
Unsupervised Co-segmentation of Complex Image Set via Bi-harmonic Distance
governed Multi-level Deformable Graph Clustering

Jizhou Ma∗, Shuai Li∗‡, Aimin Hao ∗, and Hong Qin†
∗State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China

‡ls@vrlab.buaa.edu.cn
†Department of Computer Science, Stony Brook University (SUNY Stony Brook), Stony Brook 11794, USA

Abstract—Despite the recent success of extensive co-
segmentation studies, they still suffer from limitations in ac-
commodating multiple-foreground, large-scale, high-variability
image set, as well as their underlying capability for paral-
lel implementation. To improve, this paper proposes a bi-
harmonic distance governed flexible method for the robust
coherent segmentation of the overlapping/similar contents co-
existing in image group, which is independent of supervised
learning and any other user-specified prior. The central idea
is the novel integration of bi-harmonic distance metric design
and multi-level deformable graph generation for multi-level
clustering, which gives rise to a host of unique advantages:
accommodating multiple-foreground images, respecting both
local structures and global semantics of images, being more
robust and accurate, and being convenient for parallel ac-
celeration. Critical pipeline of our method involves intrinsic
content-coherent measuring, super-pixel assisted bottom-up
clustering, and multi-level deformable graph clustering based
cross-image optimization. We conduct extensive experiments
on the iCoseg benchmark and Oxford flower datasets, and
make comprehensive evaluations to demonstrate the superiority
of our method via comparison with state-of-the-art methods
collected in the MSRC database.

Keywords-Unsupervised Co-segmentation; Bi-harmonic Dis-
tance; High-variability Image Set; Discriminative Clustering.

I. INTRODUCTION

The co-occurrence of common objects (or overlapping

contents) in image group contains implicit supervision infor-

mation. Therefore, image co-segmentation has been gaining

momentum in recent years, which has widespread applica-

tions in object recognition, video segmentation, pathology

identification, image set based modeling, and other web-

scale applications.

Different co-segmentation methods developed under dif-

ferent motivations may vary in the definition and utilization

of the grouping feature cues. Based on the central idea of [1],

many progressively improved co-segmentation methods have

been proposed by incorporating different technical insights

such as Markov random field (MRF) [1]–[4], discriminative

clustering [5], [6], sub-modular optimization [7], linear

programming relaxation [8], subspace clustering [9], dual-

decomposition [2], anisotropic diffusion [7], etc. However,

in spite of their recent success, certain difficulties still prevail

Figure 1: Our multi-class co-segmentation results for high-variability flower image
set. The first and the third rows are the original image set. The second and the fourth
rows are the co-segmentation results.

and need to be resolved for more intrinsic unsupervised

image co-segmentation. Specifically, the common challenges

existed in most of state-of-the-art methods are documented

as follows.

First, most of the state-of-the-art methods still lack enough

flexibility and robustness to accommodate the complex cases

due to the excessive reliance on low-level and local sim-

ilarity metric such as local color consistency and texton-

consistency. For example, the common objects occurring

across images may vary in shape, color, scale, noise, stain,

occlusion, and local deformation.

Second, existing unsupervised methods usually employ

generative probabilistic model to learn labeling of co-

occurring objects via iterative refinement. It gives rise to

computationally intensive optimization problems, and the

situation is even worse for large-scale image set. Besides,

prior knowledge based learning methods usually suffer from

the sophisticated tuning of the underlying classifier param-

eters.

Third, despite extensive co-segmentation methods, most
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of them rely on inter-twined computation across images,

which are hard to parallelize the time-consuming tasks. From

the practical point of view, a more computation-independent

co-segmentation method together with its GPU acceleration

is urgently needed.

To tackle the aforementioned challenges, we focus on a

novel unsupervised co-segmentation method by resorting to

bi-harmonic distance metric [10] governed deformable graph

clustering. As illustrated in Fig. 2, we exploit and integrate

the advantages of many technical elements such as super-

pixel based over-segmentation, anisotropic heat diffusion,

and discriminative clustering. Specifically, the salient con-

tributions can be summarized as follows:

• We define an intrinsic structure-aware bi-harmonic dis-

tance metric to measure the affinity of topology-free

image contents by simultaneously integrating the pixel-

level Fast Retina Keypoint (FREAK) features, super-

pixel-level color-consistency, and global topological

information of the image contents, which facilitates

the intrinsic depiction of local structure, the robust

representation of intra-image global relations, and the

discriminative relationship measurement of the cross-

image overlapping/similar contents in a global setting.

• We propose a bottom-up co-segmentation method by

integrating the intrinsic bi-harmonic distance metric

into a newly designed multi-level deformable graph

clustering based optimization framework, which can

accommodate robust and flexible co-segmentation of

multiple-foreground, large-scale, and high-variability

heterogeneous image sets in an unsupervised way.

• We design image-wise parallel algorithms for most

of the time-consuming tasks involved in our method,

hence, the co-segmentation result can be efficiently

obtained through an independent complementary opti-

mization step to jointly merge the image-wise outputs,

which collectively are very applicable to multi-thread

implementation based on CPU or GPU.

II. RELATED WORK

A. Content-coherent Measurement

Local feature descriptors. Most of earlier image co-

segmentation methods [1]–[3] take pixels as basic feature

elements, which usually suffer from computation intensive-

ness and noise sensitiveness. Considering the cross-image

variability, the most intuitive histogram statistics about color,

texture or frequency distribution are commonly adopted to

serve as local feature descriptors. To improve, Joulin et

al. [5], [6] proved that the SIFT descriptor is more robust

to depict the cross-image coherency during co-segmentation.

For the analogous purpose, Rubio et al. [4] exploited the ad-

vantage of Histogram of Oriented Gradients (HOG) descrip-

tors in graph matching based foreground co-segmentation.

Besides, to better accommodate the illumination variability,

Glasner et al. [8] proposed region contour based descriptors

by only considering the contributions of exterior boundary

of local feature element. However, it is inevitable to reduce

the distinguishability of the descriptor.

Affinity measurement. Some initial work [1]–[3] models

the intra-image affinity measurement in terms of Markov

Random Field (MRF). Rubio et al. [4] proposed a M-

RF based multi-scale model to encode the graph match-

ing results into inter-image information, which can handle

more complex situations such as the high-variability of

different viewpoints, illuminations, deformations, and poses.

However, it is not applicable to large-scale applications.

Aiming at improving the adaptivity and efficiency of large-

scale co-segmentation problems, some simple but effective

distance metrics such as Euclideandistance, χ2distance
are also adopted to construct cross-image affinity matrix.

Specifically, some recent studies resort to some intrinsic

and smart distance metrics to handle more complex cases,

including anisotropic heat diffusion distance [11], commute-

time distance [4], [12], geodesic distance [13], which are

more meaningful and informative for robust co-segmentation

of objects with deformation, occlusion, noise perturbation,

and flexible global relations.

B. Joint Segmentation Model

Co-clustering based methods. Co-clustering based meth-

ods can be comfortably [5], [6], [8], [9], [14] employed

for image co-segmentation by modeling the problem with

a set of intra-graph and a synergetic inter-graph as a global

constraint to guarantee the content-coherency. To efficiently

solve the co-clustering model, Glasner et al. [8] formulat-

ed the problem as a quadratic semi-assignment problem,

and Joulin et al. [5] proposed a discriminative clustering

framework [15] by integrating additional graph based global

constraints into the generic clustering model to ensure the

cross-image segmentation coherency. Meanwhile, by relax-

ing the discriminative clustering problem to a continuous

convex optimization problem, Joulin et al. [6] can achieve

the joint segmentation of dozens of images.

Learning based methods. Learning based methods gen-

erally employ manually-specified prior or unsupervised gen-

erative probabilistic models to learn labeling of co-occurring

objects via an iterative refinement. For example, Vicente et

al. [16] conducted co-segmentation through pair matching

of pre-segmented patches by training a random forest regres-

sor from the ground truth. Kim et al. [17] used an iterative

self-learning approach to obtain a foreground representation

model via the appearance statistics of mid-level elements,

which facilitates the automatic label assignment for objects

irregularly-occurring in an image set.

Optimization based methods. Optimization based meth-

ods solve the co-segmentation problem by maximiz-

ing/minimizing a well-designed energy function. For exam-

ple, Joulin et al. [6] extended their discriminative clustering
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Figure 2: The flowchart of our method. (a) Input image set; (b) Super-pixels based segmentation; (c) Bi-harmonic distance based similarity measurement; (d) Bi-harmonic
distance governed intra-image graphs; (e) Bi-harmonic distance governed inter-image graph, which is represented via global Laplacian matrix; (f) Energy function definition; (g)
Discriminative graph clustering based co-segmentation results.

based work [5] for more favorable multi-foreground co-

segmentation by defining an objective energy function com-

prising an intra-image coherency term, an inter-image affin-

ity term, and a global constraint term. And they designed

an Expectation Maximization (EM) algorithm to solve it.

While Rubio et al. [4] constructed their energy function with

a pixel-wise coherency term, a region-wise coherency term,

a region-pixel relationship based scale-energy term enforce,

and a cross-image region matching based energy term.

III. METHOD OVERVIEW

This paper focuses on an unsupervised co-segmentation

method of large-scale heterogeneous image groups by ex-

tending and integrating the notions of super-pixel over-

segmentation [18], manifold bi-harmonic distance defini-

tion [10], anisotropic diffusion based co-segmentation [7]

into the powerful discriminative clustering framework [6].

As shown in Fig. 2, the involved steps are briefly described

as follows:

Over-complete segmentation. Conduct super-pixel based

over-complete segmentation for each image in the image set.

Manifold construction. Construct 3D mesh for the un-

derlying manifold comprising super-pixels. The x-axis and

y-axis coordinates encode the super-pixel’s spatial informa-

tion, and the z-axis coordinates embody the intensity/color

properties of super-pixels.

Intra-image bi-harmonic distance definition. Define the

bi-harmonic distance metric for intra-image super-pixels by

employing the discrete Laplace-Beltrami operator to conduct

differential analysis over the constructed manifold mesh.

Intra-image graph generation. Generate an intra-image

graph for each image to represent the global relations of

super-pixels. The super-pixels serve as graph nodes and their

bi-harmonic distances serve as graph edge weights.

Inter-image graph generation. Generate an inter-image

graph for an image set to represent the super-pixel affinity.

All the super-pixels from the image set serve as graph

nodes and their feature differences serve as graph edges.

Meanwhile, define the bi-harmonic distance metric over the

inter-image graph.

Bi-harmonic distance governed discriminative graph
clustering. Define the objective energy function to encode

the super-pixels’ similarity in feature space (the inter-image

graph), super-pixels’ coherency in image space (intra-image

graphs), and the uniform co-segmentation constraints. And

the co-segmentation results can be obtained by minimizing

the energy function with an expectation-Maximization (EM)

method.

IV. SUPER-PIXEL BASED MANIFOLD MESH

Bi-harmonic distance metric [10] has achieved great suc-

cess in geometry processing because of its built-in ad-

vantages such as being informative, multi-scale, robust,

parameter-free, and isometric-deformation invariant. How-

ever, it remains difficult to directly define the powerful

intrinsic distance metric over the images due to the following

reasons: (1) 2D images comprising regular pixels have

regular structure, and are both topology-free and boundary-

free without any intuitive geometric meaning. (2) It is

impractical to directly employ the pixel as a basic building

block towards meaningful differential analysis, since the

pixel-level Laplacian matrix does not support multi-scale

functionality that is highly demanded in any novel shape

descriptors.

We elaborate our novel intrinsic distance metric on a man-

ifold space enabled by the construction of super-pixels. In

order to guarantee the mesh regularity of the succeedingly-

constructed manifold, we employ the SLIC method [18]

to conduct relatively uniform segmentation for super-pixels.

Meanwhile, to respect the anisotropic property reflected in

original color space of the image, we inherit the anisotropy

by taking the average intensity of each super-pixel as its

third dimensional coordinate in 3D space. Therefore, with

each super-pixel geometric center serving as a 3D vertex, the

manifold mesh corresponding to each image can be con-

structed by means of Delaunay triangulation. Specifically,

the z-axis difference between two neighboring vertices can

be defined as dZ(va, vb) = dD(Desc(va), Desc(vb)), where

Desc represents a certain kind of super-pixel-level descrip-

tor, for example, gray value, color, SIFT, texture pattern,

etc. For the simplest case, an image can be transformed
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to an elevation map (Fig. 3) by representing z-axis with

the average gray value of each super-pixel (Desc(v) =
Gray(v)), thus dD(Desca, Descb) = Desca − Descb. In

this paper, we adopt 3D CIE Lab color properties and

FREAK features [19] as descriptors. Since dD is a distance

function and its formulation depends on the adopted descrip-

tor type, Hamming distance is favorable for FREAK descrip-

tors, while Euclidean distance is appropriate for color-like

descriptor vectors.

Figure 3: Illustration of bi-harmonic distance definition in an image space. (a) Super-
pixels based over-complete segmentation; (b) Manifold mesh construction; (c) Bi-
harmonic distance distribution over the manifold with red arrow labeled vertex as
anchor; (d) Bi-harmonic distance distribution on the corresponding 2D image.

V. BI-HARMONIC DISTANCE BASED MULTI-LEVEL

GRAPH

Bi-harmonic distance is built on Riemannian manifold,

which can be defined using the eigenvectors and eigenvalues

of the Laplace-Beltrami matrix as

dB(x, y)2 =

∞∑
k=1

(Φk(x)− Φk(y))
2

λ2k
, (1)

where Φk(x), λk are respectively the eigenfunctions and

eigenvalues of the positive definite Laplace-Beltrami matrix.

A. Intra-image Bi-harmonic Distance Definition

With the vertex set of the manifold mesh denoted by

P = {p1, p2, ..., pn}, we define the bi-harmonic distance

metric via discrete Laplacian-matrix L = A−1M based

anisotropic heat diffusion, where A is a diagonal matrix

and Aii is proportional to the average area of the triangles

sharing vertex pi. And M is formulated as

Mij =

⎧⎨
⎩
∑

kmij if i = j
−mij if pi and pj are adjacent
0 otherwise

, (2)

where mij = cotαij +cotβij , αij and βij are the opposite

angles of two adjacent triangles sharing the edge pipj . In

intra-image case, we use (li − lj)
2 + (ai − aj)

2 + (bi −

bj)
2 to calculate the distance of the color component that

is embedded in the edge length, where (L,A,B) denotes the

color descriptor value of super-pixel p.

The eigen-decomposition of M is time-consuming. Ac-

celerated bi-harmonic distance computation [10] is proposed

by taking the Green’s function gd as the pseudo-inverse of

MA−1M .

dB(pi, pj)
2 = gd(i, i) + gd(j, j)− 2gd(i, j). (3)

Since distance in some sense is a kind of dissimilarity, we

can further use the Gaussian function (β = 0.35 for all types

of features in all cases) to convert the bi-harmonic distance

to measure similarity.

w(vi, vj) = exp(−dB(pi, pj)

β
). (4)

Therefore, we can respectively compute the affinity for each

super-pixel pair. Taking the super-pixel indicated by the

red arrow as an anchor vertex, Fig. 3 demonstrates the bi-

harmonic distance distribution, wherein the color ranging

from red to blue means that the bi-harmonic distance is

going from the near to the distant.

B. Inter-image Bi-harmonic Distance Definition

As for the bi-harmonic distance definition between inter-

image super-pixels, we adopt super-pixel colors and FREAK

features to redefine the Laplacian matrix M in Eq. 3. We

construct a NP ×NP dissimilarity (distance) matrix (NP =∑NI

i=1N
i
P , where NI is the number of the images, N i

P

denotes the number of superpixels of the i-th image). And

then we use a Gaussian function to convert the dissimilarity

matrix to an affinity matrix W . Therefore, the inter-image

Laplacian matrix (Lf ) can be obtained as

Lf = EN −D−
1
2WD−

1
2 . (5)

Lf is a normalized Laplacian matrix [20]. EN is the N-

dimensional identity matrix. D is a diagonal matrix resulted

from the row sum of W . Analogous to intra-image case,

we can define the inter-image bi-harmonic similarity matrix

WB for the super-pixels in the image set.

Fig. 4 lists the comparison of bi-harmonic distance and

Euclidean distance defined on three images, where the

images have the same content and only vary in illumination

and tone. It shows that the simple Euclidean distance metric

in (L,A,B) color space is hard to provide meaningful simi-

larity measurement for super-pixels located inside the same

objects. In sharp contrast, bi-harmonic distance metric in fea-

ture space can naturally embody the indirect connectedness

among super-pixels, and thus can more intrinsically reveal

their similarity. Therefore, bi-harmonic distance metric can

greatly facilitate the coherency measurement in a global way,

which is significantly needed in image co-segmentation.

In the following sections, we respectively denote the bi-

harmonic distance governed intra-image affinity matrix and

the inter-image affinity matrix with W i
B and WB .
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Figure 4: Illustration of inter-image bi-harmonic distance distribution. (a) Super-pixels
in original images; (b) Euclidean distance distribution with the red arrow labeled super-
pixel as anchor; (c) Corresponding bi-harmonic distance distribution.

C. Multi-level Graph Construction

Based on the defined bi-harmonic distance governed

affinity matrix W i
B and WB , we can respectively construct

intra-image graphs and a fully-connected inter-image graph,

where the super-pixels serve as the graph nodes and the

bi-harmonic distances serve as graph edge weights. When

constructing intra-image graph for each image, as shown

in Fig. 2(d), we only establish edge connections for the

super-pixels satisfying one-ring neighboring relations. As for

the fully-connected inter-image graph, to exclude the low-

probability matching relations and simplify the redundancy

relations, the edge is pruned in advance if the affinity

between the corresponding super-pixel pair is falling within

the last 20% of the entire distance range (illustrated in

Fig. 2(e)).

Directly benefiting from the local-deformation-insensitive

characteristics, such graph representation can accommo-

date more flexible changes of co-occurring objects. Taking

series of someone’s photos for example, the super-pixels

comprising human body should preserve close affinity in

spite of complex posture changes. And the corresponding

graphs should also remain stable. Therefore, our bi-harmonic

distance governed multi-level graphs can support the de-

formable relation description of image contents in some

sense.

VI. DISCRIMINATIVE GRAPH CLUSTERING BASED

CO-SEGMENTATION

We incorporate the bi-harmonic distance governed multi-

level graph into the discriminative clustering framework [6]

to perform co-segmentation. Benefitting from the superiority

of bi-harmonic distance governed multi-level graph, in sharp

contrast to [6], we do not need to initialize the clustering

algorithm with the results of [5] as prior. Here we mainly

focus on how to integrate the above-documented technical

elements towards unsupervised co-segmentation, for more

details about discriminative clustering based multi-class seg-

mentation, please refer to [6].

A. Energy Function Definition

We solve the discriminative graph clustering based co-

segmentation problem by minimizing a well-designed en-

ergy function. The objective energy function is composed

of a classifying term, a smoothing term, and an uniform-

segmentation constraining term, which can be formulated as

min
y∈{0,1}NP ×K

y1K=1NP

[ min
A∈Rd×K

b∈RK

EU (y,A, b)] + EB(y)−H(y), (6)

where y is an unknown NP ×K label matrix. y(n, k) = 1
denotes the n-th super-pixel belongs to the k-th class. EU

encodes the inter-image information by way of a kernel

based method. EB and H are discriminative clustering

terms, which can respectively guarantee the co-segmentation

to be smooth and uniform.

For the classifying term EU , the χ2 kernels are usually

adopted [5], [6]. To better enhance the co-segmentation

coherency, we employ the bi-harmonic distance governed

multi-level graph as a graph kernel. Let us suppose X =
{x1, x2, x3 · · ·xNP

} is a set of d dimensional feature vec-

tors, the central idea of kernel based method is to map X to

a higher dimensional Hilbert space FFF to improve the linear

separability. It can be formulated as

K(m, l) = Φ(xm)TΦ(xl), (7)

where Φ is a feature map and K(m, l) represents the kernel

function. In this paper, WB is used to serve as kernel

function. And we rewrite it as WB = ψ(X)Tψ(X) via

an incomplete Cholesky decomposition [15]. Therefore, the

NP ×d feature matrix X is replaced with a NP ×df feature

matrix ψ(X). Here we define the degree of freedom df = 5
for the color descriptor, and df = 1000 for the FREAK

descriptor. The classifying term EU can be defined as

EU (y,A, b) =
1

NP

NP∑
n=1

l(yn, Aψ(xn)) + b) +
λ

2K
||A||2F , (8)

where ψ(xn) denotes the n-th row of the matrix ψ(X), while

l is a soft-max function towards handling multi-foreground

cases:

l(yn, A, b) = −
K∑

k=1

ynklog

(
exp(aTk ψ(xn) + bk)∑K

m=1 exp(a
T
mψ(xn) + bm)

)
, (9)

where ak is the k-th row of A. As for the smoothing

term EB , we first employ the bi-harmonic affinity weighed

intra-image graph W i
B to facilitate the computation of each
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image’s normalized Laplacian matrix according to Eq. 5.

Then, we collect all Li (i ∈ [1, NI ]) to form a holistic

diagonal block matrix L, which can orderly encode the

intra-image coherency information at the diagonal blocks.

Therefore, EB is formulated as

EB(y) =
μ

NP

NI∑
i=1

Ni
P∑

m=1

K∑
k=1

ynkymkLnm. (10)

As for the uniform-segmentation constraining term H , its

effect is to guarantee the uniformity of co-segmentation.

Specifically, it is not expected to obtain certain classes,

which tend to be ignored. Since an information entropy

based penalty term can well push the number of the super-

pixels belonging to each class to be average, we define H
as

H(y) = −
NI∑
i=1

K∑
k=1

⎛
⎜⎝ 1

NP

Ni
P∑

n=1

ynk

⎞
⎟⎠ log

⎛
⎜⎝ 1

NP

Ni
P∑

n=1

ynk

⎞
⎟⎠ . (11)

B. EM Optimization

We adopt the EM optimization method to solve the

formulated combinatorial optimization problem via non-

convex relaxation. In the implementation, we initialize the

EM procedure randomly. And the unknown label y is relaxed

to a convex probability y = {y ∈ [0, 1]NP×K |y1K = 1NP
}.

In an alternative way, a quasi-Newton method is used as M-
step to find the parameters (A, b) by minimizing the energy

term EU with given y; and then a projected gradient descent

method is used as E-step to update the label y by minimizing

the energy function Eq. 6. For more details about the EM

optimization solver, please refer to [6].

VII. EXPERIMENTAL RESULTS AND EVALUATION

We have implemented our method on a PC with a Geforce

GTX 660 GPU, Intel Core I7 CPU and 16G memory

based on C++, and MATLAB R2013a. We demonstrate the

advantages of our method via the extensive experiments

on the popular MSRC, Oxford flower, and iCoseg datasets.

Meanwhile, iCoseg and Oxford flower datasets provide a bi-

nary ground truth about the foreground and the background,

while MSRC dataset is a multi-class segmentation database.

During evaluation, we take the famous state-of-the-

art unsupervised multi-foregrounds (or multi-class) co-

segmentation methods (MC [6] and DS [7]) as competi-

tors, all of which provide open-source codes. To make a

complete evaluation within the limited space, we design

the experiment groups by combining the subset of different

capabilities in handling foreground complexity, image set

scale, and image noise degree. Meanwhile, we adopt the

standard accuracy measurement indicator score = GTi

⋂
Ri

GTi

⋃
Ri

to conduct quantitative evaluation of the co-segmentation

quality. Moreover, to guarantee the rigorousness, all of the

quantitative experimental data is obtained by an average of

20 times experiments.

Table I: The performance comparison of different co-segmentation methods. N : the
scale of image set; K: co-segmented classes.

Class N K
Score (%) Time (s)

Ours MC DS Ours MC DS

White flowers 62 2 76.1 78.8 62.4 109.2 2241.2 149.1

Yellow flowers 49 2 83.9 86.1 82.2 101.6 1636.4 120.9

Flowers 10 2 81.0 66.1 64.1 42.9 449.8 22.2
Goose 25 2 84.4 80.4 67.3 46.6 108.7 45.8
Helicopter 12 2 70.2 34.0 10.3 29.2 567.9 17.2
Christ 13 2 79.7 78.6 56.6 26.1 532.4 26.2

Kendo 30 2 85.0 82.5 54.0 48.8 1328.8 50.0

Sheep 12 2 73.4 73.8 63.9 22.1 426.5 20.7
Bench 9 2 66.8 57.2 52.7 11.1 288.0 17.3

House 5 2 70.7 60.9 19.5 13.8 137.0 8.3
Brand 5 2 86.4 79.0 57.1 13.4 216.0 9.0
Cattle 5 3 71.5 62.5 66.1 12.2 224.0 7.0
Plane 8 3 50.0 41.9 39.8 36.4 257.7 15.2
Ferrari 9 4 68.6 66.2 65.0 25.8 432.1 16.8
Base ball 25 4 63.8 58.0 49.4 75.2 3216.2 52.8
Monk 17 5 73.0 57.8 72.4 105.5 3384.0 34.2

A. Parameter Setting of Different Methods

Considering fair comparison and the tolerable runtime

memory cost of different methods, for the same scale image

set, we resize all the images to be 2562 pixels in our method

and DS method [7] while the size of 1282 pixels is utilized

in MC method [6]. The number of super-pixels is set to

be 80 in all the experiments. Empirically, taking ”80” as the

basic number of super-pixels can ignore the details and such

number is not too big for the resized images, while the other

numbers of super-pixels with the same order of magnitude

may work as well. And the weight μ in the smoothing term

EB is always set to be 104 in our method. Gaussian function

parameter β equals to 0.35. Since MC involves two types of

features: SIFT and color, we select the better results obtained

from the two types of features for comparison. Besides,

MC needs to be initialized with [5]’s results. However,

when the number of image set is larger than 40 or the

image set contains heavy noisy, MC initialization may not

work due to the intolerable time cost of [5]. In such cases,

MC can only be initialized with original image set. As

for DS method, since its central idea is to orderly select

the color-coherency area as large as possible via a greedy

algorithm, DS is color-sensitive. Therefore, suppose we set

the co-segmented object classes to be K, we choose DS’s

best results corresponding to the parameter range [K, 2K]
for comparison. Moreover, to further compensate for DS’s

color sensitivity, we allow adjusting its Gaussian parameter

within the range 0.25 ≤ β ≤ 0.6(default) when DS gives

completely wrong results.

B. Single Foreground Co-segmentation

In Fig. 5((a),(b),(c)), three groups of single foreground co-

segmentation results (K = 2) are respectively obtained using

our method (the second row in each group), MC method
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(the third row in each group), and DS method (the fourth

row in each group). According to the quantitative accuracy

and timing cost measurement in Table I, our method out-

performs other methods in accuracy. And DS is sometimes

more efficient than ours, however, DS has poorest accuracy

because the similar objects in different images always tend

to vary (at least slightly) in color, illumination, and tone.

In contrast, our method and MC can alleviate this problem

because the energy term gives rise to soft segmentations.

Besides, the color coherency of super-pixels also facilitates

further enhancement of the results due to the omission of

some trivial details. Meanwhile, since MC needs to compute

chi-square kernel and it optimizes the energy function based

on dense feature points (a small-scale image may contain

thousands of feature points), the timing cost and memory

consumption increase exponentially with the growth of the

image or image set scale. Therefore, MC is unsuitable for

large-scale image sets in practice.

When comparing with DS and MC, our method has clear

advantages. our method not only inherits all the advantages

from discriminative clustering framework but also improves

its efficiency via the super-pixel based bottom-up clustering

design. About 90% timing cost of our method comes from

the final optimization step, while the rest 10% is from Matlab

and CUDA based parallel computation. Since the conver-

gence speed of EM step partially depends on initialization

and the initialization is assigned randomly, the timing cost of

our method has no obvious linear relationship with the image

set scale. For example, the image number of ”Goose” group

is twice the number of ”Flowers” group, but their efficiency

test is rather close.

C. Multiple Foreground Co-segmentation

Although both MC and DS claim to support multi-

foreground co-segmentation. Benefitting from the glob-

al structure awareness of the bi-harmonic distance based

similarity metric, as the results shown in Fig. 1 and

Fig. 5((d),(e)), our method can better facilitate multiple

foreground co-segmentation. For multiple types of different

flowers shown in Fig. 1, our bi-harmonic distance based

similarity metric can effectively distinguish the flowers from

the green background. In particular, although both our

method and MC method are based on a similar framework,

MC performs badly for ”Helicopter” group, which has very

similar color distribution in each image. Our method has a

better result because the bi-harmonic distance respectively

enhances the relationship between foreground and differ-

ent parts belonging to the background. Since the testing

image datasets lack corresponding rigorous multi-foreground

ground truth (e.g., MSRC database takes a brown cattle and

a black cattle as a same class). we increase the number of

class K and quantitatively evaluate their ability in multi-

foreground co-segmentation by respectively comparing the

segmented foreground with their corresponding ground truth.

As shown in Table I, our method is the most accurate one

for all the K > 2 cases.

Figure 5: Co-segmentation results from different methods and their comparison over
3 single-foreground ((a), (b), (c)) and 2 multi-foreground ((d), (e)) image groups. First
rows: original images; Second rows: ours; Third rows: MC [6]; Fourth rows: DS [7].

D. Noisy Image Set Co-segmentation

To verify the robustness of our method, we employ noise-

perturbed ”Sheep” image group to conduct evaluation, since

this image group has appropriate complexity and all the

methods have close performance on its noise-free version.

We randomly choose three images from the image set to

respectively perturb them using 0% to 30% salt & pepper

noise with 5% interval. As shown in Fig. 6(c), DS method

has the worst performance. MC method can obtain the rough

area of the foreground, which indicates close accuracy to

ours. However, MC results are too discontinuous with many

small holes that destroy the global integrity of the entire

foreground, while our results can better preserve the holistic

coherency thanks to the intrinsic properties of bi-harmonic

distance metric. Meanwhile, Fig. 6(b) illustrates the corre-

sponding accuracy score statistics, which indicates that our

method is more robust than others. For more comparison

results and more details of the pipeline, please check out the

authors’ websites. http://www.vrlab.buaa.edu.cn/JizhouMa

VIII. CONCLUSION

In this paper, we have proposed a novel and versa-

tile method to address a suite of research challenges in

unsupervised co-segmentation for multi-foreground, large-

scale, high-variability image sets. The extensive experiments

and accompanying rigorous evaluation verify the superiority

of our method. Specifically, the critical and novel technical

elements include bi-harmonic distance metric definition of

underlying manifold embedded in image, affinity measure-

ment integrating local feature and global coherency, and

multi-level deformable graph clustering, all of which also
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Figure 6: Co-segmentation results from different methods and their comparison over
the noise-perturbed image group. (a) Three salt & pepper noise-perturbed images
(randomly chosen from the 12 ”Sheep” images). (b) Corresponding co-segmentation
accuracy analysis. (c) Co-segmentation results.

contribute to physics-based vision, image representation,

and pattern recognition collectively. Our on-going effort

is geared towards finding a self-adaptive way to more

intuitively determine the involved parameters. Extending our

key idea to design a mid-level feature descriptor for non-

rigid patch-level registration, image annotation, and image

retrieval is another research direction we are exploring.
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