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Abstract—As signal processing tools, diffusion wavelets and biorthogonal diffusion wavelets have been propelled by recent research

in mathematics. They employ diffusion as a smoothing and scaling process to empower multiscale analysis. However, their

applications in graphics and visualization are overshadowed by nonadmissible wavelets and their expensive computation. In this

paper, our motivation is to broaden the application scope to space-frequency processing of shape geometry and scalar fields. We

propose the admissible diffusion wavelets (ADW) on meshed surfaces and point clouds. The ADW are constructed in a bottom-up

manner that starts from a local operator in a high frequency, and dilates by its dyadic powers to low frequencies. By relieving the

orthogonality and enforcing normalization, the wavelets are locally supported and admissible, hence facilitating data analysis and

geometry processing. We define the novel rapid reconstruction, which recovers the signal from multiple bands of high frequencies and

a low-frequency base in full resolution. It enables operations localized in both space and frequency by manipulating wavelet

coefficients through space-frequency filters. This paper aims to build a common theoretic foundation for a host of applications,

including saliency visualization, multiscale feature extraction, spectral geometry processing, etc.

Index Terms—Diffusion wavelets, wavelet analysis, feature extraction, space-frequency processing

Ç

1 INTRODUCTION

RECENT years have witnessed the rapid development of
wavelet tools and algorithms on manifolds. Wavelets

have the powerful localization property in both frequency
and space. They have been widely employed to tackle many
problems of visualization and graphics, such as image
operations [1], image segmentation [2], image-based render-
ing [3], volume rendering [4], scientific visualization [5],
spectral rendering [6], multiresolution for surfaces [7], mesh
compression [8], and animation compression [9]. Never-
theless, most existing wavelets are constructed either on
regular domain or via explicit subdivision, followed by
predominant applications in multiresolution analysis
(MRA). In this paper, we are directly inspired by the powerful
functionality of frequency-domain processing. One such
example is the manifold harmonics transform (MHT) [10], an
analogue of the Fourier transform on manifolds. Although
the Fourier transform has the attractive localization property
in frequency, it is incapable of localizing signals in space (or
time). This drawback undoubtedly overshadows many
potential applications that demand local operations on fine
details. Thus, challenges still prevail in bridging wavelets
and the space-frequency processing on manifold geometry.

Wavelets on meshed surfaces have been extensively
studied for more than a decade with remarkable accomplish-
ment so far. Conventional methods are build upon explicit
subdivision schemes [11], [12], [13], [14], [15], [16], [17], [18],
which can directly dilate functions in frequency, and

regularly downsample the space. The essential motivation
is to apply the MRA to arbitrary surfaces. The subdivision
seeks to model a smooth surface via a recursive process of
refining polygonal faces from a coarse base mesh, which is
essentially a model-driven, top-down methodology toward
wavelets definition and construction. The subdivision wave-
lets have been frequently used for geometry compression
and level-of-detail data visualization. It requires constructing
the subdivision hierarchy before defining wavelets, which
limits its application scope. Nowadays, in conjunction with
the rapid technology advancement of data acquisition and
computing power, many graphics problems call for a
paradigm shift from model driven to data driven. The
regularly refined hierarchy is computationally expensive
and perhaps even harder to build. Consequently, it gives rise
to strong demand in flexibly adapted wavelet tools without
building the subdivision explicitly, which can be used for fast
space-frequency processing. Applications (that are critically
enabled) span traditional geometry processing to visual
analytics, feature extraction, feature-driven data mapping,
etc., many of which require local operations on fine details at
different frequencies.

Recently, a new methodology to construct wavelets on
manifolds (i.e., the diffusion wavelets (DW) [19]) has been
proposed. In sharp contrast to the aforementioned subdivi-
sion wavelets, the diffusion wavelets are built by a
fundamentally different, bottom-up philosophy that starts
from the fine input data. The construction adopts a diffusion
operator and its powers to expand the nested subspaces,
where scaling functions and wavelets are obtained by
orthogonalization and rank-revealing compression. This
diffusion-driven methodology naturally dilates the functions
associated with the underlying heat diffusion process, which
solely depends on manifold geometry. It allows flexible
construction directly from data. However, the constructed
scaling functions and wavelets are not locally supported,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 1, JANUARY 2013 3

. The authors are with the Department of Computer Science, Stony Brook
University, Computer Science Building, Stony Brook, NY 11794-4400.
E-mail: {thou, qin}@cs.stonybrook.edu.

Manuscript received 22 Sept. 2011; revised 20 Feb. 2012; accepted 29 Mar.
2012; published online 10 Apr. 2012.
Recommended for acceptance by L. Kobbelt.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2011-09-0232.
Digital Object Identifier no. 10.1109/TVCG.2012.111.

1077-2626/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society



which limits the functionality of space localization. In fact, it
is impossible to construct wavelets that are simultaneously
fully orthogonal, locally supported, and symmetric [16]. The
biorthogonal diffusion wavelets (BDW) [20] relieved the
excessively strict orthogonality property of scaling functions.
However, neither the DW transform nor the BDW transform
explicitly satisfies the admissibility condition. The admissi-
bility condition and local support property make wavelets
oscillating and attenuated on the domain. Moreover, their
constructions require expensive operations of QR decom-
position and matrix inverse. The rank-revealing QR decom-
position downsamples the subspaces to keep the scaling
functions with full ranks. Consequently, the inverse trans-
form is carried out by orthogonal or biorthogonal basis at
each frequency, which is inconvenient for spectral proces-
sing in multiple frequencies.

In this paper, we propose the admissible diffusion
wavelets (ADW), which are founded upon the diffusion
wavelets yet derived from a fundamentally different for-
mulation. We adopt the bottom-up approach to construct the
subspaces by a diffusion operator and its dyadic powers.
Through mathematical rigor, we formulate the scaling
functions and wavelets that are locally supported. Different
with the DW and the BDW, our wavelets are formulated as
differences of adjacent scaling functions with zero means. The
attenuated oscillation satisfies the admissibility condition.
For the purpose of fast space-frequency processing, we
propose the rapid reconstruction. It recovers the signal from
multiple bands of high frequencies and a low-frequency base,
all of which are in full resolution. As a result, we are able to
avoid the expensive QR decomposition, and immediately
proceed with the fast spectral processing. Through algorith-
mic development and experimental validation, we showcase
applications of the ADW in spectral analysis, including
saliency visualization, feature definition and extraction, and
geometry processing. Fig. 1 illustrates the framework of our
method. By the ADW, a shape is transformed to scaling
coefficients Sf visualized as smoothed shapes and wavelet
coefficients Wf visualized as coded colors. Examples are
shown to portray the application-relevant results. In the

example of feature extraction, multiscale features are shown
as green balls. In the example of local geometry filtering, one
arm of the Armadillo is smoothed while the other is
enhanced. Specifically, the contributions of this paper include

. We rigorously formulate the ADW on meshed
surfaces and point clouds, which are locally sup-
ported and admissible.

. We articulate the rapid reconstruction, which re-
covers the signal from multiple bands of high
frequencies and a low-frequency base. It enables local
space-frequency processing by analyzing and manip-
ulating wavelet coefficients.

. We apply the ADW transform to various tasks of
spectral analysis, including saliency visualization,
multiscale feature extraction, and geometry proces-
sing. Our experiments broaden its application scope,
demonstrating it as powerful and efficient tools in
data visualization and modeling.

2 RELATED WORK

This section briefly reviews the previous work of adapted
Fourier transform, subdivision wavelets, and diffusion
wavelets, on manifold geometry.

2.1 Adapted Fourier Transform

Processing in spectral domain offers flexible operations for
shape geometry. In [21], the 2D discrete Fourier transform
was applied to local patches constructed from point-
sampled geometry. Later, eigenfunctions of the symmetric
Laplacian of the connectivity graph were adopted for
spectral processing [22], [23], [24]. The processing is
achieved by projecting the shape geometry onto an
orthonormal basis, which, however, is derived from the
mesh topology but not the manifold. Analogous to Fourier
basis for euclidean domain signals, manifolds have similar
orthogonal basis formed by Laplace-Beltrami eigenfunctions
[25]. Assume the Laplace-Beltrami operator � has the eigen-
system f�k; �kg1k¼0: ��k ¼ �k�k, where �k is the kth
eigenvalue associated with the eigenvector �k. The spectrum
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Fig. 1. The framework of our method. By the ADW, a shape is transformed to scaling coefficients Sf visualized as smoothed shapes and wavelet
coefficients Wf visualized as coded colors. Examples highlight the application-relevant results. In the example of feature extraction, multiscale

features are shown as green balls. In the example of geometry processing, one arm of the Armadillo is smoothed while the other is enhanced.



of � consists of an increasing positive sequence f�kg1k¼0. The
eigenfunctions (i.e., manifold harmonics) f�kg1k¼0 form an
orthonormal basis in the Hilbert space L2ðMÞ. They
repetitively oscillate on the manifold with similar behaviors
like sine and cosine functions. Vallet and Lévy [10] defined
the manifold harmonic transform of a function f by the inner
product F fðkÞ ¼ hf; �ki, where k is related to the “fre-
quency.” Since the manifold harmonics basis (MHB) is
orthogonal, the inverse transform can be computed by
f ¼

P1
k¼0hf; �ki�k. In [26], Rong et al. employed spectral

decomposition to perform mesh editing on the base domain
with low frequencies and reconstruct details with high
frequencies. The Laplace-Beltrami eigenfunctions have nice
properties in spectral analysis. However, thousands of
eigenfunctions are needed for preserving details of large
meshes, which typically demand tremendous computation
time and memory. Furthermore, similar to the Fourier basis,
the eigenfunctions do not have localization in space domain,
which implies that all processes are uniformly operated on
the entire manifold. These drawbacks severely limit its
application power in mesh editing and geometry processing.

2.2 Subdivision Wavelets

One natural construction of wavelets on manifolds can be
achieved via explicit subdivision. The subdivision wavelet
was originally proposed by Lounsbery et al. [16]. The
subdivision scheme that iteratively refines the mesh geo-
metry also refines the functions. The constructed wavelets
are biorthogonal and locally supported. The subdivision
wavelets rely on the subdivision connectivity of the mesh,
which restricts the application scope to data compression
and level-of-detail rendering. Guskov et al. [11] first
generalized basic signal processing tools to triangular
meshes with irregular connectivity, through subdivision
wavelets. Daubechies et al. [27] studied subdivision wave-
lets built on irregular point sets. In [12], Bertram et al.
utilized bicubic B-spline subdivision to construct wavelet
transform that affords boundary curves and sharp features.
In [13], B-spline wavelets were combined with the lifting
scheme for biorthogonal wavelet construction. As a draw-
back, the subdivision wavelet requires the meshes to have
subdivision connectivity, where remeshing process is
frequently needed. To avoid remeshing, Valette and Prost
[18] extended the subdivision wavelet for triangular meshes
using irregular subdivision scheme that can be directly
computed on irregular meshes. On spherical domains, Haar
wavelets [14], [17] were constructed over nested triangular
grids generated by subdivision. Recently, the spherical Haar
wavelet basis was improved to the SOHO wavelet basis [15]
that is both orthogonal and symmetric. In subdivision
wavelets, the dilation of scaling functions strictly follows
the subdivision scheme, which depends on the meshing. In
[28], a biorthogonal wavelet analysis based on the

ffiffiffi
3
p

-
subdivision was proposed. It is a well-orchestrated solution
on triangular meshes since the

ffiffiffi
3
p

-subdivision is of the
slowest topological refinement among all the traditional
triangular subdivisions. In a recent work [29], Charina et al.
constructed compactly supported tight frames of multi-
variate multiwavelets with subdivision schemes.

2.3 Diffusion Wavelets

In mathematics, Coifman and Maggioni [19] proposed the
diffusion wavelets that use a diffusion operator and its
dyadic powers for dilation. The nested subspaces are
constructed as

L2ðMÞ ¼ V0 � V1 � � � � � Vk � � � �

by continuously applying dyadic powers of the diffusion
operator. Wavelets in the complement subspace Wk are
subject to Vk�1 ¼ Vk �?Wk. The diffusion wavelets have
many attractive properties. For example, the scaling and
wavelet functions are fully orthogonal and complete. The
orthogonality of basis induces the orthogonal decomposi-
tion of functions, which guarantees the best approximations
in multiresolution analysis. Because of the orthogonality,
the inverse transform has the same bases with the wavelet
transform. The construction does not need subdivision,
leading to great flexibility in practical use. The major
drawback of diffusion wavelets is that, the scaling and
wavelet functions are not locally supported. In fact, it is
impossible to construct wavelets that are simultaneously
fully orthogonal, locally supported, and symmetric [16]. In
[20], Maggioni et al. proposed biorthogonal diffusion wave-
lets that are locally supported by relieving the orthogonality
requirement. In [30], diffusion wavelets were adopted to
approximate scalar-valued functions based on analyzing
the structure and topology of the state space. Rustamov [31]
studied the relation between mesh editing and diffusion
wavelets by introducing the generalized linear editing
(GLE). Recently, Hammond et al. [32] proposed the spectral
method to construct wavelets on graphs. The wavelets are
represented by a generating kernel and the eigenfunctions
of the Laplace operator.

3 ADMISSIBLE DIFFUSION WAVELETS

This work is originally inspired by the DW. Whereas, we
define our admissible diffusion wavelets in a significantly
different formulation, with our unique emphasis in fast
space-frequency processing.

3.1 Local Operator

Similar to the DW, our admissible wavelets are constructed
in a bottom-up manner that starts from a local operator T

and expands via its dyadic powers. For a meshed surface
M, our wavelet operator forms a matrix with rows defined
as functions at the associated vertices

Tðx; yÞ ¼ AðyÞ exp �kx� yk
2

4t

 !
Tðx; xÞ ¼

X
y2M

Tðx; yÞ;

8>>><>>>: ð1Þ

where AðyÞ is the vertex area of y, and t is a fixed quantity. It
can be interpreted as a transition matrix of a random walk,
which measures the probability of a one-step random walk
moving from x to y on M. This explains that our wavelet
operator has a diffusion-type distribution, which spreads
from a vertex to its neighbors according to their distances.
The quantity t corresponds to the neighborhood size. In this
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work, we let t ¼ E2=2 where E is the mean edge length of
mesh M. In this way, only a few neighboring entries Tðx; yÞ
for vertex x have nonzero values, while other entries are all
becoming zero. This indicates that T is a highly sparse matrix.
For a uniformly sampled mesh, the operator T is approxi-
mately symmetric, since vertex areas are close.

This operator is closely related to the discrete Laplace
operator L in [33], with an explicit expression:

T ¼ 4�t2ðL� 2DLÞ; ð2Þ

where DL is the diagonal matrix with DLðx; xÞ ¼ Lðx; xÞ.
According to the algorithm for computing the Laplace
operator on point clouds [34], the proposed operator T can
be applied to point clouds. For each point, we seek 10
nearest neighbors, only which are involved in nonzero
entries of the operator. The quantity E here for computing
t is then approximated by averaging the distances with
these neighbors.

3.2 Scaling Functions and Wavelets

In the diffusion wavelets, the dyadic powers of a diffusion
operator are employed to smooth the function space L2ðMÞ.
Decomposed from the dyadic powers, scaling functions form
an orthogonal and complete basis in each subspace. The
powers have decreasing ranks; therefore, the space is
compressed. By dropping the orthogonality, the biorthogonal
diffusion wavelets improve the scaling functions to be locally
supported. However, they still need the rank-revealing QR
decomposition to compress the function space. The scaling
matrix has a full rank, and is biorthogonal.

We adopt this bottom-up approach but with a signifi-
cantly different formulation when defining wavelets. Initi-
ally, the function space has a canonical basis �0 ¼ f’0;xgx2M
of delta functions:

’0;xðyÞ ¼ �xðyÞ: ð3Þ

In the first level, the scaling functions �1 ¼ f’1;xgx2M are
dilated once by T, given by

�1 ¼ ½�0T�r; ð4Þ

where ½��r denotes the row-based normalization

’1;x ¼
Tðx; �Þ
kTðx; �Þk1

: ð5Þ

Following this paradigm, the scaling functions in the jth
level �j ¼ ½�j�1�j�1�r are constructed by the square of
scaling functions in the (j� 1)th level

’j;x ¼ ½’j�1;x�j�1�r: ð6Þ

They are dilated by T2j�1

subject to row-based normalization.
The constructed scaling functions are locally supported, with
the following properties:

’j;xðyÞ � 0; and
X
y2M

’j;xðyÞ ¼ 1: ð7Þ

The dyadic powers T2j decrease in rank as j increases, which
indicates a compression of the function space. According the
BDW, �j contains a Riesz basis with full rank spanning the
subspace of level j, which is biorthogonal.

The wavelets are defined as differences of adjacent
scaling functions: �j ¼ �j�1 � �j, with

�j ¼ �j�1 � �j; j ¼ 1; 2; . . . ; ð8Þ

which are also locally supported. This formulation is
fundamentally different from the DW and the BDW that
acquire the wavelets from the complement space ðI � ���Þ
via QR decomposition. According to (7) and (8), the wavelet
 j;x has a zero mean X

y2M
 j;xðyÞ ¼ 0; ð9Þ

which implies that it vanishes at the zero frequency in its
Fourier transform.

The index j in the above-formulated functions associates
with the “frequency” in spectral domain. Small values of j
associate with high frequencies, while large values associate
with low frequencies. As j increases, the scaling functions
and wavelet functions dilate to larger areas rapidly because
of the dyadic powers. For large enough values of j, the
scaling functions and wavelets converge to constants

’j;x !
1

AðMÞ ; and  j;x ! 0; ð10Þ

where AðMÞ denotes the total surface area of M.

Next, we will discuss the admissibility condition. This

condition is for continuous wavelet transform originally in

euclidean space. Here, we simply extend it to manifold space

by the following definition. On manifold with bounded

geometry, a wavelet  is admissible, or equivalently satisfies

the admissibility condition, if
P1

k¼0
jF ðkÞj2

k <1, where F 

denotes the manifold harmonic transform of  . This

definition is analogous to its origin in euclidean space, since

the MHT is a manifold Fourier transform. The wavelets  j;x
defined by (8) are admissible.

Proof. Recall that the zero-frequency MHB �0 ¼ 1ffiffiffiffiffiffiffiffiffi
AðMÞ
p ,

which is a constant everywhere on M. According to (9),

the wavelet  j;x has zero mean. Hence, it vanishes at zero

frequency in its MHT,

F j;xð0Þ ¼ h j;x; �0i ¼ 0:

Also, since the wavelet  j;x is compactly supported, it
has limited bandwidth in its MHT. Assume that its
upper frequency is KðjÞ. We then have

F j;xðkÞ ¼ 0; for k > KðjÞ:

Hence, we have

X1
k¼0

jF j;xðkÞj
2

k
¼
XKðjÞ
k¼1

jF j;xðkÞj
2

k
<1;

and hence,  j;x is admissible. tu
In fact, by recalling [35], the zero-mean property of  j;x

suffices the admissibility condition for compactly supported
wavelets. This condition is critical for wavelet transform, as
it ensures the transform can be fully recovered.

Fig. 2 illustrates some scaling functions and wavelets on
a 1D manifold with 100 points. The diffusion wavelets are
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orthogonal yet not locally supported. The biorthogonal
diffusion wavelets are locally supported, but not admissible.
Our admissible wavelets are locally supported with oscillat-
ing and attenuated shapes. As j increases, the scaling
functions dilate to larger areas. Fig. 3 visualizes a scaling
function and a wavelet of the ADW on a meshed surface by
color coding. The functions on surfaces have similar
behaviors with that in the 1D case.

3.3 Transform and Reconstruction

Transform. The scaling and wavelet transforms (denoted by
Sf and Wf , respectively) of a function fðxÞ with x 2M are
computed by the inner product over the domain M:

Sfðj; xÞ ¼ hf; ’j;xi; Wfðj; xÞ ¼ hf;  j;xi; ð11Þ

where j and x localize the frequency domain and the space
domain, respectively. The scaling coefficient Sfðj; xÞ is a
smoothed representation of function f , which is an approx-
imation to f at scale j. The wavelet coefficient Wfðj; xÞ
records the residual detailed information of f with respect to
the scale j. Fig. 4 illustrates some scaling and wavelet
coefficients of a 1D function. The function is smoothed by
the scaling transform, with details recorded in the wavelet
transform at different scales. In Fig. 5, a shape and a scalar
field (mean curvature map) on the shape are transformed to

different scales by our scaling transform. The scaling
coefficients become constant everywhere at the coarsest
scale. This indicates that the function space is highly
compressible after scaling transforms, as it is gradually
smoothed. In our applications, we retain full resolution of the
scaling and wavelet transform, with our emphasis on
accurate high-frequency processing. For applications with
other purposes such as level-of-details rendering and
function approximation, one could compress the scaling
coefficients (i.e., smoothed functions) via downsampling.

Reconstruction. The reconstruction (inverse transform)
aims to recover a function from its coefficients. For the DW,
the reconstruction uses the same basis as the transform, since
it is orthogonal and complete. The scaling functions of the
BDW form a Riesz basis. According to [36], if f’ig is a Riesz
basis, there is a unique dual basis fe’jg that is orthogonal
to f’ig:

h’i; e’ji ¼ �ij; ð12Þ
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Fig. 2. Examples of the DW (Top), the BDW (Middle), and the ADW
(Bottom) on a 1D manifold with 100 points. Left: scaling functions ’9;50

(colored in red) and ’10;50 (colored in blue). Right: wavelets  10;50.

Fig. 3. Rendering a scaling function and a wavelet of the ADW on a
meshed surface by color coding. Please pay attention to the similarity
with the functions in the 1D case.

Fig. 4. Scaling (Left) and wavelet (Right) coefficients of a 1D function at
j ¼ 0; 3; 6. The function is smoothed by the scaling transform, with
details recorded in the wavelet transform at different scales.

Fig. 5. Multiscale representations of a shape (top) and a scalar field
defined on the shape (bottom) by our scaling transform. The scaling
coefficients become constant everywhere at the coarsest scale.



and f’ig is biorthogonal. The reconstruction is given by [20]

f ¼
X
x2M
hf; ’j;xie’j;x; ð13Þ

where fe’j;xg is the dual basis of f’j;xg. This requires the
scaling matrix �j to have full rank. Therefore, the rank-
revealing QR decomposition is necessary. The dual basis is
computed by the matrix inverse

�j
e�j ¼ I: ð14Þ

The QR decomposition and matrix inverse are computed at
each level, which make the reconstruction computationally
expensive.

Different from the DW and the BDW, we adopt a rapid
reconstruction, which is a superposition of wavelet and
scaling coefficients. According to the definition of our
wavelets, we have

Wfðj; xÞ ¼ hf;  j;xi
¼ hf; ’j�1;x � ’j;xi
¼ Sfðj� 1; xÞ � Sfðj; xÞ;

for j ¼ 1; 2; . . . This implies that the wavelet coefficients are
full-resolution details at different levels of frequencies. The
function can be rapidly reconstructed by a series of J levels
of wavelet coefficients fWfðjÞgJj¼1 and a scaling coefficient
at the coarse level SfðJÞ

fðxÞ ¼ Sfð0; xÞ ¼ SfðJ; xÞ þ
XJ
j¼1

Wfðj; xÞ: ð15Þ

Since all the coefficients have full resolution, the rapid
reconstruction is lossless.

4 RELATIONS AND IMPLEMENTATION

This section highlights the unique characteristics of the
ADW by revealing intrinsic relations with other relevant
techniques, and portrays the implementation mechanism.

Relations to diffusion wavelets. The proposed construc-
tion operator in (1) is a diffusion operator. Thus, it can be
placed to the family of diffusion wavelets. As shown in Fig. 2,
the DW impose orthogonalization on scaling functions and
wavelets, which, however, are not locally supported. The
BDW release this requirement for scaling functions to make
them locally supported. The wavelets still form an orthogo-
nal basis for the complement space ðI � ���Þ. Neither the
DW nor the BDW are admissible. The admissibility condition
produces nice shapes of the wavelets, as the one of our ADW
shown in the bottom right of Fig. 2. For reconstruction, the
DW recover the function by their orthogonal basis; the BDW

achieve the same goal by the biorthogonal dual basis; our
rapid reconstruction does not rely on any basis. This
characteristic is documented in Table 1.1

Relation to the MHB. Analogous to sine/cosine functions
in Fourier transform, manifold harmonics are global func-
tions on manifolds, which support spectral analysis of
functions in L2ðMÞ. The construction of MHB follows a top-
down approach that starts from large scales to small scales.
Low-frequency basis functions are fast to compute, while
high-frequency basis functions are time consuming. On the
contrary, the construction of the ADW adopts a bottom-up
approach, where high-frequency basis functions are fast to
compute. From the perspective of running time, the ADW are
more efficient for high-frequency processing in spectral
analysis. This feature is explained in Fig. 6. The reconstruc-
tion of MHT is lossless only if the entire spectrum of all
eigenfunctions is utilized, which is extremely expensive to
compute. The common practice for MHT is that, high-
frequency basis functions are oftentimes ignored, leading to
lossy reconstruction and information processing. The MHT is
easy to manipulate shape signals in low frequencies, while
operations in high frequencies always consume extremely
high computational cost. In sharp contrast, the reconstruc-
tion of the ADW has an “inverse” procedure that starts from
high frequencies, leaving low-frequency components in the
scaling coefficients at the coarsest level. This bottom-up
approach makes it extremely attractive and powerful when
processing shape signals in fine, local details.

Relation to spectral graph wavelets. This paragraph
addresses the relation to wavelets built on graphs via
spectral graph theory [32]. The spectral graph wavelets are
constructed using the graph Fourier transform. In graph
Fourier domain, the wavelets have explicit formulations
generated by a kernel and dilated by time t. When applied to
manifold data, a similar construction can be expected using
the manifold harmonics transform. It leads to a generic
mechanism for generating continuous wavelets. If one
chooses a diffusion kernel (e.g., the heat kernel) to generate
the wavelets, they will be similar with the ADW in function
shape and application effects. The construction of spectral
graph wavelets requires MHB, and hence, the eigen-
decomposition of the Laplace-Beltrami operator, which is
costly to compute. There is a similar feature with the MHB
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TABLE 1
Comparison of the DW, the BDW, and the ADW

Fig. 6. The construction of the MHB uses a top-down approach starting
from large scales to small scales. Low-frequency basis is fast to
compute, while high-frequency basis is time consuming. On the contrary,
the construction of the ADW adopts a bottom-up approach, where high-
frequency basis is fast to compute. Therefore, the ADW are more
efficient for high-frequency processing in shape analysis.

1. The scaling functions and wavelets of the ADW can be made
biorthogonal by downsampling the subspaces to match with ranks of basis
matrices.



that, the spectral graph/manifold wavelets are more time
consuming in processing high-frequency details.

Relation to differential coordinates. Differential coordi-
nates [37] have been extensively studied and applied to fast
mesh editing. The Laplacian operator is a linear operator
that captures details of a surface. Given the divergence of
the vector field b, the scalar field f can be reconstructed by
solving the Poisson equation [38] �f ¼ b, which gives rise
to a sparse linear system. Our wavelet transform Wfð1; xÞ
has very similar behaviors, since the wavelet basis �1 is a
differential operator with entries

�1ðx; yÞ ¼ �
Tðx; yÞ

2Tðx; xÞ
�1ðx; xÞ ¼ �

P
x �1ðx; yÞ ¼ 1

2 ;

8<: ð16Þ

where Tðx; xÞ ¼
P

y Tðx; yÞ as defined in (1). When the field f
is a function of coordinates, Wfð1; xÞ is a representation of
differential coordinates. For wavelet transform at high
frequencies, they behave exactly like differential coordinates
in larger neighborhood [39].

Implementation. In this work, time performance is
considered as an important criterion for algorithm design.
Algorithm 1 documents the construction of scaling functions
and wavelets of the ADW. For a given data (mesh or point
cloud) M, our method first computes the local operator T.
Then, it initializes the first level of scaling functions �1 and
wavelets �1, stored as sparse matrices. The following levels
of scaling functions are computed by sparse matrix multi-
plication of previous levels, subject to normalization and a
threshold �. Finally, the differences of two adjacent scaling
functions form the wavelets. The computation of ADW is
mainly on nonzero entries of sparse matrices. We use Matlab
to compute the operations of sparse matrices, whose
complexity is linear to the number of nonzero elements.
Assume the number of vertices is n, and for all x 2M, the
operator Tðx; �Þ has at most constant m entries. The time
complexity for computing j levels of ADW on a d-dimen-
sional manifold is Oð2djnÞ. The amount of computation will
be huge for even moderate values of j. Since we are
particularly interested in high-frequency processing of
spectral analysis, a small value of j 	 8 is sufficient for our
applications. In this case, �j and �j continue to be sparse
matrices. To ensure the numerical sparsity, ignorable
elements are eliminated by a threshold � ¼ 10�6 before the
row-based normalization. Fig. 7 visually depicts the struc-
ture of the sparse matrices �1 and �4 of the 1D example
shown in Fig. 2. The matrices are sparser for data with more
points. For other applications that need to access lower
frequencies, one could downsample the scaling transforms
to reduce computation.

5 APPLICATIONS AND RESULTS

We conduct experiments and showcase several important
applications of our method, including saliency visualization,
multiscale feature definition and extraction, and geometry
processing, with time performance explicitly documented at
the end of this section.

5.1 Saliency Visualization

In [40], Lee et al. defined the saliency map as the difference
of two Gaussian convoluted scalar fields of a curvature
map, and the mesh saliency as the nonlinear combination of
the saliency maps in multiple scales. As a useful tool, it has
been applied to mesh simplification [40], volume visualiza-
tion [41], feature matching [42], visual perception [43], etc.

The proposed ADW have similar effects. For a given
function f , its wavelet coefficients encode the saliency
information of multiscale details. Analogous to [40], the
saliency map is computed by the nonlinear sum of wavelet
coefficients at different scales

�ðfÞ ¼
X
j

�jjWfðjÞj; ð17Þ

where �j ¼ ðmaxðjWfðjÞjÞ � jWfðjÞjÞ2 is a coefficient. Fig. 8
shows the workflow of computing the saliency map by using
the ADW. To avoid being affected by noise perturbation, the
first two levels of Wj are ignored. The wavelet coefficients
capture the changes of the function at different scales. Low-
frequency wavelets capture small-scale changes, while high-
frequency ones capture large-scale changes.
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Fig. 7. Sparse matrices �1 and �4 in Fig. 2.

Fig. 8. The saliency map of an input function is the nonlinear sum of its
wavelet coefficients.



Fig. 9 shows the saliency maps of mean curvature maps on
two deformed shapes of the Armadillo, where the top row is
the result of Lee et al. [40] and the bottom row is our result.
The original mesh saliency in [40] is computed by an
euclidean Gaussian. In general, the two methods both adopt
the difference-of-Gaussian operator, and therefore, they have
similar effects in saliency visualization. The setting of the
mesh saliency in multiscale Gaussian is more empirical,
while the ADW have a rigorous construction by means of
wavelets. They have some differences in counting saliency
components at different scales. We also compute saliency
maps by the ADW from other functions on the shape, such as
texture, and vertex coordinates. Figs. 11 and 12 show saliency
maps of texture on meshed surfaces and coordinates on point
clouds, respectively.

5.2 Multiscale Feature Definition and Extraction

Feature definition and extraction plays a critical role in
many graphics and visualization tasks. Shape features are
oftentimes interpreted as local extrema of a scalar field of
saliency, with the help of diffusion for multiscale detection.
In [44], geometric and texture features are found by a scale
space with geodesic metric. In [45], a feature map is defined
by a discrete heat kernel on triangular meshes, with which
multiscale critical points can be found as features. And in
[46], anisotropic diffusion is adopted in this mechanism. As
the fundamental solution to the heat equation on manifolds,
the heat kernel itself contains saliency information, which is
used for feature extraction based on the heat kernel
signature in [47].

The essence of multiscale feature extraction is to
construct multiscale approximations for a signal through

diffusion, and find maximum changes in the scale space
[48]. This can be easily incorporated with the ADW, since
the wavelet transform operates on the difference between
two smoothed representations. Specifically, given a func-
tion f (e.g., coordinates, texture, curvature map, or density),
its scaling coefficients fSfðjÞg form the scale space of f with
respect to j. Its wavelet coefficients are the first-order
derivatives of the scale space. Therefore, the scale space is a
3D manifold with scale (“frequency”) j as the third
dimension. Analogous to [48], the ADW seek features as
local extrema in this 3D manifold space. More specifically, a
point x is recognized as a feature if it is an extremum in its
local neighborhood in a complex space-frequency domain.
In spatial domain, the neighborhood of a vertex contains its
two-ring neighbors for meshed surface or 10 nearest
neighbors for point clouds. In frequency domain, the
neighborhood is two adjacent levels of scales. This algo-
rithm is documented in Algorithm 2. It has a parameter � so
that only features with jWfðj; xÞj > � jWfðjÞj are actually
selected. We use � ¼ 2:4 as a default, while allowing fine
tuning in the range of ½1:6; 3:0� in our experiments.

In Fig. 10, extracted features of vertex coordinates are
shown as green balls with their sizes corresponding to their
correct scales. The threshold � controls the number of
features, according to their values of saliency. Features with
greater values of wavelet coefficients are more salient, thus,
more stable. Fig. 10 also shows an experiment with noisy
input. We add Gaussian noise with increasing standard
deviation 	 of mean edge length in normal directions. Large-
scale features appear to be more stable than small-scale
features. Even with large noise (50 percent), one can still find
stable features at the larger scales, which are exactly the same
as that on the noise-free shape. Figs. 11 and 12 show more
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Fig. 9. Comparison of saliency maps on two deformed shapes of the
Armadillo: the mesh saliency in [40] (a) and the ADW (b).



results on textures and point clouds. The ADW can rapidly
find rich features from the scale space. Textures on meshed
surfaces have information other than shape geometry, which
is capable of finding features in areas with indistinctive
shape but rather rapidly changing texture. We also conduct a
comparison with the feature map in [45] in Fig. 11, which
finds critical points at multiscale approximations of the input
function. The critical points found by the feature map (Left)
have zero first derivatives of smoothed approximation. The
wavelet transform of ADW (Right) extracts multiscale details
of the input function, and finds features as zero crossings of
second-order derivatives in its multiscale representation. For

point clouds in Fig. 12, we directly use point coordinates as
input functions fi, where i ¼ 1; 2; 3. The wavelet coefficients
in three dimensions are consolidated together byWfðj; xÞ ¼
kWfiðj; xÞk2. In these experiments, we choose not to apply
feature filters, for instance edge filter and boundary filter
that could eliminate features on edges and boundaries,
respectively. Depending on the purpose of feature extraction
in different practice, these filters can be easily introduced
and take appropriate actions.

5.3 Spectral Geometry Processing

As powerful spectral tools, the ADW enable geometry
analysis and synthesis at different frequencies and places,
by filtering their wavelet coefficients. In this application, the
vertex coordinates are taken as the function f . Since the vertex
coordinate is a 3D vector, its three components are treated
independently. For a given mesh, we compute scaling and
wavelet coefficients of its vertex coordinates. Then, we apply
filters on the wavelet coefficients to process the geometry.
The output mesh can be recovered from a series of wavelet
coefficients fWfðjÞgJj¼1 and a scaling coefficient SfðJÞ at the
coarsest level, using the rapid reconstruction formulated in
(15). Unlike the MHT that is an analogue of Fourier transform,
the ADW can afford local operations during geometry
analysis and processing. This can be done instantly by
applying space-frequency filters �ðj; xÞ. The rapid recon-
struction of processed coefficients can be formulated as

fðxÞ ¼ SfðJ; xÞ þ
XJ
j¼1

�ðj; xÞWfðj; xÞ: ð18Þ

Accordingly, we name �ðj; xÞ as a global filter if it is
equally applied to all x 2M, and a local filter if applied to a
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Fig. 10. Feature detection on the Armadillo with different thresholds � and Gaussian noise with increasing 	 of mean edge length in normal directions.
Features are rendered by green balls with their sizes representing correct scales. We fix � ¼ 2:4 in the noise experiment. Large-scale features are
more stable than small-scale features.

Fig. 11. Saliency maps and extracted features of input textures, from

Left to Right: critical points by the feature map in [45], saliency maps by

ADW, and feature extraction by ADW.



subset of M. In Figs. 13 and 14, we demonstrate the results
of local and global filters. The local filters are associated
with some selected regions, with results shown in Fig. 13. In
the first example, we carve a letter “S” on a sphere by simply
filtering the region selected by hand drawing. It results in a
concave shape and a convex shape by the suppression filter
and enhancement filter, respectively. The other examples
follow the same way by applying space-frequency filters on
selected regions, which generates a family of different
effects on one shape through a sequence of filtering
operations. On the model Gargoyle, selected areas at the
wing and the neck are smoothed, while one horn and the
tongue tip are enhanced. The entire processing pipeline can
be carried out more efficiently if only the first few
frequencies are involved, leading to operations on detail
levels. Fig. 14 shows geometry processing using different
types of global filters: suppression, enhancement, and band.
In our framework, the shape geometry can be efficiently

filtered, resulting in different effects. The suppression filter
smoothes the shape by eliminating the details. On the
contrary, the enhancement filter magnifies the details. The
two band filters combine the suppression and enhancement
in different scales. One smoothes the shape at some
intermediate scales while keeping fine details. The other
enhances the shape at some intermediate scales while
smoothing fine details. Finally, we compare global geometry
processing by ADW and manifold harmonics in Fig. 15. The
two methods achieve similar results in global geometry
processing, while the ADW can further perform local
processing as shown in Fig. 13.

5.4 Time Performance

We examine the time efficiency of our method in the
applications, with performance documented in Table 2.
The prototype software was developed on a laptop with
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Fig. 13. Local geometry processing: suppression (Left) and enhance-
ment (Right) on selected regions.

Fig. 12. Saliency visualization and feature detection on point clouds.



Core2 Duo CPU 2.53 GHz and 4 GB RAM. In each
experiment, we record the computation time of the wavelet
system f�j;�jg denoted as “ADW,” and the processing time
for its application. The computation of ADW, depending on
the number of points and the number of levels, is very
efficient that can afford rapid spectral analysis. In saliency
visualization, the processing time is to compute wavelet
transforms and the saliency map. In multiscale feature
extraction, it is to perform Algorithm 2. And in geometry
processing, it is to compute the rapid reconstruction.

6 DISCUSSION AND CONCLUSION

We have detailed the admissible diffusion wavelets as
powerful and effective tools for space-frequency processing
with a suite of applications in visual computing. The ADW
are constructed in a bottom-up manner, which starts from a
local operator T and expands as its dyadic powers increase.
We have formulated the scaling functions and wavelets (that
are also locally supported) in a mathematically rigorous way.
The admissibility condition is naturally enforced by the
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Fig. 15. Comparison of global geometry processing by ADW (b) and manifold harmonics (c).

Fig. 14. Global geometry processing.



definition of wavelets. The rapid reconstruction is carried out
by employing coefficients, located at multiple frequencies.
The dyadic power series T2j efficiently scales the Hilbert
space. As j increases, the ADW collect valuable information
from small scales, propagate that to large scales, and
continue to spread through the hierarchy. The rapid
computation of sparse ADW at the first several levels of
scales, make them very efficient for high-frequency proces-
sing. For processing in low frequencies (i.e., large scales), the
computational efficiency might become moderate. There-
fore, it makes sense to concentrate on high-frequency-
relevant applications such as saliency visualization, feature
definition and extraction, and geometry analysis and
processing. In practice, since the dyadic power grows very
fast, several levels of ADW appear to be adequate for our
applications, where the computation is significantly faster
than solving the global eigen-system. More importantly,
spatial localization of wavelets empowers the ADW to have
the unique characteristic of space-frequency processing
toward seeking local features and filtering local geometry,
while retaining gross shape globally.

We have shown that the ADW can be computed on both
meshes and point clouds, which only involves local
geometry. Therefore, it can be directly generalized to handle
other data domains such as graphs with discrete structure,
tensor fields defined over multidimensional volume, and
even higher dimensional scientific data with curved mani-
fold structure. Our ongoing and near-future research
endeavors are undertaken toward broadening the applica-
tion scope, with special emphases on space-time dynamic
data modeling and analysis, data manipulation, and shape
editing and deformation.
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[6] J.C. de Iehl and B. Péroche, “An Adaptive Spectral Rendering with
a Perceptual Control,” Computer Graphics Forum, vol. 19, no. 3,
pp. 291-300, 2000.

[7] L. Olsen, F.F. Samavati, and R.H. Bartels, “Multiresolution for
Curves and Surfaces Based on Constraining Wavelets,” Computers
and Graphics, vol. 31, no. 3, pp. 449-462, 2007.

[8] F. Payan and M. Antonini, “Mean Square Error Approximation for
Wavelet-Based Semiregular Mesh Compression,” IEEE Trans.
Visualization and Computer Graphics, vol. 12, no. 4, pp. 649-657,
July/Aug. 2006.

[9] F. Payan and M. Antonini, “Temporal Wavelet-Based Compres-
sion for 3D Animated Models,” Computers and Graphics, vol. 31,
no. 1, pp. 77-88, 2007.
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