsym has the advantage of being symmetric; therefore, it has a more bal-
anced view in the instance neighborhood, whereas Lrw is a stochastic matrix that can
be viewed as the transition matrix of a Markov chain on each instance.

To better depict the global distribution, Coifman and Lafon [2006] analyzed these two
normalization and proposed a new normalization family. It is shown by these authors
that if we assume uniform sampling of data points from a submanifold M, the eigenvec-
tors of Lrw with σ → 0 and n → ∞, tend to approximate the Laplace-Beltrami operator
on M, which guarantees manifold structure reconstruction. However, in reality, the
sampled data points tend to be nonuniform and show skewed density distributions, re-
sulting in poor manifold structure reconstruction. To improve the global distributional
sensitivity of traditional normalization, the following two additional normalizations
are considered in Coifman and Lafon [2006]:

Lf p = I − D−1W
′
, (5)

where W
′ = D−1/2WD−1/2, and

Llbn = I − D−1W
′′
, (6)

where W
′′ = D−1WD−1. Lfp is called Fokker-Planck normalization, and Llbn is called

Laplace-Beltrami normalization. Especially, Laplace-Beltrami normalization can re-
move the influence of the dataset density and recovers manifold structures on M with
the condition of both σ → 0 and n → ∞ [Coifman and Lafon 2006]. In other words, the
additional renormalization of affinity matrix W enables the reconstruction of manifold
structures better under nonuniform density distribution for the purpose of clustering.

From any of the aforementioned L∗∗, we can obtain the corresponding eigenvectors.
In spectral analysis theory, the first c (c � m) nontrivial eigenvectors with the smallest
eigenvalues (except 0) are the most important signal components, which in theory form
the manifold structure of X [Luxburg 2007]. Denote these c eigenvectors as Y, which
is an n × c matrix. Each row of Y is the corresponding coordinates of each original
instance in the manifold space, whereas each column of Y (eigenvector) represents
an axis (dimension) in the manifold space. These eigenvectors are orthogonal to each
other and together provide the compressed and embedding representation of a dataset’s
distribution.

As far as we know, there is no other research focus on the effect of different Lapla-
cians on anomaly detection. In our article, we will analyze this problem with the two
manifold-based techniques that we proposed.

3. HEAT KERNEL SIGNATURE BASED ON HEAT DIFFUSION

3.1. Introduction of Heat Diffusion

Our first proposed algorithm is strongly inspired by heat diffusion theory [Hsu 2002]
in that it can provide information intimately related to local density. Heat theory can
be interpreted as the transition density function of Brownian motion [Sun et al. 2009],
which is the most fundamental continuous time Markov process. The Laplace operator
is closely associated to heat diffusion, connecting geometry of a manifold with the
properties of the heat flow. Using the discrete Laplace operator, the heat equation can
be simplified and generalized to matrix operation over spaces with an arbitrary number
of dimensions. Due to its intrinsic connection to the Markov process, in practice the
heat equation is often coupled with random walk graph Laplacian [Coifman and Lafon
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2006], Lrw (Equation (4)), which describes a stochastic process that randomly jumps
from vertex to adjacent vertex. Heat equation therefore can be defined by

∂ Ht

∂t
= −Lrw Ht, (7)

where Ht = e−tLrw is the heat kernel on Riemannian manifold M and t is the time
scaling parameter [Grigoryan 1999]. For Lrw = ψ ′λψ (ψ and λ are the eigenvectors and
eigenvalues of Lrw), the heat kernel can be reformulated as follows:

Ht(i, j) =
N∑

p=1

[e−λptψp(i)ψp( j)], (8)

where λp is the p-th eigenvalue and ψp(i) is the i-th element in the p-th eigenvector.
Ht(i, j) represents the amount of heat being transferred from i to j in time t given a
unit heat source at i in the very beginning. The scaling parameter t in heat kernel is
used to control the transitive connectivity: small t makes the loosely connected graph
into slightly stronger connection, whereas large t makes the graph tend to be more
strongly connected.

3.2. Heat Kernel Signature

In 2009, Sun et al. [2009] proposed a concise form given by the heat kernel from one
instance to itself:

Ht(i) = Ht(i, i) =
N∑

p=1

[e−λpt(ψp(i))2], (9)

which is referred to as heat kernel signature (HKS). The physical meaning of HKS
is the amount of heat each instance keeps within itself in time t. The property of the
heat diffusion process states that heat tends to diffuse slower at instances with a more
sparse neighborhood and faster at instances with a denser neighborhood. Therefore,
HKS can intuitively depict the local density of each instance (the first property in our
anomaly definition in Section 1.2). Besides, HKS also has the following properties that
make it a very lucrative candidate for local density measurement:

—HKS is intrinsic to the local manifold structure.
—HKS is informative since it contains density information of the whole neighborhood

in t scale.
—The stableness of HKS against small perturbation in the neighborhood can be well

supported by the probabilistic interpretation of heat diffusion.

However, heat equation is assumed to build on the underlying manifold. But in most
applications, the underlying manifold is unknown. In geometric modeling application,
HKS is usually built on eigenvectors from GAU (Equation (1)) on observed space. Al-
though graph Laplacian normalizations [Coifman and Lafon 2006] based on GAU on
observed space can recover manifold structure to certain extent, nonuniformly sampled
instances tend to show unpreserved density distribution on the reconstructed mani-
fold. HKS on GAU will fail to reveal local density faithfully in such reconstructions.
Figure 3(a) and 3(b) show the performance of HKS on anomaly detection with t = 1
and t = 10 based on GAU and random walk graph Laplacian normalization Lrw. When
t = 10 (Figure 3(b)), the heat is extremely easy to dissipate, which blends both local and
a few global anomalies into normal instances. Meanwhile, many marginal instances of
the two normal instance clusters stand out due to the fact that HKS on GAU fails to
show manifold-aware properties. When t = 1 (Figure 3(a)), although the short period of
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Fig. 3. HKS and LAD (see Equation (16)) score with GAU (Equation (1)) and AGK (see Equation (13)) of
the synthetic dataset in Figure 1(a). For each algorithm output, the anomalous score are normalized in the
range of [0, 1] to have an easy comparison. We can see that LAD with AGK is the most aware of both global
and local anomalies.

Fig. 4. The 70 nearest neighbors (in green) of red instance with GAU (a) and AGK (b), which shows that
AGK has better manifold-aware property than GAU.

heat dissipation has salient effect on global anomalies, HKS on GAU still fails to distin-
guish local anomalies from normal instances on the boundary area of normal clusters.
Therefore, an alternative way is indispensable to build a better manifold-aware affin-
ity matrix. One of the most preferable candidates is AGK [Singer and Coifman 2008,
2011].

4. ANISOTROPIC GAUSSIAN KERNEL

In this section, we use AGK [Singer and Coifman 2008] to construct HKS in the interest
of better manifold reconstruction. In Figure 4, we can see the 70 nearest neighbors of
red instance when using GAU (Figure 4(a)) and AGK (Figure 4(b)), which shows that
the intramanifold distances are much shorter than the intermanifold by using AGK.
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Figure 3(d) and (e) show that anomaly detection can directly benefit from the use of
AGK. In Figure 3(e) with t = 10, all of the global anomalies are highlighted even
though the local anomalies are latent (compared with Figure 3(b)). This is because
if the manifold is well reconstructed, global anomalies should be separated far away
from normal instances even with large t scale. Furthermore, with small scope of t = 1
(Figure 3(d)), the difference of anomalous score between local anomalies and boundary
normal instances are slightly more obvious than Figure 3(a), which illustrates that
with the support from AGK, HKS is more capable of revealing the density information
of the intrinsic manifold structure.

In the rest of this section, we briefly introduce AGK on the observed space X (n × m
matrix) that approximates the GAU on the underlying manifold Y (n × d matrix, with
d � m). The idea is to approximate the Euclidean distance between instances y( j)
in the manifold space Y using covariance matrix C = J JT , where J is the Jacobian
matrix [Singer and Coifman 2008] and the instances x( j) = f (y( j)) in the observable
space X. Let y, ε be two instances in the manifold space Y and x = f (y), η = f (ε)
be their mapping to the observable space X. Let g : X → Y be the inverse mapping
of f : Y → X—that is, g( f (y)) = y and f (g(x)) = x, ∀y ∈ Y , ∀x ∈ X. Expanding the
functions y = g(x) in a Taylor series at the instance x gives

ε(i) = y(i) +
∑

j

gi
j(x)(η( j) − x( j))

+ 1
2

∑
kl

gi
kl(x)(η(k) − x(k))(η(l) − x(l)) + O(‖ η − x ‖3), (10)

where gi
j = ∂g(i)

∂y( j) . Therefore, the squared Euclidean distance in manifold space can be
approximated by

‖ ε − y ‖2=
∑
i jk

gi
j(x)gi

k(x)(η( j) − x( j))(η(k) − x(k))

+ 1
2

∑
i jkl

gi
j(x)gi

kl(x)(η( j) − x( j))(η(k) − x(k))(η(l) − x(l))

+ O(‖ η − x ‖4).

(11)

A similar expansion can be built at instance η and the average of these two equations
can be produced as

‖ ε − y ‖2 = 1
2

(η − x)T [
(J JT )−1(x) + (J JT )−1(η)

]
(η − x)

+ O(‖ η − x ‖4),
(12)

given that the Jacobian of the inverse g is the inverse of the Jacobian J (a detailed
description of calculation can be referred to Singer and Coifman [2008]). So we can
construct the AGK:

W (AGK)(i, j) = exp
(

−‖ J−1x(i)(x(i) − x( j)) ‖2 + ‖ J−1x( j)(x( j) − x(i)) ‖2

2σ 2

)
, (13)

where i, j = 1, . . . , n.
AGK has the desired attributes that it is separable, and its first (nontrivial) eigen-

functions are monotonic functions of the independent parameters [Singer and Coifman
2011]. It also has been proved that the eigenvectors of AGK reveal the independent
components [Singer and Coifman 2008]. HKS, built on such approximation of manifold

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 2, Article 14, Publication date: September 2014.



14:10 H. Huang et al.

space, can better capture the embedding structure of data as shown in Figure 3(d) and
3(e), which is difficult or even impossible to achieve by using GAU or other similar
techniques.

5. LOCAL ANOMALY DESCRIPTOR AND THE ALGORITHM FRAMEWORK

5.1. Local Anomaly Descriptor

Although HKS on AGK has the capability to offer desirable local density information, it
is of importance to select the right time scaling parameter t, which provides a trade-off
between the effects of local and global information. However, it is hard to get the “best
of both worlds” with a single setting for this parameter. Even with better manifold
reconstruction, if t is large the heat is still easy to dissipate regardless of normal
instances or local anomalies (although not necessarily for global anomalies), which is
shown in Figure 3(e). This is because with large t scale, the distance between local
anomalies and the normal instances around them would still be close. As a result, local
anomalies cannot retain their heat. On the other hand, if t is small, the heat diffusion
runs for only a short period of time, and the resulting anomalous score captures very
local information but almost carries the same value for instances with similar density
inside a very restrained neighborhood, which is the major reason it sometimes confuses
some normal instances with local anomalies. In Figure 3(d), we can see that HKS on
AGK assigns similar scores to the local anomalies and some of the boundary normal
instances. Intuitively speaking, HKS on AGK still fails to take the amount of similar
instances into account with off-the-sweet-spot t setting.

As a means to handle the preceding problems, we propose the use of an umbrella
operator [Taubin 1995; Desbrun et al. 1999]. An umbrella operator is an approxima-
tion of the Laplace operator measuring the vector from the vertex in question to the
barycenter of its neighbors. In practice, umbrella operator U is usually implemented
to compute the average difference between a point x(i) and its kNNs nb(x(i), k):

U (i) = 1
k

∑
x( j)∈nb(x(i),k)

(x( j) − x(i)). (14)

In our research, we need to deliberate on the quantity of similar instances in neigh-
borhood by bridging the gap between global and local properties. If an instance has a
lot of close neighbors, the average value of the neighborhood should be very similar to
the value of this instance. Therefore, we use the scale-dependent (weighted) umbrella
operator U :

U(i) = 1
k

∑
x( j)∈nb(x(i),k)

W(i, j)(x( j) − x(i)), (15)

where W(i, j) is the weight between x(i) and x( j). If we replace W(i, j) with W (AGK)(i, j),
then we may use the scale-dependent umbrella operator on top of HKS (H). LAD is
defined for a point x(i) as follows:

Lt(i) = Ht(i) − 1
k

∑
x( j)∈nb(x(i),k)

Ht( j) × W (AGK)(i, j). (16)

The geometric meaning of LAD is illustrated in Figure 5, where we measure the differ-
ence between a single Ht(i) and its neighborhood’s weighted average Ht( j)×W (AGK)(i, j)
value.

If an instance is globally anomalous, its HKS would be already high enough to
discriminate itself to the other instances. Although it is locally anomalous, its HKS is
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Fig. 5. Illustration of LAD (Equation (16)), which calculates the weighted average of neighbor differences.
It is one of the ways to take the neighborhood distribution into consideration [Taubin 1995].

likely to be similar to some normal instances with a similarly sparse neighborhood.
However, applying the scale-dependent umbrella operator, LAD can serve to recognize
the local anomalies from normal instances with expanded horizon of neighborhood and
reflection of the amount of similar instances inside. Local anomaly only has a small
amount of neighbors with close HKS, but normal instances, on the other hand, have
more such neighbors.

LAD has a very lucrative property in considering the amount of similar instances
(the second property in our anomaly definition): since it not only measures a very
constrained local area with small t, but also considers the heat diffusion area of the
adjacent neighbors. It gives a measurement of an expanded horizon to capture how
many similar instances there are inside a large enough neighborhood. If there are lots
of similar neighbors (with similar local density), LAD will be quite small since the
neighborhood difference of HKS is not large. On the contrary, if the neighbors’ HKS
are different, the LAD score tends to be assigned a greater value. So even though k is
not large enough to include the whole appropriate neighborhood, LAD can still capture
the information related to the amount of similar instances.

The benefits of LAD in comparison with HKS can be seen in Figure 3, which shows
that our proposed LAD has a penetrating awareness on both global and local anomalies
primarily because of the power of the scale-dependent umbrella operator on HKS.

Mathematically, LAD could also use GAU as the connection weighted function W (or
W (GAU )), which not only affects the term of subtrahend in Equation (16) but also the
construction of HKS (Ht). To have a concrete understanding of the effect of AGK, we also
compare the different performance between GAU and AGK on LAD. LAD with GAU
in Figure 3(c), although making some anomalies more salient, still fails to distinguish
some local anomalies and normal instances. But LAD with AGK in Figure 3(f) clearly
separates all global and local anomalies from the normal instances. This confirms that
as a connection weighting function, AGK is more effective than GAU in that AGK is
more aware of the differences between instances in the manifold space.

5.2. Algorithmic Framework of Local Anomaly Descriptor

In this subsection, we explain LAD framework step by step. Let X be a matrix of
size n× m, where n is the number of instances and m is the number of dimensions; our
framework is detailed in Algorithm 1. This algorithm undergoes a kind of data warping
process by using AGK (Step 1, Section 4) and Laplacian random walk normalization
(Step 2, Section 2). Then we perform the eigen-decomposition (Step 3) and construct
HKS for each instance (Step 4, Section 3). Equation (16) is used as the last step (Step 6,
Section 5.1) to compute LAD as the final measurement of anomalous score.

Regarding computational complexity, affinity construction using GAU takes O(n2m).
If using AGK, it takes O(n2m2). Eigendecomposition (Step 3) is another time-consuming
step. There are many iterative methods to conduct eigenvalue decomposition, but in
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ALGORITHM 1: LocalAnomalyDescriptor(X, σ , t, k)
Input: Input data X ∈ Rn×m, σ the Gaussian scaling parameter, t the time scaling

parameter, k the neighborhood size.
Output: LAD score for each instance.

1 Construct anisotropic Gaussian kernel W (AGK) using Equation (13) and σ ;
2 Construct Laplacian random walk normalization Lrw on W (AGK);
3 Compute generalized eigenvectors ψp and corresponding eigenvalues λp, p = 1, 2, . . . , n;
4 Construct Heat Kernel Signature with time scale t using Equation (9);
5 Compute Local Anomaly Descriptor using Equation (16) with Heat Kernel Signature and

anisotropic Gaussian kernel in the k nearest neighborhood for each instance.

general, finding the eigenvalues reduces to matrix multiplication by computing a sym-
bolic determinant, which gives a running time of O(n3 + n2log2n) [Pan and Chen 1999].
An alternative way of estimating the heat kernel Ht = e−tLrw is to use a partial sum of
infinite series with

e−tLrw =
∞∑
p

(−tLrw)p

p!
. (17)

This method would be especially attractive for small values of t, since only a few terms
would be needed to obtain an accurate estimation of e−tLrw [Badeau et al. 2005], which
is desired for our LAD calculation, since a small amount of t is good enough to reveal
the anomalous score.

On the other hand, if we only use a small portion of eigensystem (say the first d eigen-
values and eigenvectors) to compute LAD, the eigendecomposition only takes O(n2d).
We will analyze the performance of this fast version in the experimental Section 9.6.

5.3. Discussion of Local Anomaly Descriptor

As we introduced in previous sections, LAD can capture the two properties of our
anomaly definition (Section 1.2) effectively:

—The local diffusion process calculated by HKS with small t can intuitively depict the
local density of each instance (Section 3.2).

—The umbrella operator provides a broader view even with too small t so that it has a
lucrative property in considering the amount of similar instances (Section 5.1).

Although LAD gets over the instability of HKS to some degree by integrating a scale-
dependent umbrella operator, which provides a more broader view of neighborhood
distribution, LAD still suffers if the time scaling parameter t goes too large (see the
example in Figure 6(a)). More completely, Figure 7 shows that the stability of LAD is
below expectation when t is large. This is because as the diffusion time gets longer,
HKS across all instances will all become the same. Subsequently, there is no difference
between HKS of anomalies and their neighbors. This problem of LAD (and of course
HKS as well) comes from the essential properties of heat diffusion naturally: once the
dissipation time is large, heat will easily become overdiffused.

In the next two sections, we resort to quantum mechanics, whose research objects are
in a discrete space, which has the potential to detect locally low neighborhood density
more stably (Figure 6(b) and 6(c)). In quantum mechanics, particles jump from one
quantum state to another, and the waves space is not continuous. The probability of
a particle showing up at a certain place is highly related to the local density of this
place. To a certain degree, quantum mechanics intuitively focuses on the intrinsic local
density distribution while largely ignoring the extrinsic properties (pairwise distance,
attribute distribution, etc.) of the ambient area of input space.
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Fig. 6. LAD with large t fails to reveal the local anomalous score (Figure 6(a)) due to the overdiffusion.
Comparably, FDD acts robustly in measuring anomalous score regardless of small or large scaling parameter
(Figure 6(b) and 6(c)). For each algorithm output, the anomalous score are normalized in the range of [0, 1]
to have an easy comparison.

Fig. 7. Illustration of stability test on the ecoli dataset against time scaling parameter (t) tuning. We can
see that although LAD (green curve) has better performance and stability than HKS (blue curve) when t is
small, it still does not make accurate detection when t becomes larger (t ≥ 100). Our ideal goal is to design an
anomaly detection algorithm (red curve) that maintains a desirable result regardless of scaling parameter
tuning.

6. SCHRÖDINGER EQUATION AND WAVE FUNCTION IN QUANTUM MECHANICS

Besides heat diffusion, another physics concept that is closely related to density mea-
surement is quantum mechanics [Greenstein and Zajonc 2006], which also has strong
connections to the Laplace operator. Quantum mechanics is a mathematical machine
for predicting the behavior of microscopic particles. Anomalous instances can be treated
as regions of low density that correspond to the aggregation area of maximal free en-
ergy, and such an area is easier to trap particles. On the other hand, normal instances
indicate high-density regions with minima of the free energy in the system, so the
probability for particles appearing in such an area is low.

The Schrödinger equation is the key equation in quantum mechanics, which describes
how the quantum state of a physical system changes with time. One of the most famous
examples is the nonrelativistic Schrödinger equation for a single particle moving in an
electric field. If we ignore the potential energy, it is directly associated with the Laplace
operator L as follows:

ı
∂φ

∂t
(x, t) = Lφ(x, t), (18)
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where φ is the space-time wave function of the quantum system, ı is the imaginary
unit, x is the position, and t is time. The mod square |φ(x, t)|2 depicts the probability
density of a particle at position x at time t, which satisfies∫

|φ(x, t)|2dx = 1. (19)

Assume that the Laplace spectrum has no repeated eigenvalues, and L = ψ ′λψ (ψ and
λ are the eigenvectors and eigenvalues of L); the space-time wave function φ(x, t) can
be expressed in the spectral domain as

φ(x, t) =
∞∑

p=1

eıλptψp(x) f (λp), (20)

where f (λ) is the energy distribution. This is because in spectral domain, eigenvalue
λ is approximately equivalent to energy level E [Greenstein and Zajonc 2006], so f (λ)
can also be rewritten as f (E).

Integrating the mod square of wave function |φ(x, t)|2 over all time scales, we can get

P(x) = limT →∞
1
T

∫ T

0
|φ(x, t)|2dt =

∞∑
p=1

f (λp)2ψp(x)2. (21)

The physical meaning of P(x) is the average possibility for a particle with energy
distribution f(λ) found at position x . The property of quantum mechanics states that due
to the fast decaying nature of the evanescent wave, a particle tends to be trapped within
the vicinity of region where the strong field enhancement occurs. In a high-dimensional
dataset, the “tip” regions are those data points with a sparse neighborhood. In other
words, the particle tends to stay at instances with a more sparse neighborhood and
rarely shows up at instances with a denser neighborhood. Therefore, in theory, P(x)
can intuitively represent the local density of each instance. In practice, however, there
are two key challenges:

(1) What is the best energy distribution f (λ)?
(2) What is the best graph Laplacian L (which directly associates with λ and ψ)?

Section 7.1 will solve the first challenge, and the second challenge will be discussed
and conquered in Section 7.2.

7. FERMI DENSITY DESCRIPTOR AND THE ALGORITHM FRAMEWORK

7.1. Energy Distribution Function and Definition of Fermi Density Descriptor

In this subsection, we will explore the best energy distribution function f for
Equation (21). f (E) ( f (λ) determines the probability that a particle is in energy state E.
It can be viewed as a realization of the ideas of discrete probability in such a case that
energy can be treated as a discrete variable. In quantum mechanics, there are three dis-
tinctly different distribution functions [Greenstein and Zajonc 2006], namely Maxwell-
Boltzmann (MB) distribution, Fermi-Dirac (FD) distribution, and Bose-Einstein (BE)
distribution. Besides quantum mechanics, existing research also explored distributions
based on other theoretical assumptions. Section 3 already introduced heat diffusion
(HD), which was used in Sun et al. [2009] to describe the heat diffusion given time t.
In Aubry et al. [2011] chose Gaussian distribution (GD) in the logarithmic energy as
f (E) to define Wave Kernel Signature. Here we briefly introduce these five distribution
functions and analyze their respective performance on anomaly detection.
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—Maxwell-Boltzmann Distribution

fMB(E) = 1
eE/κT . (22)

MB distribution depends on the energy level E of the single particle state, the absolute
temperature T , and the Boltzmann constant κ. In quantum mechanics, the MB distri-
bution usually applies to the particles at a high enough temperature and low enough
density where quantum effects can be ignored [Greenstein and Zajonc 2006].

—Fermi-Dirac Distribution

fFD(E) = 1
e(E−μ)/κT + 1

, (23)

where μ can be obtained from
∑

E

1
e(E−μ)/κT + 1

= n/2. (24)

Beside the same parameters used in Equation (22), FD distribution is also condi-
tional on a chemical potential μ and n the number of electrons in the whole systems.
Equation (24) represents the number of orbitals since only two electrons (with opposite
“spin”) can occupy each orbital. In quantum mechanics, FD distribution applies to iden-
tical particles (fermions) with half-odd-integer spin in a system in thermal equilibrium
[Greenstein and Zajonc 2006].

—Bose-Einstein Distribution

fBE(E) = 1
e(E−μ)/κT − 1

, (25)

where μ can be obtained from
∑

E

1
e(E−μ)/κT − 1

= n/2. (26)

The parameters used in the BE distribution function have the same physical meaning
as those used in Equations (22) and (23). The BE distribution describes the statistical
behavior of integer spin particles (bosons). At low temperatures, bosons can behave
very differently than fermions because an unlimited number of them can be collected
into the same energy state [Greenstein and Zajonc 2006].

—Heat Diffusion

fHD(E) = e−Et, (27)

where t is the time for heat dissipation. Heat diffusion describes how the amount of
heat dissipates from a heat source to its neighborhood at time t. Different from the
three distributions in quantum mechanics that depict the discrete pattern of particle
movement in terms of probability, heat diffusion has a continuous conception in both
time and space domains.

—Gaussian Distribution

fGD(E) = e− (e−log(E))2

2σ2 . (28)

It is derived in Aubry et al. [2011] from a perturbation-theoretical analysis. Under
the assumption that the eigenvalues (eigenenergies) of an articulated dataset are log-
normally distributed random variables, the authors claimed that it is robust to small
data perturbations while being as informative as possible.
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Fig. 8. Stability comparison between different energy distribution functions on a glass dataset. The blue
curve is the eigenvalue (EV) ordered by increasing value (decreasing importance since EVs are derived from
graph Laplacian). The green, red, purple, and brown curves are MB, FD, and BE distributions and GD,
respectively. (a) The performance of four functions when T = 0.001. (b) The performance of four functions
when T = 50. We can see that FD has the most stable performance as T changes.

Before comparison between the aforementioned different energy functions, we need
to clarify a few points. First, since κ is a constant, from now on we will remove κ from the
relative formulas (Equations (22) through (26)) in the interest of convenience. Second,
although HD and MB distribution have different physical meaning, they indeed have
similar mathematical performance if we simply replace t in Equation (27) with 1

T in
Equation (22). In other words, small diffusion time t in heat diffusion has a similar
effect as large environmental temperature T in MB distribution. Therefore, in the
following analysis, we simply ignore heat diffusion (HD) and only compare the other
four distribution functions. Third, although with different physical meanings, for the
sake of mathematical convenience, we assign 2σ 2 in GD (Equation (28)) with the same
value as T in the quantum mechanics functions to compare the stability of different
functions as scaling parameter changes.

Although GD and MB/HD, FD, and BE distributions have solid theoretical back-
ground, the differences of mathematical performance give rise to very different statis-
tics, especially the stability of outcomes:

—Among these functions, FD is the most practical one for anomaly detection in terms
of performance stability under different parameter (T ) settings. In Equation (23),
two special terms can stabilize the distribution function performance: the constant
smoothing term “plus one” and the balancing term μ in the denominator part. The
role of the smoothing term is to damp the contribution of the exponential part from
being too small, which results from either extremely small λ (E) or large T . The
balancing term μ (computed by Equation (24)) is a parameter controlling the trade-
off between small and large λ (E). Besides, it helps to tune a sweet range for λ (E)
according to T , since it has a positive side effect that it can accelerate the attenuation
of contribution from those trivial eigenvalues in Equation (23).

—Comparably, MB/HD and GD without any smoothing term or balancing term are very
sensitive to either extremely small λ (E) or large scaling parameter T . Although BE
has balancing effect from μ, it actually suffers more from the “minus one” in the
denominator part, since it lessens the stability by making the denominator part
even smaller.

Figure 8 shows the value of different distribution functions across different eigen-
values (energy) of a glass dataset (statistic details of glass are in Section 9.1). In
general, FD distribution tends to assign stable weights regardless of how temperature
T changes compared with the other energy distribution functions. To have a broader
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and fair comparison between the effect of different energy distribution functions, we
test all of the distribution functions on seven datasets against changing T . The detailed
results, which again confirm our findings, are recorded in Section 9.5.

Now we integrate the FD distribution function (Equation (23)) into Equation (21)
and define FDD at a point x(i) as

F(i) = 1
C

∞∑
p=1

(
1

e(λp−μ)/T + 1

)2

ψp(i)2, (29)

where C = ∑∞
p=1( 1

e(λp−μ)/T +1
)2, and μ can be derived from Equation (24) where n is set as

the number of data instances in practice.

7.2. Laplace Operator for Fermi Density Descriptor

We discuss the best choice of graph Laplacian for FDD in this section. In Section 6,
we showed that our proposed FDD is derived from the Schrödinger equation (Equa-
tion 18), which is strongly associated with the Laplace operator. The Laplace operator
is intimately related to the “shape” of data, or more precisely, the density distribution
of data. More precisely, the Laplace operator in Equation (18) is aiming to account
for the kinetic energy of the particles constituting the system, which depends on the
spatial configuration to conserve energy [Greenstein and Zajonc 2006]. Using the dis-
crete Laplace operator, or graph Laplacian, the Schrödinger equation can be simplified
and generalized to be a matrix operation over the space of an arbitrary number of
dimensions.

Different graph Laplacian normalizations were introduced in Section 2. Although
their effect on clustering has been thoroughly analyzed in Huang et al. [2011] and
Luxburg [2007], it is still unclear what the best choice for FDD is with the purpose of
anomaly detection.

In general, when the data points are sampled from the equilibrium distribution of
a stochastic dynamical system, clustering algorithms tend to correct different density
bias to obtain stable and balanced instance clusters. This is quite different from the
need of anomaly detection applications when the density of the points is a quantity
of interest and therefore cannot be ignored [Coifman and Lafon 2006]. For clustering
purposes, we focus on normal instances and want to recover manifold insensitive to
the existing anomalies (usually being treated as noise in such applications). In other
words, the different density distribution prevents algorithms from the desire clustering
result and therefore needs to be removed in clustering applications [Huang et al.
2011]. However, from anomaly detection’s point of view, the focus is on the anomalies,
and the recovered manifold should be aware of local density variation; therefore, in
the manifold space, the density differences between anomalies and normal instances
should be preserved or even magnified with respect to the input space distribution. In
a nutshell, we need to find the graph Laplacian that is most reactive to local density
distribution with the purpose of anomaly detection.

THEOREM 1. The density impact power for Lnn, Lrw, Lsym, Lfp, and Llbn normalization
are 2, 1, 1, 0.5, and 0, respectively.

PROOF. Define q(x) as the true density function of x, and a kernel function kσ (x, y)
between x and y with σ as the neighborhood scaling parameter. Let

qσ (x) =
∫

kσ (x, y)q(y)dy, (30)
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which is an approximation of the true density q(x); we can form the new kernel [Coifman
and Lafon 2006]:

kα
σ (x, y) = kσ (x, y)

qα
σ (x)qα

σ (y)
, (31)

where α ∈ R. Apply the Laplacian operator to this kernel as follows:

dα
σ (x) =

∫
kα
σ (x, y)q(y)dy; (32)

the new anisotropic kernel can be defined as

pα
σ (x, y) = kα

σ (x, y)
dα

σ (x)
. (33)

Therefore, based on the Laplacian operator, the infinitesimal generator of the Markov
chain with σ → 0 [Coifman and Lafon 2006] can be defined as

Lσ,α = I − Pσ,α

σ
, (34)

where Pσ,α f (x) = ∫
pα

σ (x, y) f (y)q(y)dy with any function f . If σ → 0, we have

limσ→0Lσ,α f = �( f q1−α)
q1−α

− �(q1−α)
q1−α

f. (35)

Hence, the infinitesimal operator can be given by

�ϕ − �(q1−α)
q1−α

ϕ, (36)

where ϕ = f q1−α.
For Lrw normalization, αLrw = 0 [Coifman and Lafon 2006], so the density impact

power is 1 − αLrw = 1. For Lfp normalization, αLfp = 0.5 [Coifman and Lafon 2006];
hence, the density impact power 1 − αLfp = 0.5. For Llbn normalization, αLlbn = 1
[Coifman and Lafon 2006]; thus, its density impact power is 1 − αLlbn = 0.

Lsym normalization can be transformed from Lrw normalization by Lsym =
D1/2Lrw D−1/2. From Equation (32), we know that D (d) is proportional to the density im-
pact power q; therefore, limσ→0Lsym,σ f depends on density function q−1/2q1−αLrw q1/2 =
q1, where αLrw = 0. On this account, its density impact power is also 1.

For Lnn, since Lnn = DLrw, and limσ→0Lnn,σ f depends on density function q × q1−αLrw =
q2, where αLrw = 0. Accordingly, Lnn has the greatest density impact power 2.

Proof of Theorem 1 demonstrates that Lnn is the best option for FDD. As an illus-
tration, Figure 9 shows the effects of different normalizations on the ecoli dataset
(Section 9.1). We only plot the first three nontrivial eigenvectors derived from the
graph Laplacian. The red circles indicate anomalous instances, and crosses with other
colors represent different clusters of normal instances, respectively. We also show the
AUC score (Section 9.1) of anomaly detection result, and the NMI score (the detailed
definition of NMI can be referred to Hartigan and Wong [1978]) of clustering result
from different graph Laplacians.

This experiment shows that the Llbn normalization (Figure 9(d)) reorganizes points
with larger intracluster similarity and smaller intercluster similarity. Therefore, Llbn
normalization has the highest NMI (0.7167). Nevertheless, the overdiffusion and the
consequent unresponsiveness of density distribution generate a tail of normal instances
connected to anomalous instances, which leads to the lowest AUC (0.8521). Compared
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Fig. 9. The comparison from different graph Laplacians’ effect on the ecoli dataset for the purpose of anomaly
detection (measured by AUC) and clustering (measured by NMI). Red circles indicate anomalous instances,
and crosses in other color represent different clusters of normal instances. We can see that Lnn is the best
choice for anomaly detection since it magnifies the distance and density differences between anomalies and
normal instances. On the contrary, Llbn is the worst choice for anomaly detection purposes but the best option
for clustering.

with Llbn normalization, Lfp (Figure 9(c)) normalization spreads the instances with a
slightly more dispersive distribution (e.g., cluster in dark yellow), which makes a lower
NMI 0.6655 but a slightly higher AUC 0.8653.

Lrw (Figure 9(a)) and Lsym (Figure 9(b)) normalizations reconstruct circle-like shape
in their manifold space. But they also show more mixture of different clusters since
they preserve the same density as in the input space with impact power equal to 1.
Consequently, it gives higher AUC (0.8739 for Lsym and 0.8797 for Lrw) but lower NMI
(0.6572 for Lsym and 0.6281 for Lrw) compared with Llbn and Lfp.

Lnn has the most polarized manifold reconstruction. The reason is that the density
difference is amplified by Lnn compared with the four normalizations. It results in a
situation where the normal instances with higher density shrink to a condensed area,
whereas anomalous instances are far away from the collapsed center of normal in-
stances. Consequently, Lnn has the strongest ability (with AUC 0.9042) to separate
anomaly from normal instances even though the clustering based on it will miser-
ably fail (with NMI 0.5432). Section 9.4 will show more convincing experiment results
confirming that Lnn is the best Laplacian for FDD.

7.3. Algorithmic Framework of Fermi Density Descriptor

Let X be a matrix of size n×m, where n is the number of instances and m is the number
of dimensions; our algorithm is detailed in Algorithm 2.

Step 1 (details in Section 4) constructs an AGK similarity matrix and Lnn is operated
on top of it in Step 2 (details in Section 2) to generate density polarized manifold
projection. Then we perform the eigendecomposition (Step 3) and compute FDD for each
instance (Step 4, details in Section 7). The FDD value is used as the final measurement
of anomalous score.
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ALGORITHM 2: FermiDensityDescriptorGlobal(X, σ , T )
Input: Input data X ∈ Rn×m, σ the Gaussian scaling parameter, T is the environmental

temperature.
Output: FDD score for each instance

1 Construct Anisotropic Gaussian Kernel (AGK) W (AGK) using Equation (13) and σ ;
2 Construct Lnn (Equation (2));
3 Compute generalized eigenvectors ψ(i) and corresponding eigenvalues λi of L, i = 1, 2, . . . , n;
4 Construct Fermi Density Descriptor (FDD) with temperature T using Equation (29).

Similar to LAD in Section 5.2, the computation of FDD is dominated by affinity con-
struction (O(n2m2) if AGK and O(n2m) if GAU) and eigendecomposition in Step 3 (O(n3)
[Pan and Chen 1999]). In addition, if we only use a small portion of the eigensystem
(say the first d eigenvalues and eigenvectors) to compute FDD, the computational com-
plexity of eigendecomposition would drop to O(n2d). We will analyze the performance
of this fast version in Section 9.6.

7.4. Discussion of Fermi Density Descriptor

FDD satisfies the two properties of our anomaly definition (Section 1.2) in a more
concise and effective way, in that FDD relies on the polarized manifold reconstruction
that magnifies the distances between anomalies and normal instances. Consequently,
anomalous instances will be more singular and distinctive. The dense neighborhood
will become even denser, with analogous instances aggregated together. The sparse
neighborhood, on the contrary, will be more sparse. In this fashion, FDD considers the
locally low neighborhood density and the amount of similar instances simultaneously
and effectively.

Besides, FDD has more robust performance against different physics parameter
settings (especially the extreme cases). Part of the reasons lie in the stable energy
function FD, which was already scrutinized in Section 7.1. The other reason is because
the polarized manifold reconstruction “breaks” the connections between anomalies and
normal instances. Figures 6 and 7 illustrate the stability comparison of FDD, LAD, and
HKS, which once again confirm that FDD maintains the desired result more stably with
different parameter tuning.

8. DISCUSSION OF THEORETIC PERSPECTIVES

We now justify the utility of our proposed two algorithms, LAD and FDD, by briefly
documenting their theoretical connections with a few existing methods, which also lays
a solid foundation for their attractive properties for practical use.

8.1. Comparison between Local Anomaly Descriptor and Fermi Density Descriptor

LAD and FDD are based on the Laplace operator on the affinity matrix, as well as
the subsequent manifold reconstruction. They all try to describe the density informa-
tion in a retained but informative neighborhood. However, their different theoretical
background leads to quite different interpretation and performance:

(1) Theoretical backgrounds: LAD is inspired by heat diffusion, which is highly related
to the Markov chain. It describes the amount of heat being transferred in a certain
time scale; therefore, its conception is continuous in both time and space. On the
contrary, FDD measures the probability that a particle (fermion) shows up at a
certain position. It is built upon quantum mechanics, whose key idea is that the
motion of a particle is discontinuous and random.
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(2) Manifold reconstruction: Due to the close theoretical connections, LAD uses ran-
dom walk normalization Lrw by natural and projects origin instances onto a diffu-
sion space. However, the diffusion process is hard to control and usually becomes
overdiffused, leading to a blending of local anomalies into normal instances. But
FDD applies Lnn to construct a polarized manifold projection, which concentrates
on magnifying the difference between anomalies and normal instances. Roughly
speaking, in the polarized manifold, the similar points with higher density tend to
collapse to the center of mass; therefore, clusters of normal instance are topolog-
ically isomorphic to extremely condensed convex sets. Conversely, anomalies will
be more singular and distinctive from the normal instances. Although this type of
mapping is nonisometric and the original distribution is changed, it is of central
interest in anomaly detection, as it becomes more sensitive to locally low neighbor-
hood density and the preservation of intracluster distance or distribution is not a
concern at all. In Section 9.4, we will further confirm our choice of Laplacians for
LAD and FDD with more experiment results.

(3) Strategies against parameter sensitivity: To overcome the narrow scope of small
t, LAD integrates a scale-dependent umbrella operator on the projected diffusion
space, which bridges the gap between global and local properties. Its advantage
compared with HKS is that, although with the same small t, LAD covers a suf-
ficiently large neighborhood for each instance x(i) since LAD also considers the t
scale neighborhood of x(i)’s neighbors. On the other hand, it takes the quantity of
similar instances into consideration. But FDD approaches stability against param-
eter tuning in a different way: Equation (29) has two special terms that stabilize
FDD performance: the constant smoothing term “plus one” and the balancing term
μ in the denominator part. Both of these terms can damp the contribution of the
denominator from being too small, which results from the extreme setting of scaling
parameter.

(4) Stability: Although LAD provides more robust performance under very small t
compared with HKS, it still suffers when t becomes too large due to overdiffusion of
heat dissipation. But FDD has stronger stability than LAD in that it can conquer
the negative side effect of extreme scaling parameter, regardless of whether it is
too small or too large.

8.2. Connections between Local Anomaly Descriptor/Fermi Density Descriptor
and Other Anomaly Detection Algorithms

kNN-based approaches. kNN-based methods [Breunig et al. 2000; De Vires et al.
2010; Zhang et al. 2009] approach local density for each instance using its neighbor-
hood information. Like LAD and FDD, they require (scaling) parameters to capture
a reasonably large neighborhood, and the density information is based on this pre-
scribed local region. However, kNN-based methods have strictly local context in that
they simply fix the neighborhood size with k. In contrast, LAD employs locally adaptive
neighborhood size that directly benefits from the physics-inspired properties of heat
diffusion, whereas FDD makes use of stabilization terms to smooth out the performance
fluctuation from off-the-sweet-spot parameters. Moreover, kNN-based methods rely on
Euclidean distance in the input space, which is a pairwise local quantity, whereas our
methods consider the relationship between instances in manifold space, which is more
comprehensive. For example, heat kernel used in LAD considers all possible paths
between two instances within time t. Therefore, our proposed methods are more intrin-
sic and informative than kNN-based methods.

Attribute-based approaches. Attribute-based methods [Liu et al. 2008, 2011; Ting
et al. 2010] try to compute local density by adding up a sequence of values from an
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attribute-based function [Ting et al. 2010], which to some extent is equivalent to a
kernel density function such as heat kernel. Their measurement of global instance
distribution is based on each attribute and how deviated each instance is from the
other instances in that specific attribute, which indeed is more informative than kNN-
based approaches. However, the strong emphasis on input attribute distribution is
also a double-edged sword: on the one hand, it is much faster without any distance
calculation; on the other hand, such distribution simply hinged on attributes still
fails to consider local anomalies. Although our methods undergo a step of dimension
reduction or manifold projection at first, they map all correlated attributes onto a few
lower dimensions. Therefore, both LAD and FDD are more capable of stably finding
local anomalies.

8.3. Connections between Local Anomaly Descriptor and Other Related Techniques

Biharmonic operator. HKS is directly derived from the Laplace operator and its eigen-
decomposition; therefore, HKS is intrinsically a second-order property relevant to the
Laplace equation. The derivation of LAD, or the scale-dependent umbrella operator,
can be intuitively related to the biharmonic process, because the Laplace operator is
essentially applied twice (to compute both HKS and the subsequent scale-dependent
umbrella operator). It provides a good balance in the sense that it decays slowly in
small cluster around the source instance and fast enough to be structurally inherent in
dense areas. This specific “balancing” is intimately derived from the biharmonic equa-
tion with properties such as local support and global informativeness [Lipman et al.
2010].

Signal processing. LAD also has strong connection to signal processing. In lowpass
filtering, the divergence of a sample from its average neighborhood is the easiest way
to pinpoint those inconsistent instances if the desired signal has significant high fre-
quency content. As in traditional signal processing [Taubin 1995], it is possible for
LAD to quantify the frequency response by computing an adjoining sum of the Laplace
operator in its immediate vicinity. As a result, this enables LAD to distinguish between
normal instances and inconsistent instances (anomalies) with greater precision.

Diffusion-based clustering. Some recent research [Richards et al. 2009; Qiu and
Hancock 2007; Huang et al. 2011] proposed the probabilistic clustering approaches
based on diffusion space. By integrating all time scales of kernel function into one single
term, this kind of techniques completely removes the diffusion time scaling parameter
and therefore has the built-in robustness to data perturbation and scaling parameter
tuning [Huang et al. 2011]. However, as a side effect, this process of “integration” easily
assimilates local anomalous instances into normal instance clusters since the excessive
diffusion tends to connect everything together. LAD, in sharp contrast, is built upon
kernel function with a small time scale and scale-dependent umbrella operator instead
of integrating all time scales together. Therefore, it avoids the excessive connection
problem.

8.4. Connections between Fermi Density Descriptor and Quantum-Based
Clustering/Classification

Much data mining research [Horn and Gottlieb 2001, 2002; Nasios and Bors 2007;
Weinstein 2010] has used the Schrödinger equation from quantum mechanics to allow
the clusters, or overdense regions in the data, to reveal themselves.

As an example, the intuition behind quantum clustering [Horn and Gottlieb 2001]
is based upon the fact that in the quantum system, local maxima in the ground state
wave function correspond to the local minima of potential [Weinstein 2010]. And such
minima are likely to be good candidates for the cluster centroid locations [Weinstein
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Table I. Statistics of our Evaluation Datasets

Number of Number of Percentage of
Dataset Instance Attribute Anomalies Classes) References

1 breastcancer 683 9 35.0% (malignant) Noto et al. [2010]
2 wdbc 569 29 37.3% (malignant) Noto et al. [2010]
3 pima 768 8 34.9% (positives) Liu et al. [2009]
4 arrhythmia 452 279 45.0% (abnormal) de Vires et al.

[2010]
5 arcene 200 10,000 44.0% (positives) Guyon et al.

[2007]
6 prostatetumor 102 10,509 50.9% (abnormal) Statnikov et al.

[2005]
7 gse24417 417 6,864 31.2% (abnormal) Popovici et al.

[2010]
8 hayesroth 132 5 22.7% (class 3) Noto et al. [2010]
9 ecoli 336 7 2.7% (omL, imL, and

imS)
Noto et al. [2010]

10 yeast 1,484 8 3.7% (vac, pox, and
erl)

Noto et al. [2010]

11 abalone 4,177 7 8.0% (age <5 or >15) Noto et al. [2010]
12 glass 214 9 4.2% (tableware) Noto et al. [2010]
13 ionosphere 351 34 35.9% (bad) Liu et al. [2009]
14 pageblocks 5,473 10 4.2% (graphic,

vertline, and picture)
Noto et al. [2010]

15 magic04 19,020 10 35.2% (hadron) Noto et al. [2010]

2010]. Instances lying in the basin of attraction of particular minima were identified
as a single cluster. Advanced methods have been proposed [Horn and Gottlieb 2002;
Weinstein 2010] that differ in how to handle the problem of identifying data points with
local minima of the function in high dimensions. Specifically, the Schrödinger equation
in Nasios and Bors [2007] is used to calculate the probability of locating a particle given
its potential energy.

Although our proposed FDD also applies the Schrödinger equation, it ignores the
potential energy in Equation (18), as we are not trying to cluster instances to certain
centroids but rather are focusing on the local density measurement to distinguish
anomalies. In our study, the Schrödinger equation acts as a cost function separating
instances with different density instead of clustering/classifying instances according to
the local potential.

9. EXPERIMENTAL ANALYSIS

9.1. Experimental Setup

9.1.1. Datasets. To demonstrate the performance of our proposed FDD and LAD, we
evaluate our algorithms on 15 benchmark datasets, including 7 medical datasets
(breastcancer, wdbc, pima, arrhythmia, arcene, prostatetumor, and gse24417), 4 bi-
ological datasets (hayeRoth, ecoli, yeast, and abalone), and 4 physics datasets (glass,
ionosphere, pageblocks, and magic04), whose statistics are summarized in Table I. All
of these datasets have been popularly used in anomaly detection research (related
references for each dataset are listed in Table I). Such diverse combination of data is
intended for our comprehensive studies. In the data preprocessing step, all nominal
(including binary) attributes or attributes with missing values are removed.

Anomalies in some of the datasets (wdbc, arrhythmia, prostatetumor, etc.), although
carrying a large number of instances, have scattered and sparse distribution as shown
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Fig. 10. Dataset “wdbc” shown on the first three nontrivial eigenvectors. Anomalous instances in green
(37.3% of instances) are more scattered and sparse than normal instances in blue (62.7% of instances).
Therefore, these anomalies, although having a large amount of instances, should be treated as many small
abnormal clusters instead of a single cluster.

in Figure 10. Therefore, the anomalies in these datasets should be treated as a com-
bination of many small anomalous clusters instead of one or a few normal clusters
with high density [De Vires et al. 2010; Noto et al. 2010], which is consistent with our
anomaly definition in Section 1.2.

9.1.2. Baselines. We choose seven state-of-the-art competitors in three categories
to show the outstanding performance of our proposed FDD and LAD. For kNN-
based algorithms, we choose Local Outlier Detection (LOF) [Breunig et al. 2000] and
Local Correlation Integral (LOCI) [Papadimitriou et al. 2003]. LOCI especially provides
an automatic, data-dictated cutoff to determine whether an instance is an anomaly
based on probabilistic reasoning. For attribute-based methods, we include IForest [Liu
et al. 2008] and Mass [Ting et al. 2010]. For manifold-based methods, we choose two
different manifold-based techniques used in Agovic et al. [2007], including LLEs and
ISM, followed by LOF to obtain anomalous score measurement. We also include the
Strangeness-based Outlier Detection (StrOUD) algorithm presented in Barbara et al.
[2006]. StrOUD is based on Transductive Confidence Machines, which have been pro-
posed previously as a mechanism to provide individual confidence measures on classi-
fication decisions [Barbara et al. 2006].

9.1.3. Evaluation Metrics. Since we have the ground truth of labels for each dataset,
we compare our anomaly detection results with labels. For the purpose of theoretical
analysis and practical use, we use three evaluation metrics: AUC, F1-score, and macro
paired t-tests.

AUC. AUC measures the area under the receiver operating characteristics curve,
which can be interpreted as the probability that the classifier will assign a higher score
to a randomly chosen positive example than to a randomly chosen negative example.
AUC is commonly used to evaluate anomaly detectors and it is cutoff independent.
Detailed definition of AUC can be referred to Marzban [2004].

F1-score. In practical use, the anomalous score of all of the instances are usually
sorted, and those instances with higher value are assigned as anomalies. We assume
that the number of anomalies h is already known (calculated with the ground truth),
then the first h instances with the highest anomalous score are selected. We evaluate
the estimated results with F1-score of the anomaly class. For more details about F1-
score, we refer readers to Powers [2011].
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Macro paired t-tests. During the experiment, we also show that our FDD provides
more stable anomaly detection accuracy for all of the datasets by using macro paired
t-tests [Zimmerman 1997] against each competitor, respectively. Note that a score of
macro paired t-tests (p-value) should be no more than 0.05 to be considered statistically
significant.

9.1.4. Parameters. First of all, we introduce the parameter settings in our FDD and
LAD. Our algorithm FDD has two scaling parameters: the Gaussian scales σ and the
environmental temperature T . These two parameters are also used in our LAD (heat
diffusion time t has been replaced by 1

T ; check Section 7.1 for details). Besides these
two parameters, LAD also has another tuning parameter k, the size of neighborhood
scope, which is used in the scale-dependent umbrella operator. In our experiments,
they are set as follows:

—σ : For local sensitivity, σ in both FDD and LAD are always fixed to be the average
distance of each point to its 2-NN (second nearest neighbor).

—T ( 1
t ): Specifically we fix t = 1 in LAD in all of the experiments (except Fig-

ures 11(h) and 12(h)) to avoid the heat dissipation from overdiffusion. For all
FDD experiments and LAD in Figures 11(h) and 12(h), the range of T ( 1

t ) is in
10∧{−4,−3.8,−3.6, . . . , 3.8, 4}.

—k: k is fixed to be k = �1% × n
 (n is the number of instances) in Figures 11(i) and
12(i). But in the other LAD experiments, the stability of LAD with different k is
tested with k ∈ �{1%, 2%, 3% . . . , 100%} × n
.

The size of neighborhood scope, k, is a commonly used parameter that also appears
in LLE, ISM, LOF, LOCI, and StrOUD. For these algorithms, k is also tested in k ∈
�{1%, 2%, 3% . . . , 100%} × n
.

The parameter settings of the other algorithms in our experiments are briefly in-
troduced as follows. For LLE and ISM, we fixed d = 5 to measure across different k
in Tables II and III, as well as in Figures 11(a) and 11(b) and 12(a) and 12(b). But in
Figures 11(c) and 11(d) and 12(c) and 12(d), we show the stability of LLE and ISM
across different d ∈ [1, 30] by choosing the best k from the previous test for each
dataset. In LOCI, the radius coefficient is set as α = 0.5, which is the same as in the
work of Papadimitriou et al. [2003]. As for IForest, to conduct safe and fair compari-
son, we set ρ and the number of trees nt as the following six combinations: ρ = 8 and
nt = 100 (the number of trees); ρ = 8 and nt = 1,000; ρ = 256 and nt = 10; ρ = 256
and nt = 100; ρ = 256 and nt = 500; ρ = 256 and nt = 1,000. For the same reason,
in Mass we set the subsampling size ρ and the number of mass estimation ne as the
following six combinations: ρ = 8 and ne = 100; ρ = 8 and ne = 1,000; ρ = 256 and
ne = 10; ρ = 256 and ne = 100; ρ = 256 and ne = 500; ρ = 256 and ne = 1,000. On the
other hand, IForest and Mass are based on random subsampling, which makes their
performance unstable. In an attempt to get more stable statistics, for each dataset and
parameter setting we run (30 times) and compute the average AUC and F1-score. In
Tables II and III, we document the average AUC/F1-score of the best four (out of all
six) parameter settings for each dataset.

9.2. Comparison of Average Performance

In this section, we evaluate our proposed FDD and LAD, as well as the other seven
anomaly detection algorithms. Table II documents the average AUC of each method
across the corresponding tuning parameters and the relative p-value with regard to
FDD, whereas Table III records the average F1-score of each method across the corre-
sponding tuning parameters and the relative p-value with regard to FDD.
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Fig. 11. AUC stability with different parameters.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 2, Article 14, Publication date: September 2014.



Physics-Based Anomaly Detection Defined on Manifold Space 14:27

Fig. 12. F1-score stability with different parameters.
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In Table II, our proposed FDD and LAD show the first and the second best average
AUC score (0.7818 and 0.7758). They boost up the AUC close to or more than 8% com-
pared with the best performance (0.7214 from IForest) among the other methods. For
most of the datasets, FDD and LAD have the best or very close to the best performance.
Specifically, FDD is the ranked in the top three for all datasets; meanwhile, our LAD,
although not all the time, outperforms the other algorithms in most cases. In fact, in
the only two cases when LAD is not among the best four ranks (arrhythmia and yeast),
LAD still reaches more than 95% of the best AUC results.

Although some algorithms, such as LOF, IForest, and StrOUD, are more efficient
in measuring the anomalous score, their methodologies are based on Euclidean space
and therefore are under the curse of dimensionality. As the number of features in-
creases, their performance drops significantly on the datasets, such as arcene and
prostatetumor. The manifold-based algorithms, such as LLE and ISM, are to reduce
the vulnerability of simple kernel under the high dimensions. Despite the fact that
the LOF measurement on the projection of LLE and ISM shows better quality com-
pared with LOF on the input space, it suffers from the inferior manifold reconstruc-
tion. Comparably, our FDD and LAD, built upon optimal embedding structure derived
from solid physics theory, provide stronger capability of detecting anomalies in terms
of AUC.

As for the macro paired t-tests across all datasets in Table II, compared with all
the other algorithms, our quantum theory–based FDD has an extremely small p-value
(less than 1%). Even compared with the other proposed method LAD, FDD still has a
very small p-value of less than 5% with statistical significance. This proves that our
FDD has the most stable average performance in terms of AUC.

To have a comprehensive test with a more practical view, we also measure the F1-
score and document this in Table III. Here we only record the F1-score of the anomalous
subset (class) because it is the focus of anomaly detection. Although the heat diffusion–
based LAD shows slightly fluctuating performance compared with its AUC production
in Table II, it still surpasses (0.5338 vs. 0.5026) IForest, the best among the other algo-
rithms (except FDD) for more than 6%. But the quantum theory–based FDD acquires
the best F1-score (0.5542), which improves more than 10% based on IForest. Further-
more, the same as demonstrated in AUC, the F1-score by FDD is almost persistently
(except for glass) ranking in the top three among all algorithms. In the actual appli-
cation of anomaly detection, the users tend to focus on the detected anomalous subset
instead of the whole label distribution; therefore, the F1-score tells more of a story than
AUC. In this case, FDD shows more convincing quality in terms of the F1-score. Thus,
our proposed FDD has the capability of providing the most desirable label results of
anomalies in practice.

Compared with the basic LOF algorithm, IForest shows a passable AUC and F1-
score on average, which supports the argument that it is able to take both global
and local contexts into consideration. This is different from kNN-based methods (LOF
and LOCI), which only are concerned with instance-wise local context. Compared with
LOF, LOCI has more than an 8% better AUC and more than a 7% better F1-score.
This moderately stable and stronger performance comes from the built-in concept of
a multigranularity deviation factor [Papadimitriou et al. 2003]. Although Mass can-
not always maintain competitive quality of anomalous score measurement, it has the
fastest computation speed compared with all other competitors.

9.3. Comparison of Stability

To systematically manifest the stability against parameter tuning of each method,
we run experiments for LLE, ISM, LOF, LOCI, StrOUD, and our proposed FDD and
LAD across their corresponding parameter tuning, respectively, and record the AUC
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in Figure 11 and F1-score in Figure 12. We select seven small datasets—wdbc, pima,
arrhythmia, ecoli, yeast, glass, and ionosphere—for the stability test. In theory, smaller
datasets should be more sensitive to the change of scaling parameters. Therefore, these
seven datasets are the more effective choices to show whether the algorithms perform
robustly during the adjustment of their parameters.

For the size of neighborhood k and the number of embedding dimension d, LLE
undergoes fluctuation especially on wdbc, ecoli, and glass. It is mainly because LLE
has strong assumption that the data is densely sampled and the embedding structure
is locally approximately linear, yet it is not true for many real-world datasets. Similarly,
ISM’s results vary dramatically as k changes, especially for ecoli, glass, and ionosphere,
although later ISM is comparably stable while tuning d. This is because ISM is highly
vulnerable to the local data perturbation, as the embedding given by the ISM tends
to recover the geodesic distances between points on the manifold, which is very locally
sensitive compared with random walk [Lafon et al. 2006; Van der Maaten et al. 2009].

Compared with LOF, LOCI performs robustly with different k, because its proposed
multigranularity deviation factor can more intuitively cope with local density varia-
tions in the feature space and detect both isolated anomalies as well as outlying clusters
[Papadimitriou et al. 2003]. LOF, although it occasionally beats LOCI with certain k,
shows seriously unstable performance as k changes, which can be simply explained as
follows: LOF is based on a direct normalization of anomaly scores for an inadaptive
neighborhood.

StrOUD demonstrates not only its effectiveness and efficiency (since it is totally
based on the input space without any projection) but also its AUC stability during the
change of k. However, in terms of AUC result shown in Figure 11(g), the curves have
different patterns: StrOUD reaches higher AUC with smaller k on the wdbc, glass,
and ionosphere datasets, but it has a better AUC result with larger k on pima and
ecoli. In the test of F1-score in Figure 12(g), StrOUD shows serious instability on ecoli
as k changes, partly because StrOUD is principally built upon Euclidean distance on
the input space, which cannot faithfully reveal the intrinsic dissimilarity and density
on the nonlinear distributed data. Furthermore, it becomes even worse on the more
complex datasets with large numbers of features, as already confirmed in Tables II
and III.

Compared with the preceding algorithms, our proposed LAD shows the best stability
against the change of k, as demonstrated in both AUC (Figure 11(h)) and F1-score
(Figure 12(h)). This is because LAD has an inherent relationship with heat diffusion
and random walk. More specifically, LAD has a strong probabilistic interpretation,
which provides a power against noise appearance or neighborhood size perturbation,
as long as they are not severe enough to perturb the general neighborhood statistics.

Importantly, we test the performance of our FDD and LAD with different physical
parameters: heat diffusion time t in LAD and environmental temperature T . As we
have already described in Figure 7 and Section 8.1, LAD may lose the power of lo-
cal density description especially for local anomalies when t goes large, which means
overdiffusion. Therefore, the AUC curves by LAD of ecoli and yeast significantly drop
in Figure 11(i). Likewise, the F1-score by LAD in Figure 12(i) shows comparably un-
stable trends as t increases. On the contrary, Figure 11(j) establishes the robustness
of FDD. Compared with LAD, FDD has more potential in combating off-the-sweet-spot
physical parameter since it is constructed on polarized manifold space and has addi-
tional stabilizing factors that help to balance the riskiness from extreme cases. Another
thing worth mentioning is that in Figure 12(j), FDD does not always maintain strong
stability across all of the datasets. But comparatively, our proposed FDD still retains
a certain level of anomaly detection quality as parameter changes. And most impor-
tantly, FDD outperforms the existing baselines in terms of average performance and
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Table IV. Comparison of Average AUC by LAD with Different Laplacians

Dataset LAD with Lnn LAD with Lsym LAD with Lf p LAD with Llbn LAD with Lrw

breastcancer 0.9821(4) 0.9861(2) 0.9865(1) 0.9822(3) 0.9820(5)
wdbc 0.7241(5) 0.9044(2) 0.9047(1) 0.9015(3) 0.9005(4)
pima 0.5806(5) 0.7130(1) 0.7121(2) 0.7103(3) 0.7101(4)
arrhythmia 0.7473(1) 0.7403(2) 0.7261(3) 0.7183(5) 0.7192(4)
arcene 0.4316(5) 0.5369(3) 0.5101(4) 0.5523(2) 0.5551(1)
prostatetumor 0.5136(5) 0.5396(3) 0.5608(2) 0.5808(1) 0.5314(4)
gse24417 0.5587(4) 0.5888(1) 0.5791(3) 0.5426(5) 0.5860(2)
hayesroth 0.9916(3) 0.9926(2) 0.9929(1) 0.9903(4) 0.9903(4)
ecoli 0.4084(5) 0.8949(4) 0.8951(3) 0.8955(2) 0.8960(1)
yeast 0.4135(5) 0.6114(4) 0.6115(1) 0.6115(1) 0.6115(1)
abalone 0.6335(5) 0.7668(1) 0.7667(2) 0.7666(3) 0.7299(4)
glass 0.7132(5) 0.8765(1) 0.8744(2) 0.8732(3) 0.8732(3)
ionosphere 0.9466(1) 0.9336(2) 0.9324(5) 0.9335(3) 0.9335(3)
pageblocks 0.7091(5) 0.7958(2) 0.7932(4) 0.7947(3) 0.8893(1)
magic04 0.6513(5) 0.7300(1) 0.7289(3) 0.7296(2) 0.7286(4)
Average 0.6681(5) 0.7740(2) 0.7716(4) 0.7722(3) 0.7758(1)

Note: For each dataset, the numbers in the parentheses indicate the ranks of each Laplacian. The Average
row presents the average AUC of each Laplacian across all datasets, respectively.

steadiness with the purpose of detecting anomalies. The robustness property is equally
significant for domain experts who do not have a strong machine learning background.
Since there are not many clues for tuning the traditional yet unstable algorithms such
as LLE, ISM and LOF, it is much more comfortable for domain experts to utilize robust
anomaly detection algorithms for the domain data analysis. Therefore, our proposed
FDD is very hands-on and effective on many real-world applications.

9.4. Comparison of Different Laplacians

In Sections 3.1 and 7.2, we introduced our selection of Laplacians in LAD and FDD.
Here we analyze the reasons through experiments of LAD and FDD with the five
Laplacians and 15 datasets, respectively. To save space, we only list the average AUC
in Tables IV and V.

Table IV shows the effect of different Laplacians on LAD, and Lrw has the best
average performance. We also note that except for Lnn, there is not too much difference
among the four (normalized) Laplacians. Here is a detailed analysis:

—The similar performance of Lrw, Lsym, Lfp, and Llbn can be explained by the use of an
umbrella operator in LAD, which gives attention to the weighted distance between
each point and its neighborhood. Therefore, as long as the eigenvalues are normal-
ized, and there is deviation between the normalized eigencomponents, especially the
corresponding value of any anomaly and its surrounding normal instances in the
eigenvectors, LAD can capture such deviation regardless of the choice of normalized
Laplacians. The reason we emphasize Lrw on LAD is that LAD is based on heat
diffusion, and heat diffusion in classical physics has better interpretation with par-
ticles’ random walk.

—The reason why LAD fails on top of Lnn relates to the unnormalized eigenvalue
distribution. Figure 13(a) and 13(b) shows the eigenvalues (sorted in ascending or-
der) derived from Lrw and Lnn on dataset wdbc correspondingly. Without normal-
ization, the eigenvalues in Figure 13(b) increase exponentially, and only a small
portion of eigencomponents in Heat Diffusion (Figure 13(d)) are given stable and
large enough weights, whereas the other eigencomponents, even those informative,
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Fig. 13. Eigenvalue by Lrw and Lnn, and the corresponding weighted function of HD (Equation (27)) and FD
distribution (Equation (23)). The dataset is wdbc.
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Table V. Comparison of Average AUC by FDD with Different Laplacians

Dataset FDD with Lnn FDD with Lsym FDD with Lf p FDD with Llbn FDD with Lrw

breastcancer 0.9870(1) 0.9187(2) 0.9088(3) 0.3171(5) 0.5612(4)
wdbc 0.9049(1) 0.8236(2) 0.5337(3) 0.2464(4) 0.2139(5)
pima 0.7119(1) 0.6886(3) 0.7027(2) 0.4344(5) 0.6032(4)
arrhythmia 0.7472(1) 0.7384(2) 0.7050(3) 0.6131(5) 0.6639(4)
arcene 0.5551(1) 0.5538(2) 0.5384(4) 0.5433(3) 0.4648(5)
prostatetumor 0.5359(5) 0.5415(4) 0.5792(2) 0.5427(3) 0.5904(1)
gse24417 0.5895(1) 0.5815(2) 0.5529(3) 0.4964(5) 0.5504(4)
hayesroth 0.9905(1) 0.6990(4) 0.9418(2) 0.1000(5) 0.9183(3)
ecoli 0.9052(1) 0.8913(3) 0.8977(2) 0.0832(5) 0.8906(4)
yeast 0.6212(2) 0.6205(3) 0.6614(1) 0.3654(5) 0.5927(4)
abalone 0.7332(2) 0.7526(1) 0.5190(3) 0.4291(4) 0.2504(5)
glass 0.8737(2) 0.7702(3) 0.8883(1) 0.3149(5) 0.6141(4)
ionosphere 0.9253(1) 0.6320(2) 0.3558(4) 0.1736(5) 0.5781(3)
pageblocks 0.8939(1) 0.6888(2) 0.2993(4) 0.4201(3) 0.2247(5)
magic04 0.7520(1) 0.7502(2) 0.3411(4) 0.6722(3) 0.3357(5)
Average 0.7818(1) 0.7100(2) 0.6283(3) 0.3835(5) 0.5268(4)

Note: For each dataset, the numbers in the parentheses indicate the ranks of each Laplacian. The Average
row presents the average AUC of each Laplacian across all datasets, respectively.

go away quickly. Comparatively, the eigenvalues derived from Lrw show an inverse-
hyperbolic-tangent-like distribution. So the consequent Heat Diffusion (Figure 13(c)
with t = 1) gives very high weights on the first few eigencomponents and fewer
but nonnegligible weights on most of the following ones. Therefore, the normalized
Laplacians, such as Lrw, weight the eigencomponents more safely, even conserva-
tively, compared with Lnn.

—Note that if diffusion time goes too large, Heat Diffusion will only emphasize the
first few eigencomponents and ignore all of the following, as shown in Figure 13(g).
Therefore, HKS and even LAD fail with too large of a t.

In Section 7.2, we proved that Lnn is the best choice for FDD. Table V confirms that
Lnn has the best average performance on FDD. Here we give a brief analysis:

—FDD, different from LAD, does not use an umbrella operator but instead relies on
the energy distribution functions and the eigendecomposition on Laplacians. Hence,
the Laplace operator becomes more essential on the construction of FDD.

—In Figure 13(f) and 13(h), FD distribution function with Lnn robustly assigns simi-
lar and very stable weight to the first 200+ eigencomponents of the wdbc dataset,
regardless of the value of T. Comparatively, FD with normalized Laplacians such as
Lrw (Figure 13(e)) embraces too many eigencomponents, even including noisy ones.
Without the help of an umbrella operator, these noisy components will bring unstable
anomaly detection results, as shown in Table V.

9.5. Comparison of Energy Distribution Functions

To have a better understanding of different distribution function effects (introduced in
Section 7.1) on anomaly detection, we test their stability. Here we integrate all four
functions, namely MB distribution, BE distribution, GD, and our chosen FD distribu-
tion, into Equation (21) with Lnn operator and calculate the anomaly detection scores
in AUC and F1-score.

The results are illustrated in Figures 14 and 15. The stability of GD is reasonable,
but the scores are apparently lower than the other three. BE shows the most fluctuant
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Fig. 14. AUC stability with different energy distribution functions.

Fig. 15. F1-score stability with different energy distribution functions.

results in both AUC and F1-score because it does not have the smoothing term “plus
one.” MB suffers from extremely small temperature T, which is similar to the fact
that HKS suffers from large diffusion time t; therefore, generally it has a dropping
trend when T becomes smaller. Our FDD, although it not always maintains the best
performance, has the best average result and the most stability in both AUC and
F1-score.
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Table VI. Comparison of AUC between Full and Fast Versions of LAD and FDD

Dataset LAD(AGK) LAD f (GAU ) FDD(AGK) FDD f (GAU )

breastcancer 0.9820 0.9874 0.9870 0.4856
wdbc 0.9005 0.9681 0.9049 0.4883
pima 0.7101 0.4804 0.7119 0.5105
arrhythmia 0.7192 0.5666 0.7472 0.4973
arcene 0.5551 0.5510 0.5551 0.5055
prostatetumor 0.5314 0.6185 0.5359 0.5041
gse24417 0.5860 0.4449 0.5895 0.5054
hayesroth 0.9903 0.9311 0.9905 0.4908
ecoli 0.8960 0.9377 0.9052 0.8763
yeast 0.6115 0.6013 0.6212 0.5548
abalone 0.7299 0.7387 0.7332 0.4250
glass 0.8732 0.8232 0.8737 0.7545
ionosphere 0.9335 0.8241 0.9253 0.3000
pageblocks 0.8893 0.7188 0.8939 0.4992
magic04 0.7286 0.7307 0.7520 0.5064
Average 0.7758 0.7282 0.7818 0.5269

Table VII. Comparison of Running Time (in seconds)

Dataset LAD(AGK) LAD f (GAU ) LOCI StrOUD IForest

breastcancer 0.9125 0.2732 45.5966 6.2400 4.8025
wdbc 0.8137 0.2822 129.7696 3.9162 3.8211
pima 1.3304 0.4589 231.3238 6.4149 5.3805
arrhythmia 0.5204 0.2265 78.8057 3.1139 3.8083
arcene 0.1772 0.0842 12.6367 8.3564 1.4613
prostatetumor 0.1442 0.0871 3.1904 7.0358 0.5022
gse24417 0.4080 0.1791 65.8869 8.6048 3.2912
hayesroth 0.1058 0.0735 4.2058 0.2284 0.6599
ecoli 0.3294 0.1223 32.6413 1.4403 2.7602
yeast 5.9344 0.5448 851.1367 25.5289 4.8630
abalone 72.5052 8.8877 17112.6534 192.0656 5.9136
glass 0.1414 0.0867 14.7054 0.6044 1.7353
ionosphere 0.3251 0.1003 41.3065 1.4513 2.9742
pageblocks 92.3223 35.4092 33725.4086 320.3760 6.3389
magic04 1297.0366 471.1242 252425.9877 864.9672 6.6197
Average 98.2004 34.5293 20318.3503 96.6896 3.6621

9.6. Comparison of Efficiency and Effectiveness

In this section, we analyze the efficiency and effectiveness of LAD and FDD with a
small portion of eigencomponents. Additionally, to obtain a short amount of running
time, we only use GAU (O(n2m)) instead of AGK (O(n2m2)) here. Suppose that the size
of dataset (number of instances) is n, and the first max(|n/50|, 10) eigencomponents
are used to compute LAD and FDD, which are noted as LAD f (GAU ) and FDD f (GAU ).
The AUC results are shown in Table VI. LAD f (GAU ) obtains about 94% of AUC by
full-version LAD(AGK), whereas FDD f (GAU ) only gets 67% of the full FDD(AGK). Ap-
parently, LAD does not suffer a lot from a small amount of eigenvectors compared with
FDD, which can be explained by the effect of the umbrella operator and the illustration
results in Figure 13. Table VII shows the running time comparison of a few algorithms.
The parameter settings are documented in Section 9.1.4. Specifically, IForest’s run-
ning time is measured by the average of the best four parameter settings listed in
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Section 9.1.4. LAD f (GAU ) is two times faster than LAD on average and also is more
efficient than StrOUD and LOCI. The most efficient one among these five algorithms
is IForest, which is extremely fast on large datasets, such as magic04 and pageblocks.
However, it is worth noting that LAD f (GAU ) is more efficient on the small datasets.

10. CONCLUSION

This article documents the physics-based methodology of unsupervised anomaly detec-
tion. The first algorithm that we propose is LAD, which is based on heat diffusion and
a scale-dependent umbrella operator. Its capability of representing local density relies
on a short time of heat dissipation and an informative neighborhood that is guaranteed
by the scale-dependent umbrella operator. FDD is another anomaly detection method
that we proposed. It is built upon a polarized manifold projection and a quantum mo-
tion probability measured by Fermi-Dirac energy distribution. We also analyze the
utilization of AGK and the best choice of graph Laplacian with the purpose of anomaly
detection. Compared with the existing algorithms, our proposed LAD and FDD exhibit
better average performance and stability in our extensive experiments. Moreover, FDD
demonstrates its robustness across different physics scaling parameters compared with
LAD. We expect that the proposed physics-based methodology is useful for most types
of data distribution. Nonetheless, much more extensive experiments are still required
to validate this conjecture, which is part of our near-future research. Another direction
is to investigate its possible connection with global structure and pattern mining, such
as clustering and feature selection.
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