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Abstract—Variability of solar energy is the most significant
issue for integrating solar energy into the power Grid. There
are pressing demands to develop methods to accurately estimate
cloud motion that directly affects the stability of solar power
output. We propose a solar prediction system that can detect cloud
movements from the TSI (total sky imager) images, and then esti-
mate the future cloud position over solar panels and subsequent
solar irradiance fluctuations incurred by cloud transients. The
experiment studies show that our proposed approach significantly
improves the quality of cloud motion estimation within a time
window (up to a few minutes) that is sufficient for grid operators
to take actions to mitigate the solar power volatility.

I. INTRODUCTION

Exploiting solar energy is highly challenging be-
cause it cannot be used as an on-demand stable power
source.Variability in solar source is the biggest hurdle in inte-
grating solar energy into the national Grid. Various solutions,
such as backup generators, batteries, power trade and exchange
were proposed to mitigate beforehand the undesired random
behavior. However these solutions must be built upon the
accurate prediction of photovoltaic (PV) output in particular
for the time period from a few seconds to minutes that is long
enough to wake up the backup substitute sources.

Cloud motion is the primary reason for PV output fluc-
tuation. In essence, short-term PV output prediction can be
simplified as cloud motion estimation. A typical cumulus
cloud whose lifetime usually lasts only a few minutes is the
most important for solar farm scale forecasting. Local weather
forecast provides some global cloud coverage information on
a daily basis, but is certainly insufficient for our prediction
requirement which has small time granularities and spatial res-
olutions. High resolution cloud-resolving radar can track cloud
location, height and motions, but is prohibitively expensive and
hence also not practical for solar installations.

Our goal is to provide cost-effective solar irradiance
prediction models that require no expensive equipment while
meeting the accuracy and performance requirements. We ad-
dress the variability problem of cloud motion with Total Sky
Imager (TSI) [8], a cost-effective solution to take hemispheric
images of the whole visible sky (Figure 1(a)). We detect cloud
motion vectors between TSI images and use them to estimate
future cloud motion over the location where solar panels
reside. The prediction result of cloud motion can be used to
calculate solar radiation level with the predicted location of
cloud, Sun position, the timestamps and locations of TSI. A
pyranometer (Figure 1(b)) is used to monitor the local level

(a) TSI Imager. (b) Pyranometer.

Fig. 1. Two input source equipments.

of solar irradiance on the ground. Its numerical correlation
with the cloud motion from the TSI images is captured by
our proposed model for predicting the solar radiation values
on site. These two devices together offer us a complete yet
highly economic input setup for our prediction objectives.

This paper addresses several challenges which are unique
to the cloud motion estimation techniques: 1)The proposed
prediction algorithm has to be real-time (to wake up the backup
devices in time) and in a short term. Longer prediction (hourly
and daily) that requires different atmospheric input is not the
focus of this paper; 2) Cloud shape changes continuously over
time causing instability to cloud motion tracking; 3) Cloud
has multiple layers with different velocities and/or directions,
which often confuse with the cloud shape changes; 4) TSI loses
some information due to the holding arm, shadow band, and
boarder of circular images (Figure 2), and it is difficult to track
cloud motions around these area; 5) Clouds’ direct influence
on solar irradiance is reflected in a complex way through the
TSI image color patterns and textures.

This paper has the following contributions:

1) Our methodology only uses input from TSI and pyra-
nometer without other meteorological devices (eg. hu-
midity, wind velocity). It is spatially and temporally
microscopic and structurally different from most of the
existing mesoscale approaches [15] [12] [11] [19] [9].

2) We use fast cross correlation algorithm for effective and
real-time cloud motion tracking (Section IV). It satisfies
our real-time speed requirement and is sufficient for the
precision of cloud motion tracking in the mean time.

3) We propose a few refinement techniques customized for
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(a) Original. (b) Undistorted.

Fig. 2. TSI image undistortion using coordinate transformation.

the cloud motion prediction process (Section V), which
can not only work on single layer but also on multi-layer
clouds (Section VI).

4) Finally, we propose a linear prediction model for short
term solar irradiance, and compare the model output with
real-life TSI and pyranometer data. Our model has the
crucial feature of expendability which is often lacking
from other physical and atmospherical motivated models.

5) The experiments confirm that our proposed algorithms
can significantly improve the accuracy of cloud tracking
and solar irradiance estimation over existing methods.

II. BACKGROUND

Many techniques have been developed to detect object
motions. But only a few of them are actually appropriate for
cloud motion detection. Arrays of similar partial cloud tend
to generate multiple narrow extrema in the correlation surface,
which could mislead sequential similarity detection algorithm
[1]. Since cloud often does not have a clear boundary, active
contour models such as Snakes [2] are difficult to implement.
Wavelets and other multi-resolution schemes [7] are not suit-
able because of the lower resolution of TSI especially near
the boundary area, where ideal features are usually hard to
identify. Local gradients based methods [5] [10] are robust
to deformable objects, but they cannot meet the real-time
requirement. Cross correlation is one of the classic optical
flow techniques [3] [4] which tries to maximize correlation on
block-based image matching. In [15], Marcello et.al. surveyed
region matching techniques and concluded that normalized
cross correlation is one of the most favored choices for cloud
motion detection. The main reason is that cross correlation
method makes fewer requirements on the image sequence and
has fewer parameters to tune by the users. Its power has also
been justified with maximum-likelihood theory [18].

A most recent study with similar goals to our research is
[6]. Major drawbacks of this work are: 1) It applies simple
correlation-based method and fails to consider multi-layer
clouds; 2) It uses only two most-recent frames to predict the
future cloud motion; 3) It is less sophisticated without motion
vector refinements; 4) Their binary model for cloud condition
is too crude for tagging various other types of cloud condition
and causes a great barrier to expand their model’s applicability
and capacity for more complex cloud patterns.

Targeting these problems, our paper introduces novel and
practical techniques for both cloud motion and solar irradiance

prediction. Our goal is to deal with the volatile local weather
conditions, therefore linear prediction model is used to capture
the relations between cloud position/ transients and solar
irradiance with continuous value. It is desirable especially for
building more sophisticated models in the future to utilize more
features to meet various prediction requirements.

III. ALGORITHM FRAMEWORK

We present a schematic overview of our proposed model
in Figure 3. The whole process consists of three stages:
TSI image preprocessing, cloud motion estimation and solar
radiation estimation. The key step of TSI image preprocessing
is to map the original non-flat TSI image space into a flat space,
so that the motion vectors can be detected with uniform/similar
size. We call this step TSI image undistortion (Figure 2). Cloud
motion estimation is composed of two motion detection steps
and two motion estimation steps. The reason is because of the
requirement of filling missing information. Motion estimation
quality will be affected by the missing information (causing
by holding arm and shadowband of TSI as shown in Figure
2). To overcome this, we use the first round rough motion
estimation to fill in missing information on the TSI images.
Then the second estimation based on the second detection will
produce more accurate sky predictions. Finally, the estimated
cloud motion will be used to predict the solar irradiance level
in a specific time range. We will build both deterministic
and statistical models of cloud variation to characterize cloud
transients, and predict the associated solar irradiance.

IV. FAST AND EFFECTIVE CLOUD MOTION DETECTION

In this Section, we describe the cloud motion detection
method which meets real-time requirements and yet is effective
enough. In [13], Huang et.al. already investigated two most
popular motion vector detection approaches: Phase Correlation
(PC) and Cross Correlation (CC), and discussed the advantages
and disadvantages for both of them when used in cloud motion
detection. Here we describe the fast cross correlation adopted
in our research because of its speed and effectiveness.

Given a prior N × N sub-frame f , cross correlation
looks for the most correlated current sub-frame g from search
window M×M where M > N . However it is computationally
expensive, therefore Lewis [14] presented fast normalized
correlation. Since the image can be normalized with zero mean,
the numerator of cross correlation formula is a convolution
of the image with the reversed feature g′(−x,−y) where
g′ = g− ḡ and can be computed using the following equation:

FFT−1{FFT (f ′)FFT ∗(g′)}. (1)

Therefore the time complexity for the nominator is O(M2 ·
logM). For the denominator, we compute a definite sum from a
precomputed running sum [14]. Using two sum tables over the
image function f and image energy f2, the sum tables are pre-
computed integrals of f and f2 over the search image. So for a
window of size M×M , it can efficiently reduce the arithmetic
operations to only three addition/subtraction operations per
pixel once the sum tables are established. In other words,
the construction of the tables requires approximately O(M2)
operations, which is far less than O(M2 · N2) required to
compute cross correlation at each pixel.
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Fig. 3. Overall Cloud Motion and Solar Irradiance Estimation Flow.

(a) (b)

Fig. 4. Filling the missing information (a) with the estimated images. The
motion vector detection after filling with the estimated image found additional
(red) motion vectors (b) near the holding arm and shadow band.

V. MOTION VECTOR REFINEMENTS

Although the real-time requirements can be satisfied by our
adopted fast cross correlation, it still needs significant improve-
ments for accurate prediction. We summarize the refinements
techniques used to improve our motion vector detection.

A. Filling

The lack of sky information leads to either no motion
vector detected, or the detected vectors falsely align with the
edges of the empty area. We adopt two different methods to
fill in the missing information. The first one is “local mean-
filling” used in the first motion detection, in which the empty
area will be filled with the local mean of neighbor areas. It
removes the majority of the spurious vectors near the holding
arm and shadow band. The second method, used in the second
motion detection, is to fill with the estimated cloud from the
first motion estimation result. Figure 4 shows before and after
filling in missing information area and in the latter we could
find more accurate motion vectors.

B. Sequential Cloud Motion Prediction

(a) Decision on displacement: 1st case.

(b) Decision on displacement: 2nd case.

Fig. 5. Cloud Motion Vector Back-tracking.

To cope with the abnormal motion vectors due to cloud
shape changes, we try to predict next g (g ≥ 1) frame motion

vectors from h preceding frames. Since it utilizes h (h ≥ 2)
recent frames, it is more stable compared with using only
two recent frames [6]. Our sequential cloud motion prediction
model consists of three steps: 1) back-tracking the same block
from the current frame to h+ 1 preceding frames, 2) using a
series of vector trend to build a sequential prediction model,
and 3) predicting future vectors using the sequential model.

Figure 5 shows the back-tracking step. We back-trace a
block starting at (i, j) of the current image frame It back to the
previous frame It−1 and repeat this process until h+1 previous
frames are checked. To increase the stability, we compare the
detected back-traced motion vector with the predicted one. If
the difference between these two is larger than thresholds, the
predicted motion vector is chosen as the final motion vector
(Figure 5(a)), otherwise, the detected motion vector is chosen
(Figure 5(b)) to allow local motion vector digression resulted
from smooth cloud shape changes. Iteratively using the same
method on h+1 frames, we can find h motion vectors namely
from ~v t−h

(i,j) to ~v t
(i,j) for the same block (i, j). To denote the

motion vector of block (i, j) in time t, we use ~v t instead of
~v t
(i,j) for the notational simplicity.The second step is to learn

linear prediction models.

~̂v t+1 =

h∑
k=1

~wk · ~v t−h+k, (2)

where ~̂v t+1 is the predicted motion vector, ~v t−h+k are the
previous detected vectors, and ~wk are the corresponding coef-
ficients. Our goal is to minimize the following loss function:

argmin
W
{
n−1∑
t=h

(

h∑
k=1

~wk ·~v t−h+k−~v t+1)2 +λ

h∑
k=1

~wk · ~w
′

k}, (3)

where n is the number of training frames and λ is a regular-
ization parameter. To predict next g vectors, we sequentially
predict from ~̂v t+1 to ~̂v t+g using the following equation.

~̂v t+g =

h−g−1∑
k=1

~wk · ~v t−h+k +

h−1∑
k=h−g

~wk · ~̂v t−h+k. (4)

C. Wind-Field Extraction

Wind-fields are three-dimensional spatial patterns of winds
with similar wind speeds.We would like to use the spatial
patterns of winds to identify and remove spurious motion
vectors. Moreover, since we can only observe the lowest layer
of cloud, it is especially important to extract wind-field patterns
to adjust the motion detection. Our extraction algorithm relies
on three key characteristics of wind-field: frequency of motion
vectors, cosine similarity and motion vector length similarity.
Algorithm 1 describes the extraction procedures. Algorithm 2
explains how to adjust motion vectors using local and global
wind-field. Here local wind-field is extracted within local
neighborhood in a single time frame, while global wind-field
is extracted from all motion vectors during a given time t.
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Algorithm 1: Windfield-Extraction(V , thcos, lthratio,
uthratio)

Input: V is a motion vector matrix, thcos is similarity
threshold, lthratio and uthratio are the lower
and upper bound norm length ratio thresholds

Output: Wind-field WF
1 Let ~vi be the ith largest number of motion vectors in V

(~v1, . . . , ~vm);
2 foreach ~vi from ~v1 to ~vm do
3 if WF = ∅ then
4 Add ~vi to WF ;
5 continue to step 2 ;
6 end
7 foreach ~vj ∈WF do
8 sim = cos(~vi, ~vj) ;
9 ratio = ||~vi||2/||~vj ||2 ;

10 if sim ≥ thcos and lthratio ≤ ratio ≤ uthratio
then

11 continue to step 2 ;
12 end
13 end
14 if the number of ~vi ≥ 2% of the number of

non-empty motion vectors then
15 Add ~vi to WF ;
16 end
17 end

VI. CLOUD MOTION ESTIMATION

Approaches to estimate single-layer/multi-layer cloud mo-
tion are provided in this Section. We make an assumption that
the cloud will only change its shape smoothly and maintain
a constant velocity in a short enough time period [16]. The
core idea of estimating the new cloud image for a future time
frame is to use the motion vectors from Section V to project
the latest frame (t) into a new frame (t+ g) where g ≥ 1.

As we used image sub-blocks to detect motion vectors,
cloud motion estimation is simplified to estimate block-wise
movements where each block starting at (i, j) on time t, with
block size m×m (It(i,j)(i+m−1,j+m−1)), has one motion vector
~v t
(i,j) = 〈u, v〉 where It is the image frame at time t.

It+1
(i+u,j+v)(i+u+m−1,j+v+m−1) = It(i,j)(i+m−1,j+m−1). (5)

However, Equation 5 will generate mosaic effects between
block boundaries. To improve the estimation quality, we also
apply the following methods: 1) we enlarge the moving block
size by adding borders around it; 2) if some blocks overlap at
the estimated frame, we calculate their mean value as the final
image values; 3) if the moving blocks contain no sky texture
(e.g. the blocks contain part of shadowband or camera-holding
arm), we only move the partial block with sky texture.

We can determine the order of wind field in terms of
altitude, which is extremely important, but not considered in
[6]. For every frame we obtain the enclosed areas of different
cloud layer. With the current wind field speed, we can detect
whether there will be any area with overlapping cloud layers in
g minutes later. Once we get the real frame for g minutes later,
we examine the same area to validate the estimation result. The
detected wind field for this area would have lower altitude than

Algorithm 2: MotionVector-Adjustment(V , thcos,
lthratio, uthratio)

Output: Adjusted motion vector matrix V ′
1 GWF = Windfield-Extraction(V , thcos, lthratio,
uthratio);

2 foreach ~v(i,j) of V do
3 Let LV be the local neighborhood motion vectors

of ~v t
(i,j) ;

4 LWF = Windfield-Extraction(LV , thcos, lthratio,
uthratio);

5 Let ~vhf be the highest frequency windfield ;
6 foreach ~vwf of GWF do
7 sim = cos(~vwf , ~vhf ) ;
8 ratio = ||~vwf ||2/||~vhf ||2 ;
9 if sim ≥ thcos and lthratio ≤ ratio ≤ uthratio

then
10 ~v t

(i,j) of V ′ = ~vhf ;
11 continue to step 2 ;
12 end
13 end
14 end

the others. For every ten minutes the program re-examine the
wind field order. During estimation, we only keep the lowest
cloud texture in the future overlapped area of estimated frame,
which is different from the single layer cloud estimation.

VII. SOLAR IRRADIANCE PREDICTION

In this Section, we provide a linear prediction model
for real-time solar irradiance forecasting based on our cloud
motion estimation and the previous solar irradiance monitoring
data. It is expected that the ground radiation reading experi-
ences a deduction in sync with the cloud’s motion when it
passes the sun location in the sky. Even our model might
potentially oversimplify the factors of solar irradiance, our later
analysis shows that the model nonetheless performs reasonably
well and is even superior to those models relying heavily on
external climate data provided by solar site’s nearby weather
stations. The solar power output estimation is not in the scope
of this paper since it is also determined by various factors (such
as panel manufacturer, orientation and surface temperature).

We consider the following model for the correlation be-
tween TSI image and solar irradiance values. Both data streams
are treated as discrete time series, namely Rad(t) and RBR(t),
each of which is sampled at two different step sizes: respec-
tively one- and two- minute intervals. In the linear prediction
model used by our paper, the value at one time step depends
only on the immediate preceding time step:

Rad(t) = Rad(t−1) + C × (RBR(t)− RBR(t−1)). (6)

Here Rad(t) is the time series of pyranometer radiation
readings in W/m2, and (RBR(t)−RBR(t−1)) defines a time
series of the TSI image red-blue ratio (RBR) value change w.r.t
the prior step. Our choice to use RBR as an indicator of clouds
is validated by the finding that RBR consistently differentiates
clear sky v.s. different levels of cloudy sky. The coefficient
C in Equation (6) defines the correlation between cloud and
radiation which should be negative.
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Based on statistical analysis of over thirty thousands of TSI
images with various cloud conditions, we found that the RBR
value of cloud pixels consistently falls into the range between
0.6 and 1, while theoretically this range could have been much
bigger. A similar threshold (termed as Sunshine Parameter)
is made of essential use in [6] for binary characterization of
cloudy and clear sky conditions. Comparably, in our model
we make no essential use of the precise value as threshold to
distinguish clouds from clear backgrounds.

VIII. EXPERIMENTS

A. Experiments Setup

Our experiments use four days data from Southern Great
Plains Central Facility, Ponca City, Oklahoma (SGP), and two
days data from Tropical Western Pacific Darwin Site, Northern
Territory, Australia (TWP) collected by ARM program [8],
with a wide variety of cloud conditions. We only pay attention
from 3 hours before to 3 hours after the local solar culmination
time (720 TSI images in 6 hours with every 30 seconds per
frame). During this time period, the cloud coverage has higher
correlation with actual solar irradiance. June 27th 2010 from
SGP and September 11th 2010 from TWP have high cloud
coverage, and radically shape-changing cloud with multiple
layers. July 12th 2010 from SGP shows single layer cloud but
with high sky coverage and mild cloud shape changes. August
6th 2010 from SGP shows multi-layer cloud with motion
direction that changes smoothly. October 25th 2010 from TWP
has low cloud coverage, but radically shape-changing cloud
with multiple layers. August 16th 2010 from SGP has scattered
single layer cloud. We did not consider sunny or rainy days
because it is straightforward to predict the solar radiation level
during these days. Such diverse data selection is intended to
study the robustness of our proposed algorithms. Comparably,
TWP has very dramatically changing cloud due to the tropical
weather, hence experiments are tested on 0.5, 1 and 2 minutes
prediction. The experiments on SGP are tested on 1 4, 7 and
10 minutes prediction.

We use the same parameters setting as in [13]. Especially,
earth mover’s distance (EMD [17]) was used as cloud motion
estimation evaluation metric because EMD has very nice
properties on revealing image similarity. EMD allows for
partial matches in a very natural way which is of importance to
deal with image occlusions and clutter. We use the most recent
frame as our baseline(BL) approach, and compare motion
estimation with using only two frames (2F ) which is equal
or better than [6] due to refined gap filling, multi frames using
sequential motion vector prediction (MF ) and MF with wind
field adjustment (MF + WF ). We compare our estimated
results to the (future) ground truth of TSI images.

B. Cloud Motion and Solar Irradiation Prediction Results

Motion estimation results on SGP are shown in Figure
6(a) for overall evaluation and Figure 6(b) for each days.
Overall our proposed ML + WF significantly improves the
motion estimation quality from 14.9% to 27.8%. 2F shows
the minimum 14.9% improvement over baseline. On one
minute estimation, all prediction models show quite similar
results. As we increase the prediction span to ten minutes,
our sophisticated MF and MF + WF models show much

better performance (Figure 6(b)). The result for TWP cloud
estimation, confirms that MF + WF has better capability to
predict cloud motion with radically change shape compared
with 2F model, since our model outperforms not only BL
with 46.59% (Figure 6(c)), but also the existing typical cloud
motion estimate using 2F . Although MF +WF only slightly
improves less than 4% based on MF on the TWP tests, which
is because of the dramatically changing wind-field in TWP site.

We used data on September 11, 2010 data at TWP for
illustrating our solar irradiation prediction result. We made
two predictions, one and two minutes respectively, with our
linear prediction model (LP). We used the binary model in
[6] as baseline for comparison, and set time step to be 1
minute. From the TSI’s geographical location and date, we can
accurately calculate Sun’s position on the original TSI image.
Then we use the coordinate transformation in the preprocessing
algorithm to map Sun’s position into the corresponding pixel
in the undistorted TSI image. Around this pixel, we choose
various sizes for the surrounding block ranging from 10× 10
to 50 × 50 pixels. Experiments confirmed that a window of
such sizes entails the information with a strong correlation
to the pyranometer reading changes, while at the same time
avoids the random errors from motion estimation algorithm.
According to the result, the window size of 20 × 20 is
consistently optimal, and therefore selected for subsequent
analysis. We setup an upper bound curve for the predicted solar
irradiance values. The upper bound changes along with the
time during course of six hours. For the experiment, we chose
the values from the radiance curve of TWP on September 17,
2010 which was a perfect clear sky all day long. The effect on
the predicted real-time irradiance value curve can be seen from
the plateaus in plots (a) and (b) of Figure (7). Nevertheless,
in the binary model [6] a lower bound of 40% of global
horizontal irradiance (GHI) was imposed. Consequently, the
model produced noticeable deviations from actual pyranometer
radiation readings on the randomly selected day.

We used 10-fold cross validation for our LP model based
on the TWP sample. We did not obtain the executable of
the baseline binary method, therefore had to skip their cloud
motion estimation step, and fed the competing baseline model
directly with the ground truth, i.e. the actual TSI cloud image
of the next time step. The output of this baseline is actually
generated directly by filtering the real TSI data with their
threshold method prescribed in [6]. Two thresholds used in the
baseline model are called GHI and SP. The root-mean-square
error (RMSE) scores of the baseline model under this treatment
is much better than that of the actual step-by-step execution.
The respective RMSE results are given in Table I. The baseline

TABLE I. RMSE RESULTS COMPARISON.

UCSD binary baseline 1 min LP 2 min LP
206.85 142.08 177.72

[6] is not a real prediction and hence we need not perform
cross validation on it. The comparison is then biased towards
the binary method, as it also has no propagated error from the
motion estimation algorithm. Nevertheless, the advantage of
our model is validated by a smaller (better) RMSE value.

Our testings also confirmed a negative correlation between
the RBR value within the solar window and the solar irradiance
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(a) Overall Average of SGP experi-
ences.

(b) Averages for Different Prediction
Span of SGP experiences.
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Fig. 6. Comparison of four cloud motion estimation algorithms.

(a) UCSD binary model using true TSI image. (b) Our model with 1 minute prediction. (c) Our model with 2 minute prediction.

Fig. 7. Comparisons of our radiation prediction models with UCSD model.

value. The experimental values range between C = −46.08
and −69.74 for the 10-fold cross validations for the 1-minute
and 2-minute forecasts.

IX. CONCLUSION

We introduced cloud motion estimation algorithms for
short term solar radiation level predictions and addressed
special challenges associated with cloud prediction using TSI
images and pyranometer solar irradiance readings. In partic-
ular, we adopted fast cross correlation method to satisfy the
real-time processing requirement and improved the detection
accuracy with several refinement techniques. Furthermore, we
implemented a sequential motion vector prediction algorithm
to deal with cloud shape changes, and proposed wind-field
detection and motion vector adjustment algorithms to handle
multi-layer clouds. Finally, we provided a prediction pipeline
of integrating these algorithms and methods to process the
workflow from the image preprocessing step to the final
cloud motion estimation and solar irradiance forecast. The
experiments demonstrated that our approach significantly out-
performs the baseline estimation with more than 28% improve-
ment on average. We expect that our future development im-
plementing multiple TSI devices will both greatly expand the
length of the prediction time window and improve the quality
of our motion estimation and solar irradiance predictions.
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