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Abstract—Ratio-based algorithms are proven to be effective meth-
ods for removing batch effects that exist among microarray
expression data from different data sources. They are outper-
forming than other methods in the enhancement of cross-batch
prediction, especially for cancer data sets. However, their overall
power is limited by: (1) Not every batch has control samples.
The original method uses all negative samples to calculate the
subtrahend. (2) Microarray experimental data may not have clear
labels, especially in the prediction application, the labels of test
data set are unknown. In this paper, we propose an Improved
Ratio-Based (IRB) method to relieve these two constraints for
cross-batch prediction applications. For each batch in a single
study, we select one reference sample based on the idea of aligning
probability density functions (pdfs) of each gene in different
batches. Moreover, for data sets without label information, we
transfer the problem of finding reference sample to the dense
subgraph problem in graph theory. Our newly-proposed IRB
method is straightforward and efficient, and can be extended for
integrating large volume microarray data sets. The experiments
show that our method is stable and has high performance in
tumor/non-tumor prediction.

I. INTRODUCTION

In this digital era, we have been obtaining much more bio-
logical experiment data than before. Consequently, biological
scientists have collected and built many genomic knowledge
database by taking the advantage of today’s information tech-
nology. These large database, for example, NIH GEO [1],
inSilicoDb [2], and ArrayExpress [3], not only share many
experiments data from different independent studies, but also
provide computing tools for researchers to analyze data. The
approach of integrative analyzing multiple microarray gene
expression datasets is proved to be a robust way for extracting
biological information from genomic datasets [4]. Comparing
with ”meta-analysis” [5] which combines analysis results from
many small-sized independent datasets, integrative analysis
shows higher statistical relevance of results from one integrated
large size dataset [6]. Nevertheless, combining or merging
microarray expression data from different data sources suffers
from the so-called batch effects [7] which is still a challenging
and difficult problem in computational biology research.

Batch effects are different from bias and noise. They are
systematical unwanted variations existing among batches from
different sources [7]. Many research works have been proposed

in past decade to learn their math properties, and try to reduce
its impacts in microarray data analysis. Lazar et al. [6] doc-
umented a comprehensive survey about existing batch effect
removal methods. In all those methods, ratio-based methods
are proved to have high prediction performance by Luo et
al. [8]. Moreover, ratio-based methods have low computational
cost which is demanding for integrating large volume data
sets. However, ratio-based methods require each batch of data
to have a group of reference samples, which could be either
control samples or negative (non-tumor) samples.

GENESHIFT is another batch effect removal method proposed
by Lazar et al. [9]. It is a nonparametric algorithm and assumes
that samples in different batches are from same population,
which means they will have same distributions. By this as-
sumption, GENESHIFT reduces the batch effect by aligning
the pdfs of each gene’s expression values crossing different
batches. It has the same expression value model as ratio-
based methods. However, It does not have a clear mathematical
definition/operation about how the batch effects are neglected
or removed. In this paper, we propose an Improved Ratio-
based (IRB) method for batch effect removal by taking the
advantages of both ratio-based methods and GENESHIFT. The
main contributions of our works are listed as follows:

• We show that it is better if the pdfs of genes are
estimated from negative (non-tumor) samples instead
of all samples for cancer data sets(§ IV-C).

• We propose a co-analysis framework (§ IV-D) to
find reference samples for ratio-based algorithms. We
define matching score for searching best reference
samples for labeled data samples. We also propose
a greedy algorithm for obtaining the local optimal
solution.

• For unlabeled data samples, we convert the reference
samples searching problem to the dense subgraph
problem in graph theory (§ IV-D) and design a search-
ing algorithm based on bipartite graph to solve it.

• We propose an improved ratio-based method
(IRB) (§ IV-E) by using one sample in each batch as
the subtrahend comparing with original method which
use many samples. We also evaluate the prediction
performance over two real cancer data sets.

In this paper, we represent different batch data as Xk, k ∈
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Symbol Meaning

Xk X: one batch; k: batch id;

Xk
ij expression value of ith row and jth column;

X̂k
ij expression value after batch effect removal;

bkij batch effect of value at (i, j) in batch k;

εkij noise;

Pi, Qi pdfs of gene i in batch P and Q;

G(V,E) graph G with vertices V and edge set E;

S vertices of subgraph;

e[S] number of edges induced by S;

TABLE I. FREQUENTLY-USED MATHEMATICAL NOTATIONS.

{1, · · · ,K}, where k is the batch ID. Each batch data has
m rows and n columns. The rows represent genes(feature),
and the columns represent samples. Moreover, We assume
that all batches have been log-transformed and preprocessed
for background correction, normalization and summarization
by using either MAS5 [10], RMA [11], fRMA [12] or other
preprocessing tools.

II. BACKGROUND AND RELATED WORK

Batch Effect Removal. The surveys [13], [6] give detailed
comparison and analysis about existing batch effect removal
algorithms. The most popular ones include, but not lim-
ited to: Batch Mean-Centering (BMC) [14],Gene Standardiza-
tion [15],Ratio-based methods [8], Scaling relative to reference
dataset [16], Empirical Bayes method [17], Cross-Platform
Normalization (XPN) [18], Distance-Weighted Discrimina-
tion [19], Singular Value Decomposition based method [20],
Surrogate Variable Analysis [21],GENESHIFT [9], Remove
Unwanted Variation,2-step (RUV-2) [22] and etc. These meth-
ods can be divided into two groups: location-scale (LS)
methods and matrix-factorization(MF) methods. LS methods
assume a statistical model for the location (mean) and scale
(variance) of the data within the batches and proceed to
adjust the batches in order to agree with these methods.
MF algorithms assume that the data variation corresponding
to batch effects is independent to the biological variable of
interest and can be captured by a small set of factors which
can be estimated through certain matrix factorization methods.

Ratio-Based Methods. Ratio-based methods [8] shift the
expression value of each gene based on a set of reference
samples in each batch. It is designed with two versions:
Ratio-A and Ratio-G. Ratio-A uses arithmetic mean value as
subtrahend while Ratio-G uses geometric mean value. They
assume that expression value of each gene in reference samples
are subjected to the same amount of batch effects as in the
other samples in same batch. Then the batch effects can be
removed by subtracting the mean of those reference samples.
Assuming that there are r reference samples in batch Xk,
method Ratio-A and Ratio-G can be described as:
Ratio-A: Arithmetic mean ratio-based method:

x̂k
ij = xk

ij −
1

r

r∑
l=1

xk
il; (1)

Ratio-G: Geometric mean ratio-based method:

x̂k
ij = xk

ij −
(

r∏
l=1

xk
il

)1/r

. (2)

GENESHIFT. GENESHIFT is a high quality nonparametric
method. It first estimates genewise pdfs for each batch using
the Parzen-Rosenblatt density estimation method [23]. Sec-
ondly, it estimates the offset term by finding the best match
between two pdfs. This algorithm processes two batch data at
one time. Assume Pi and Qi are the pdfs of gene i in studies of
batch X and batch Y . The algorithm put Pi as being fixed, and
slides Qi step by step across the range where Pi is estimated.
In each step, the algorithm computes the inner product between
Pi and part of Qi, which lays in the range where the densities
are estimated as follows:

M(t) = Pi ∗Qi =
d∑

j=1

Pi(j)W
t
Qi(j)

, (3)

where d is number of sampling ticks of pdf and W t
Qi(j)

is
given by:

W t
Qi(j)

=

{
ωQt

i, for Qt
i in window

0, otherwise,

with ω = 1 a rectangular window defined on the support of Pi

and Qt
i is part of Qi found in the pdfs estimation range at step

t. The best matching between Pi and Qi is given by max(M)
and the offset term is obtained by subtracting from the initial
position of Qi(bref ), the best matching position (bmax(M)) is:

δ = bref − bmax(M).

By setting the reference position to 0, the offset term becomes
δ = −bmax(M).

Dense Subgraph. Dense subgraph extraction is a classic
problem in Graph theory [24]. The algorithms of solving
this problem have been applied to biological networks re-
search [25] [26] [27]. Here, we want to extract a densest
subgraph from defined bipartite graph. We wish the extracted
subgraph has high quality and concise. To archive this goal,
we apply the latest technique described in [28] to extract the
optimal quasi-clique which is a high quality dense subgraph.

Given a graph G(V,E), find a subset of vertices S∗ ⊆ V such
that fα(S

∗) = e[S] − α
(|S|

2

) ≤ fα(S) for all S ⊆ V . The
resulted set S∗ is called optimal quasi-clique of G. We use
the recommend value α = 1/3 in this paper.

III. DATA

We use two real world cancer data sets to validate our proposed
algorithms.

a) Lung Cancer Dataset.: The lung cancer dataset comprises
three data sets hybridized on two different Affymetrix plat-
forms. The first lung cancer data set (GSE19804) contains
120 samples of tumor and adjacent normal tissue samples
hybridized on Affymetrix HGU133plus2 expression arrays.
The second data set (GSE19188) contains 94 tumor and
62 adjacent normal tissue samples hybridized on Affymetrix
HGU133plus2 expression arrays. The third lung cancer data
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set (GSE10072) contains 58 tumor samples and 49 normal
tissues samples consists of a mix of independent controls and
tumor adjacent tissues hybridized on Affymetrix HGU133A
expression array.

Type Name NT T Platform

Train
GSE19804 60 60 GPL570

GSE19188 62 94 GPL570

Test GSE10072 49 58 GPL96

TABLE II. LUNG CANCER DATASET. NT: NON-TUMOR; T: LUNG

TUMOR;

b) Iconix Dataset.: We use the Iconix dataset (GSE24417)
from Microarray Quality Control Phase II(MAQC-II) microar-
ray gene expression data ([8].) The Iconix dataset is a toxi-
cogenomic data set provide by Iconix Bioscience (Mountain
View,CA,USA). It aims at evaluating hepatic tumor induc-
tion by non-genotoxic chemicals after short-time exposure.
The training set consists of 216 samples treated for 5 days
with one of 76 structurally and mechanistically diverse non-
genotoxic hepatocarcinogens and non-hepatocarcinogens. The
test set consists of 201 samples treated for 5 days with one
of 68 structurally and mechanistically diverse non-genotoxic
hepatocarcinogens. Gene expression data were profiled using
the GE Codelink microarray platform. The separation of the
training set and the test set was based on the time when the
microarray data were collected, also the different batches. The
detail data set information is listed as follows.

Type Batch NT T Date

Train

B1 17 24 11/6/01-12/10/01

B2 87 17 12/11/01-02/25/02

B3 39 32 3/20/02-7/18/02

Test
B4 91 18 07/22/02-12/4/02

B5 53 39 4/3/03-9/28/04

TABLE III. INFORMATION OF THE ICONIX DATASET; NT:
NON-TUMOR; T: TUMOR;

IV. ALGORITHM

In this section, we are presenting the Improved Ratio-based
(IRB) method. Comparing to the original ratio-based method,
we solve the problem of finding reference samples. Instead of
finding reference samples in each batch separately, IRB selects
reference samples by taking all batches into consideration
at the same time. The outline of this section is as follows.
First, the expression value model of microarray data sets is
described. Second, we define the reference samples searching
problem formally. Third, we describe the assumption used in
our method. Finally, we introduce a co-analysis framework for
finding reference samples in labeled and unlabeled data sets
separately.

A. Expression Value Model

In general, batch effect comes with multiplicative and additive
form. After log-transform, these batch effects are both
represented as additive terms. We assume that the expression
value of feature i in sample j of batch Xk can be expressed

in the following general form:

xk
ij = x

′
ij + bkij + εkij , (4)

where x
′
ij is the actual feature value. bkij is the batch effect

term and εkij represents noise.

Moreover, we use the same genewise density estimation
method as GENESHIFT algorithm which is Parzen-Rosenblatt
density estimation method[23].

B. Problem Definition

As mentioned in the abstract, we only want to find one
reference sample for each batch. The searching guideline is
following the principle of GENESHIFT algorithm: the inner
product of each gene’s pdf in different batches are maximized
after integration. Before giving the formal definition of our
problem, we first define the matching score of two batches:

Definition 1: Given two batches that have same number m of
genes(or features), and with pdfs P and pdfs Q respectively.
Let Pi (Qi)is the pdf of ith gene, the matching score of them
is defined as:

M(P,Q) =

m∑
i=1

< Pi,Qi > . (5)

Now, our problem can be defined formally as:

Problem 1: Given K batches of microarray expression dataset
Xk : m × n(k),m genes,n(·) samples,k ∈ {1, · · · ,K}, with
estimated pdfs:

�P = [P1(�x),P2(�x), · · · ,PK(�x)],

where Pk is the vector of pdfs for genes �x in batch Xk. Pk

is a m × 1 vector where each P k
i , i ∈ {1, · · · ,m} represents

the pdf of i-th gene.The problem is to find K offset samples
xk
offset within each batch respectively:

�xoffset = [�x1
offset, �x

2
offset, · · · , �xK

offset],

such that the total matching score of pdfs after shifting by its
offset samples respectively archives maximum:

argmax
�xoffset

K∑
i=1

K∑
j �=i,j=1

M(Pi(�x−�xoffset),Pj(�x−�xoffset)), (6)

In the above problem, xk
offset is a specific sample in batch

k. If we don’t limit xkoffset to be a specific sample in the
batch and let it be a regular offset vector, the problem 1 can
be seen as a generalized version of GENESHIFT which takes
two batches at the same time and shift pdfs of every gene
separately from one batch to another batch. The reason we put
this constrain here is that the batch effect term bk in equation
(4) can be neglected by subtracting a sample, and this sample
inherits the batch effect term with its true signal value. The
advantage of applying this constrain is that we obtain a clear
math explanation about how the batch effects are removed.
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Fig. 1. Left: GSE19804; Right: GSE19188; Top row: correlation(PCC) heat
map, samples are sorted from non-tumor to tumor samples; Middle row: pdf
of a random gene(GeneBank ID:U48705). Bottom row: correlation values
distribution

C. Assumption

In GENESHIFT, the authors assume that the expression of each
gene from two different experiments (batches) can be repre-
sented accurately enough through the expression of that gene
across all population if the number of samples in two microar-
ray Gene Expression (MAGE) experiments is sufficiently high.
By this assumption, a consequence conclusion is that the pdfs
of each gene should be similar in all experiments. However, as
we observed from above cancer data sets, the average similarity
among the non-tumor(negative) samples is higher than the
tumor(positive) samples, as show by figure 1. We then argue
that the similarity pdfs assumption of GENESHIFT holds for
cancer data sets only if the pdfs are estimated from non-tumor
samples but not from all. This argument is not only based on
the observation but also based on the fact that tumors with
similar histopathological appearance can follow significantly
different clinical courses [29]. The assumption of IRB now
can be described as following:

Assumption 1: The pdf of a gene have similar distribution
in all experiments iif the pdf is estimated from non-tumor
samples.

D. Co-analysis Framework

In this section, we propose a co-analysis framework to find the
reference samples both for labeled and unlabeled data samples.
For all ratio-based methods, we need reference samples to
calculate the subtrahend. Original ratio-based methods use
average of all negative samples or median of them. As for
our method, we only use one reference sample for each
batch. Comparing to the original ratio-based methods that

find reference sample independently, we take all batches into
consideration at the same time. Our co-analysis framework can
be described as following from labeled data sets to unlabeled
data sets.

c) Labeled Data Sets.: For example, the training data sets have
clear labels of samples. To find the reference samples for them,
we need to solve the optimization problem (1). However, the
properties like convexity or non-convexity of objective function
in problem (1) are uncertain. Because (1)the objection function
cumulates all matching scores of genes that show very different
pdfs; (2)the pdf curve could be either convex or non-convex.

To solve this problem, we propose a greedy algorithm as
described in algorithm 1. Our algorithm first selects an anchor
batch that has the largest number of non-tumor samples and
shifts its geometric median to axis origin. Secondly, for the
rest of batches, we calculate the best offset vector for each of
them according to this anchor batch. In the last step, we search
a sample from each batch that has the smallest Euclidean
distance to this offset vector and treat it as the reference sample
that we are looking for. At the first step, we shift the geometric

Algorithm 1: FindingReferenceSamples
input : Microarray experiments data:

X : {Xk : m× n}, k ∈ {1, · · · ,K} with labels.
output: Reference samples:

�xoffset = [�x1
offset, �x

2
offset, · · · , �xK

offset].
1 begin
2 Find anchor batch xanchor;
3 Shift xanchor by GMapprox;
4 for Batch Xk, k �= anchor do
5 for Each gene gi, i ∈ {1, · · · ,m} do
6 Estimates the pdf across batches: pdfk

i ;
7 Calculate the offset term δki ;
8 end
9 Find the closest sample x̂k

offset to δk;
10 end
11 Return �xoffset = [�x1

offset, �x
2
offset, · · · , �xK

offset].
12 end

median of anchor batch to axis origin in order to place the
median of pdfs of all genes around the axis origin as close as
possible. However, the geometric median is not only difficult
to compute but also not necessary to be an experiment sample
that inherits batch effect. To solve this dilemma, we choose the
sample that nearest to the geometric median as a substitute. We
call this sample approximate geometric median (GM) sample:
GMapprox. and the definition is as:

GMapprox = argmin
y∈X

∑
xj∈X\y

‖xj − y‖2, (7)

where the parameter δ controls the width of neighborhoods.
Our greedy algorithm now can be described as Algorithm 1.

d) Unlabeled Data Sets.: For these data sets, the tumor/non-
tumor labels are unknown but the batch labels are clear. We
estimate the non-tumor samples of a unlabeled batch by using
dense subgraph extraction algorithms. We first build a bipartite
similarity graph between the known non-tumor samples and all
unlabeled samples. The Pearson Correlation Coefficient (PCC)

215



metric, represented as sim(·), is used. After that, we extract
a dense subgraph, called optimal quasi-clique, from the built
graph. The nodes of the resulted subgraph that belong to the
unlabeled side are treated as non-tumor samples. The algorithm
of building the bipartite graph is described by algorithm 2.

Algorithm 2: BuildBipartiteGraph
input : Non-tumor samples: L, unlabeled samples: R,

User specified threshold θ
output: A unweighted undirected bipartite graph

G(V,E), where L,R ⊆ V .
1 begin
2 Calculate the similarity sim(l, r),where

l ∈ L, r ∈ R;
3 for Each pair (l, r) do
4 if sim(l, r) ≥ θ then
5 Add one edge to E for nodes pair (l, r);
6 end
7 end
8 Remove the nodes with zero degree;
9 Return G(V,E);

10 end

The user-specific value θ will affect the output of our algorithm
as the input is a completed weighted graph. In our experiments,
we use the value that equals to half of the highest similarity
value.

We use the GreedyOQC algorithm introduced in [28] to extract
the optimal quasi-clique. An illustration of the algorithm
output is as following:

Fig. 2. Left: Input bipartite graph; Right: extracted optimal quasi-clique;
Blue nodes: known non-tumor samples, Gray nodes: unlabeled samples.

E. Improved Ratio-based Method

Once we have reference sample for each batch, it’s straight-
forward to modify the original ratio-based method and obtain
our proposed IRB method as following:

x̂k
ij = xk

ij − x(i)offset. (8)

The overall IRB algorithm can be described by algorithm 3.

V. VALIDATION

In this section, we demonstrate and validate our proposed co-
analysis framework by using the Lung cancer dataset. Results

Algorithm 3: IRB

input : Labeled data sets: X : {Xk}, k ∈ {1, · · · ,K}
with labels;
Unlabeled data set: Y ;

output: Data sets with batch effect removed: X̂ and Ŷ ;
1 begin
2 FindingReferenceSample(X), obtain �xoffset;
3 Shift all X by �xoffset, obtain X̂;
4 BuildBipartiteGraph(X ,Y ), and extract optimal

quasi-clique;
5 Estimate the offset of Y ;
6 Find reference sample �yoffset;
7 Shift Y by �yoffset ;
8 Return shifted X̂ and Ŷ ;
9 end

of each step are presented here to better show the details of
our proposed algorithm.

For Lung cancer dataset, we have three batches from two
different gene chip platforms. The batch GSE19188 is selected
as anchor batch since it has the largest number of non-
tumor samples. The approximate geometric median sample is
GSM475732. The difference of pdfs before and after shifting
(applying IRB method) shows as figure 4.
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Fig. 4. Difference of gene U48705 pdf before (top) and after (bottom)
applying IRB by reference sample GSM475732.

Now we calculate the reference sample for second batch
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Fig. 3. Resulted optimal quasi-clique of Lung Cancer dataset. G = (|V | = 35, |E| = 287). The top two row lists the estimated(fake) non-tumor samples
found by GreedyOQC.

GSE19804 according to anchor batch and the changing of pdf
is as figure 5.
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Fig. 5. pdf difference of gene U48705. pdfs before (top) and after (bottom)
applying IRB.The value offset is -10.4113.

For test data GSE10072, we build the bipartite graph and find
the resulted optimal quasi-clique as figure V. The constructed
bipartite graph has 173 nodes and 747 edges. The output
optimal quasi-clique shows as figure V and it has 35 nodes and
287 edges. Among them, 18 nodes are samples of GSE10072
and the real labels of them are non-tumor samples. The
changes of pdfs of GSE10072 is as figure 6.

To check the quality of batch effect removal, we show the
correlation heat map and clustering dehendragraph here. As
we can see, the correlation values among different batches are
enhanced and more smooth. The correlation heat map before
and after batch effect removal is:
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Fig. 6. pdf of GSE10072 by estimated(fake) non-tumor samples

VI. RESULTS

In this section, we examine the prediction performance of our
proposed algorithm comparing to original ratio-based methods
and GENESHIFT. We use Support Vector Machine(SVM) al-
gorithm with penalty C = 1, which is the setting in [8] except
that we omit feature selection here. Accuracy and Matthews
correlation coefficient(MCC) are used for our measurements.

The prediction performance of Lung Cancer data is summa-
rized by following table: As the results show, GENESHIFT
has the best prediction accuracy but Ratio-A and IRB have
the better MCC scores.

Also, we compare the prediction performance of Iconix data
set in table VI. The results show that IRB obtain the best
accuracy and MCC scores.
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Correlation heat map before batech removal
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Fig. 7. Correlation heat map of Lung Cancer data. Top: original data. Bottom:
after batch effect removal by IRB.

Classifier Method Accuracy MCC
SVM(C=1) Ratio-G 0.45 Nan
SVM(C=1) Ratio-A 0.9629 0.9813
SVM(C=1) GENESHIFT 0.9723 0.9803
SVM(C=1) IRB 0.9623 0.9813

TABLE IV. PREDICTION PERFORMANCE OF LUNG CANCER DATASET

Classifier Method Accuracy MCC
SVM(C=1) Ratio-G 0.72 0.1
SVM(C=1) Ratio-A 0.71 0.01
SVM(C=1) GENESHIFT 0.68 0.04
SVM(C=1) IRB 0.73 0.15

TABLE V. PREDICTION PERFORMANCE OF ICONIX DATASET

By above two experiment results, we can see that IRB method
always has higher prediction performance than others. This
means that IRB is a stable batch effect removal algorithm.

VII. DISCUSSION AND CONCLUSIONS

Batch effects removal has been a challenging research prob-
lem in computational biology while integrating large volume
microarray data sets. Batch effects have the characteristics
that neither have a clear mathematical description nor have
an unique way to evaluate the performance of batch effects
removal. In this paper, we propose a new algorithm to gener-
alize the idea of GENESHIFT, which is the latest batch effect
removal algorithm and a non-parametric method.

Our contribution is two-fold. First, we have solved the problem
of finding reference samples for ratio-based methods from

labeled data sets to unlabeled sets. The proposed co-analysis
framework aligns the density function of non-tumor samples of
each batch as much as possible. Comparing with the original
ratio-based method which processes the batch effect less
adequately, our framework takes all batches into consideration
at the same time. Moreover, we applied the latest algorithm
for dense subgraph problem from graph theory to solve the
problem of finding reference samples for unlabeled data sets.
The motivation of using the graph algorithm is that the non-
tumor samples are much more similar to each other than tumor
samples.

Second, our algorithm has the advantage of lowering the com-
putational cost of both ratio-based method and GENESHIFT
method. Comparing with several other batch effect removal
methods, this property is valuable while integrating large vol-
ume of microarray datasets. The GreedyOQC has complexity
O
(|V |+ |E|) for graph G(V,E).

In summary, the newly-devised IRB algorithm solves the
reference sample finding problem of the original ratio-based
method. It inherits the characteristic of GENESHIFT that
has little negative impact on the data distortion (only on
samples). As a non-parametric method, it is stable and has
high performance in prediction applications for cancer data
sets. It has low computational cost and can be easy adapted to
large volume data applications.
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